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Sound Radiation from Interaction of a Vortex Ring

with a Fixed Sphere

U MYA 00 (¥ 3x 7-)
Department of Applied Science, Faculty of Engineering

~Kyushu University, Hakozaki, Fukuoka 812

This paper attempts to f£ind the sound pressure generated by
the interaction of an axié&mmetric vortex ring with‘a fixed rigid
sphere. For this purpose, the above problem is replaced with the
problem of sound emission from the vortex system which consists
of the actual vortex ring and its image in the sphere. Then the
results of Kambe and Minota for the sound generated bylthe vortex
systems are directly applied to the present case and it is found
that the radiated sound is a dipole-like sound related to the
timerderivative of the stream function of a potential flow afound

the fixed sphere in the direction of the vortex motion.

1. Introduction

Since the appearance of Lighthill's aerodynamic sound theory

(1952), it has been made clear that sound is generated by unsteady
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motion of fluid regardless of rigid body vibrations. The well-
-known Lighthill's equation, which is an inhomogeneous linear
wave equation, is derived from the fundamental equations of fluid
mechanics ( the equations of continuity and momentum conservation),
and the inhomogeneous term is interpreted as the source of sound
generafed. For low Mach number flows, the above term has been
, shown‘to be equivalent to Powell's source term p,div(exu) , due
to Powell(1964) and Howe(1975), where p, is the density of the
fluid at rest and w=Vxu is the vorticity, and hence it confirms
that the source reéion is the vorticity non-vanishing region.
For this reason the radiatea sound, which is called as aero-
dynamic sound after Lighthill, is also called as "vortex sound"
after Powell.

Sound generation by interaction of unsteady vortex motion
has been studied in our laboratory both theoretically and experi-
mentally. Sound radiation from the regioh with locally distri-
buted vorticities to the outer region has been obtained by theé
matched asymptotic expansion method and the results have been
applied to the problem of sound radiation from vortex systems
(Kambe & Minota 198l1). Recently, acoustic wave emitted by head-on
collision of two vortex rings was observed and compared with
theoretical predictions by Kambe & Minota(1983). Ithas been also
investigated by numerical simulation of viscous vortex motion by
Kambe & U Mya 00(1983) to get insight into viscous effect on sound
emission from collision interaction of two vortex rings.

The foregoing cases are concerned only with sound generated

by fluid flows in free space. The purpose of the present paper
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is to find sound pressure from the flow region which contains
solid boundaries. For simplicity of configuration, we consider
here the sound generated by the interaction of an axisymmetric
vortex ring with a fixed rigid sphere. The fluid is assumed to
be inviscid,slightly compressible with low Mach number and
irrotational except locally concentrated vorticity. The motion
of the vortex ring can be regarded as steady when it éi‘s'fafr from
-the sphere, but as it passes the sphere sound is emitted.

The influence of solid boundaries upon the generation of
sound by fluid flow was considered by Curle (1955) as an exten-
sion of Lighthill's general theory, but his equation is an
intractable integfal equation. Radiation of sound from a line
vortex interacting with a rigid half-plane was considered by .
Crighton (1972) and Howe (1975) as a two dimensional problem,
using the Green function tailored to the geometry of the flow
field. For the three dimensional case Obermeier (1980) general-
ized the results obtained by Mohring (1978) and Obermeier (1979)
to include the effects of solid boundaries upon aerodynamic »
sound generation. Here also we have to know vector Green func-=
tions which are to be adjusted to the geometry of the flow field
in question.

In our case, we only have to replace the original problem
with the interaction problem of the actual vortex ring and its
image in the sphere, and then this enables us to apply directly
the results of Kambe & Minota (1981l) for sound radiation from

vortex systems to the present problem.



229

2. Sound emission from vortex systems

2.1 General theory

Let 7 and u be the charecteristic length and velocity of
the flow field, then time scale is 7/u and scale of the radiated
sound field is thus A = (7/u)c, =1 M—l, where c, is sound velocity
in a uniform flow at rest and M is Mach number u/c, of the flow.
For low Mach number flow, 7 /)X =u/c,= M <<1 ~— 7 << ) , which
means that the flow is écoustically éompact. For such flows,
the whole region can. be divided into the inner region scaled by
the length 7 and the outer region scaled by the wave length
A= ZM—l. ( See figure 1 ).

In the inner region hydrodynamic flow processes dominate

and it can be described by the equations of an incompressible

flow as
V. 92v.v. 3F.
1 2 1 ] .
—* -0 , vp-=- + (2.1)
Bxi 8xi8xj axi

In the outer region, where sound field processes dominate,
the equations of motion are reduced to a homogeneous wave equa-

tion for velocity potential & :

320 529 (2.2)
P - a2 = 0 ¢
) 3%i ~ ot !
where X, = M Xy (i=1,2,3).

In the above equations the velocity Vi the coordinates
Xi, the pressure p, the external force fi and the potential &
are scaled by u,7 , po“uz, Do uz/ 7 and Zu respectively.
To determine the radiated sound field the matching of the inner

solution and the outer solution in both regions is carried out

as follows in an intermediate region.
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The inner region, in which the fluid behaves like an incom-
pressible inviscid flow, can again be divided into a finite
region D where vorticity w(x,t) has non-zero values and the rest
where it vanishes. Then the solenoidai velocity vtx,t) driven
by the vorticity field can be expressed by means of the Biot-Savart
law as follows :

v=VxB , B=—Z]L1?f?—}i—3’+_':%!dy. (2.3)

Outside the region D the velocity is also representedby a

potential in an irrotational flow as v = V& . When r =|x]| is

large we can write

Ix - vyl r Yi 9% r ¥t 3 Yi¥s3gaxs T bt v )
where x = (x;) and y = (y]), and hence the asymptotic expression

of the potential is found to be

1

1 3 1 32
® = —F— P, - + Q. = + ... 2.5
4 idx, r 138xi8xj r ' ( )

where

- 1 , 2.6
Pi(t) = 3 / (yxw)idy , ( )
= 1 . 2.7
and Qij(t) = 121Tf ' (yxm)jdy . ( )

Here use has been made the fact that f wdy vanishes since the
vortex lines are all closed curves lying in D and the vorticity
w 1is zero outside D.

For the outer region, the solution must satisfy both the
wave equation (2.2) and the radiation condition. Therefore, the

solution can be expressed as a multipole expansion

A, (t-2) s Bjte-R) Aij(t-f)

- 2.8
) — + 321 5 +82182j 5 O )
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where £ = ]2] =M r.
The matching is carried out in an intermediate region where
both expressions (2.5) and (2.8) are asymptotically valid as

M -» 0 and it is found that A,(t) =0 , Ai(t) = M2 Pi(t)/4 and

_ 3 ‘ ‘ . ,
Aij(t) = M~ ( Qij(t) + C(t) §ij) ;where C(t) 1is an arbitrary
function to be fixed by comparing the pressure expression (2.9)

with the alternative expression for the pressure obtained from

the dynamical equation ( Crow 1970). Thus the pressure for the
30 ‘
outer region, given by p = - 3t r takes the form :
2 P, (t- S, . (£-2)+C (£
o o M2 2 ; (E-2) 32 Qi (E-£)+C(t-2) 6, e omdy (2.9
S T FO 3R O%, 3 ) -

By comparing this equation with Crow's equation for the

pressure as stated above we obtain the following relations:

r - 2.10
. . 1 2.11
C(t) = - 75 f(v§+ykfk)dy . (2.12)

2.2 Sound radiation from the system of N

co-axial vortex rings

Consider N co-axial vortex rings with common axis on the
z—-axis of the cylindrical coordinate system (Z,R, ¢ ). Let the
axial position be Zi(t) , the strength'l“i and the radius Ri(t)
for ith vortex ring. Suppose that 6 denotes the angle between
the direction of observation point and the positive direction
of z—axis ( Fig. 2) .

Then, applying the asymptotic form of (2.9) in the far
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field, in dimensional variables,

Po X. 2 Po X.X. 3
i 9 r 1 0 L + 2.13
) _4'[]‘ - — - Pi(t-—o) + __.g_ _.3_1 5_?[Q13+C(t 0)513] I )

r° ot Cc

to the sound pressure radiated from the system of N co-axial

axisymmetric vortex rings we obtain the sound pressure as

p = P4 + pq + pm ’ where pd, p_ :and pm are as follpws.

g
The term Pg is a dipole and its value is

- _ 'po ~ 5 ve r (2 14)
pd -4——0—0? €cos P(t-Eo) ’ .

where P(t) denotes the total impulse of the system and it can
N
. 2 2
be written as P(t) = r [[ R°edrR dZ = 7 %‘F iRy ( )
from equation (2.6).

The term Py is a quadrupole with the value

Po

oy r 2 1
= _r < 2.16
Pq ygrssd Q(t c°) ( eqs”8 3 )N ( )
‘ 2 ; 2
h t) = = 2.17
where Q(t) [] R°Zw 4R az '_Zﬂri R Z; ( )

is related to the mean axial position of the vortex system.

The last term Pn is a monopole and its value is as follows:

P TR (2.18)
Pn = Brcir ( K+ 32 [ 7 Yyfpdy ) )
where K(t) = % fvvf!dy is the total kinetic energy of

the system.

Thus the sound radiated from the system is found to be the
sum of a dipole related to the total impulse of the system, which
is also related to'thé external force, a quadrupole related to
the mean axial position of the vortex system and a monopole

related to the total kinetic energy of the system.
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2.3 Relative efficiency of the three terms Pg’ pq and P

It is advantageous to know the relative effeciency of the
three components pd ,pq and p,, for later part of this paper.
For this purpose we can do as follows. By dimensional éonsi—
derétion we can estimate the intensity Id of soundrgeneratéd by

the dipole component as

6 3 2 —\2'
r

2
Ig = Pg /PoCo~ Pol L
at a distance r from the origin in the flow field using equation

Co

(2.14) and (2.15).
Similarly, from equationS‘(2.16) - (2.18), we can see that
the intensities Iq'and Iﬁ of sound generated by the quadrupole
and the monopole are respectively as
8 -5 2 =2
r

2
Iq = pq /po Co ~ Po U Co 2

2 8 -5 2 =2
I, =Py /PoCo~pol co L7 r
Thus we can see that the relative order estimates of the
ratios Iq/Id_and Im/Id are
. 2 ‘
Iq/Id ~ (u/c,) << 1, and‘
Im/Id ~ (u/c°)2 << 1 for low Mach number flows.
It follows that the dipole component is more efficient than
the other terms for low Mach number flow when it does not vanish.
For this reason we should note that the sound generated by the

vortex system with an external force is dominated by dipole-like

sound

3. Vortex ring interacting with a sphere
3.1 Eqﬁation of motion

Before proceeding to investigate the sound pressure, let



us consider the motion of a vortex ring with strength T', radius
R ahd axial coordinate Z near a sphere of radius a with its
centre aﬁ the origin. As is well known the flow field‘is equi-
valent to that of the actual vortex ring and its image in the
sphere in free space. For the image vortex ring the strengtth
radius R, and axial-coordinate z, are related td those gf the

actual vortex as follows:

= -Tr/a , R2 =(a2/r2)R and Z2 = (az/rz)Z ’ (3.1)

T2
where r2 = 22 + R2 .

If we denote the radius of core cross-section of the
vortex by 8§ and the values of R and § for the vortex ring at
the initial position far from the sphere by R, and ¢,
we have 62 R = 63 R, . (3.2)

Using the above relations (3.1) and (3.2) we can write the

equations of motion ( Dyson, 1893) after some simplification as

2 .2 2 2 2 2
dz T 8R,,3 R 1 df (2"+R"-a") (Z"-R"-a")
= = -+——= [(log—2+3log= -7)-f K 1£3.3)
dt 4TR S, 2 R, 4 dk (Z2+R2—a2)2+4a2R2
dR _ T af  22zR(z%+r*-a?) (3.4)
dt 4TR dk (Zz+R2-a2)2+4a2R2
where Kz _ 4a2R2 ‘ , (3.5)
(Z2+R2—a2)2+4 a2R2
and f(x) = (2/k)[ F(k)-E(x) 1 - F(x) . (3.6)

Here F(x) and E(k) are the first and the second kinds of
complete elliptic integral.

Using Runge-Kutta method we can integrate the equations
(3.3) and (3.4) to get the values of Z(t) and R(t) and their
time derivatives dZ/dt and dR/dt. For later use the second

2 2

time derivatives dzz/dt and d2R/dt can be obtained by
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differentiating the equations (3.3) and (3.4) with respect to

t and by using the relations
: 5

2 - K 2
df/d¢ = —F5———5— E(k) - =,F(x)
Kz(l—Kz) Kz
4 2 2 2
d2f/d1<2 = (-g +7K2-3) E (k) +(4—5§‘)(15K2) F (k)
K™ (1-k") v K™ (1-x")

together with the numerical values of 2 , R , dZ/dt and dR/d4t.

3.2 Radiated sound

To find the radiated sound from the.interaction?of'tﬁe
vortex ring with the fixed sphere we consider the sound radiated
from the interaction of two vortex rings in free space, the
actual vortex ring and its image vortex ring in the sphere,
since the motions in the two cases are equivalent as mentioned
in the previous section . By doing this we can apply the fheory
for sound emission from the vortex system in free space stated
in section 2,1 to the‘computation of the sound pressure’. But it
is im?ortant to note that to keep the strength of the actual
vortex constant and to satisfy the boundary céndition on the
surface of the sphere the strength of the image must be changed:
and hence that there must be an external force to maintain the
above situation. Thus as remarked at the end of section 2.3
the sound radiated in this case must be dipole-like sound ,
and so we only have to consider this component.

Applying the theory for N co-axial vortex rings to the
preéent case with N=2 , vortex strengths f,rz , ring radii R, R,,

and axial coordinates Z ’ 22 , we obtain

- 10 -
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P 2 . )
P=py = 2 ¢cos O 9—5 P(t- % ) , (3.7)
4TC,r N dt °
= 2 _ 2 2
where  P(t) = 2 T; R = (TR +T, Ry) . (3.8)

Substituting the values from equation (3.1) into (3.8),

we have 3
a

[ 1 - =3 1 . - (3.9)
r

P(t) = 2rT (1/2) R?

Here it is interesting to find accidentally that the func-
tion ¥ = (1/2)R’[L - a>/r3) in the right hand side of (3.9)
is the stream function for a potential flow around the fixed
sphere and the sound radiated by the interaction of the vortex
ring with the sphere is proportional to time derivative of
that function as

2
oo P , d“y
P - pd— m ¢cos © 27T -——-2- (3.10)

dt

By writing Pgq in the form :

Pol ' .2 .2 . . e
P=Pg = TC.T cosb (Z wZZ+R wRR+2ZRwZR+ZwZ+R¢R)
and by using the results of the previous section we can compute

the radiated sound'numerically.

4. Results and discussion

Numerical integration of the equations (3.3) and (3,4) was
performed by setting the values of the initial parameters as
Z2,/Ja =4. ,8.,/R, = 0.1, 0.3 and R,/a =0.8, 1.0, 1.2, 1.4 and
1.6 .

Figure 4 shows the path of the vortex core centre (R(t),Z(t))
for various initial values of R,: R,/a =0.8,1.0 and 1.2. Figure 5

represents the streamline pattern of the imaginary potential flow

- 11 -
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around the fixed sphere. As can be seen from equation (3.10)the
radiated sound would be zero if the path of the core centre coin-
cide with one of the streamlines because the tlme derivative of
the functlon Y along the streamlines is zero. Thus we can see
that sound is generated only when the path of the vortex oore
orosses the streamlines of the imaginary potential flow around
the sphere. The phenomenon that the eﬁitted sound pressure’is
invsome way related to time derivatives of the stream function
of a certain potential flow around the body can he seen aleo in
other cases such as sound radiation from a vortex filament
negotiating the edge of a half plane (Howe 1975) .

Flguresfﬂa), (b) and (c) show time Varlations of the funotions
Y, dy/dt and dzq)/dt2 for various values of R,/a: 0.8, 1.0 and 1.2
respectively. Here the stream function ¥ and the time t are nor-
malized by a2 and 4ﬂa2/r . The last curve of each figure also
represents the radiated sound normalized with p,T /(32ﬂ2a20 r).

In figure 7, the radiated sound pressure is plotted against
the axial position of the vortex for various values of R,/a (=
0.8,1.0,1.2,1.4 and 1.6) with §,=0.3 R,. With the same values of
the parameters except 6,(=0.1 R,), the pressure curves are shown
\in figure 8. From these figures we can observe that the peaks
of the pressures occur when the vortex reaches the end points
(Z/a=-1, 1) and the centre of the sphere (Z/a=0). It can also be
seen in these figures that with the same strengths the larger
the vortex ring is, the weaker the radiated sound becomes. Further,
by comparing these figures we can see that the vortex with the
smaller core cross-section produces the weaker sound for the same
radius of the ring and the same strength, when it passes over the
centre of the sphere.

- 12 -



5. Conclusion

The generation of sound from an unsteady flow céhtaining
a rigid body has been considered by using Kambe and Minota formula
for free space sound radiation with the image method. It has been
found that the dipole component predéminates in the sound field
génefated by a vortex ring passing a fixed sphere. Further, it
is interesting to find‘that the dipole-like sound is<}elated to
the éecond time derivative of the stream function for a potential
flow.around the sphere. guych kind of phenomenonithat the radiated
sound is in some way related to the stream function of a hypo-

thetical potential flow around the body can be found also in

other cases.
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Fig. 1 Geometry of the flow and the radiated

sound field.

- 14 -
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System of N vortex rings.

Fig.2
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Fig.4 Path of core centre of the vortex ring

for R,/a =0.8, 1.0 and 1.2.

Fig.5 Streamlines of a potential flow around the sphere ;

2

v = (1/2) R® [ 1 - a3/(2%+r%)3/?] = const.
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