
259

Foundation of Logic Programming Based on Inductive Definition

Masami Hagiya

Research Institute for Mathematical Sciences
Kyoto University

Oiwake-cho Kitashirakawa, Sakyo-ku, Kyoto 606

Takafumi Sakurai

Department of Information Science
Faculty of Science

University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113

ABSTRACT

A logical system of inference rules intended to give the foundation of
logic programs is presented. The distinguished point of the approach taken
here is the application of the theory of inductive definitions, which allows us to
uniformly treat various kinds of induction schema and also allows us to regard
negation as failure as a kind of induction schema. This approach corresponds to
the so called least fixpoint semantics. Moreover, in our formalism, logic pro-
grams are extended so that a condition of a clause may be any first order for-
mula. This makes it possible to write a quantified specification as a logic pro-
gram. It also makes the class of induction schemata much larger to include the
usual course-of-values inductions.

0. Introduction
The purpose of this paper is to present a logical system, which is intended to be the basis

of verification and automatic programming of logic programs. We followed the theory of
iterated inductive definitions of Martin-Lof[10], in formulating the rules.

Logic programming brings the idea that the semantics of a programming language consists
of a description of a declarative (logical) meaning of a program and a control to execute it. The
latter corresponds to the operational semantics and the former to a part of the denotational
semantics. The advantage of logic programming is that, since a program is mapped to a for-
mula of a logical system, its declarative meaning is naturally given by the formula and many of
its properties such as partial correctness, termination or equivalence of programs are expressible
within the framework of the logical system. Note, however, that the complete semantics of the
programming language cannot be defined in the logical system alone. We need to describe it in
some other way and prove that executing a program according to the complete semantics does
not contradict the declarative meaning of the program given in the logical system. In the case
of pure Prolog, the logical system is the first order predicate logic, a program is a set of Horn
clauses and the declarative meaning of the program is a conjunction of the Horn clauses, while
how to execute a program, i.e. the operational semantics of pure Prolog is SLD-resolution with
a certain strategy e.g. depth-first or breadth-first.

It is possible to express many properties of programs in the framework of the usual flrst
order logic. Clark and Tarnlund[7] proposed to use the first order predicate logic. (See also
Clark and Darlington[6], Hansson and Tarnlund[8].) In their system, data structure is defined

-1-

数理解析研究所講究録
第 511巻 1984年 259-273

$26t1$

by some predicate and a predicate is defined by first order recursion equations. But as is
pointed out by them, in order to characterize the data structure completely, it is necessary to
introduce an induction schema on that data structure, i.e. to add an extremal clause to the
predicate definitions. For example, consider the set of natural numbers. To characterize it as a
data structure, the following clauses are introduced.
(1) 0 is a natural number.
(2) x is a natural number iff the successor of x is a natural number.
These clauses, formulated in the form of recursion equations, do not completely characterize
the set of natural numbers. According to Peano axioms, it is necessary to introduce the induc-
tion schema on natural numbers besides the above two clauses. However, in general, there is
no guarantee that the predicate definition and the induction schema are compatible with each
other. The most significant difference between our system and Clark and Tarnlund[7]’s system
is that we incorporate into our system a rule to derive such an induction schema from predicate
definitions. The rule is called production elimination.

Given a set of recursion equations which define a predicate, there are two alternative ways
to define semantics of the predicate. One is to regard the predicate as the least fixpoint of tlhe
equations and another is to regard it as the greatest fixpoint. (See Apt and van $Emden[2]$,
$Sato[14]$ for the investigations of the greatest fixpoint semantics.) The recursion equations
themselves do not determine which semantics to choose, but introducing production elimina-
tion forces us to choose the least fixpoint semantics; production elimination is a syntactic
representation of the least fixpoint semantics. A similar rule can also be introduced which
represents the greatest fixpoint semantics. However, the important distinction is that produc-
tion elimination derives a wide variety of induction schemata. This is one of the reasons why
we choose the least fixpoint semantics.

The declarative meaning of a logic program can be regarded as its specification. But gen-
erally the specifications of programs often contain universal quantifications and other logical
symbols. By using the theory of generalized inductive definitions, we can define predicates of
higher levels in terms of full first order formulas constructed from predicates of lower levels; a
higher level predicate serves as a specification of lower level ones. Usually, higher level predi-
cates are not (or can not be) executed directly, but are transformed to lower level ones, or are
used to prove some properties of lower level predicates. But, of course, there is no reason why
we should not execute them directly.

In our extension of logic programs presented here, a condition of a clause may contain
any logical symbols. This makes it possible to write a quantified specification as a logic pro-
gram. It also makes the class of induction schemata much larger to include the usual course-
of-values inductions.

How to treat negation is one of the most problematic points in logic programming. We
also discuss the problem of negation in our formalism. The point is that the so called negation
as failure rule (Clark [5]) is derivable in our system.

1. ID
We introduce a logical system called ID.

1.1. Symbols
The symbols of ID consist of the following.

(L1) Constants
Countably many individual constants:

a string of roman alphabetical characters which begins with an uppercase character
$e.g$. Zero, Nil.

Countably many n-ary function constants for each $n\geq 0$:
a string of roman lowercase characters which may have indices

-2-

2 ti X

$e.g$. cons, s , fact.
A nullary predicate constant of level $0:\perp$.
A binary predicate constant of level $0:=$.
Countably many n-ary predicate constants of level m for each $n\geq 0$ and $m\geq 1$:

a string of roman alphabetical characters which begins with an uppercase character
which may have indices
$e.g$. Nat, List, Fib.

(L2) Variables

Countably many individual variables:
a single lowercase roman alphabetical character which may have indices
e.g. $x,$ $y,$ a

$,$

$b,$ 1 .

(L3) Logical symbols
$\wedge,$ $\vee,$ $\supset,$ $\forall,$ \exists

1.2. Terms, Formulas
Terms are defined as follows:

(T1) An individual constant is a term.
(T2) A variable is a term.
(T3) If f is an n-ary function constant and $t_{1},$ $\cdots,$ t_{n} are terms, the $f(t_{1}, t_{n})$ is a

term.
Atomic formulas (predicates) are defined as follows:

(A1) If P is an n-ary predicate constant and t_{1} , , t_{n} are terms, then $P(t_{1}, , t_{n})$ is an
atomic formula.

We call n the arity of P . We impose a restriction that syntactically identical predicate con-
stants should have a fixed arity and level. We $abbreviate\perp(),$ $=(s, t)$ as 1, $s=t$ and if s and t

are sequences of terms of length n , i.e. s is $s_{1},$ $\cdots,$ s_{n} and t is t_{1} , t_{n} , we abbreviate
$s_{1}=t_{1},$ $\cdots,s_{n}=t_{n}$ as $s=t$.

Formulas are defined as usual, where $\neg A,$ $Arightarrow B$ and $A_{1},$ $\cdots,A_{n}\supset B$ are abbreviations of
$A\supset\perp,$ $(A\supset B)\wedge(B\supset A)$ and $A_{1}\supset(\cdots(A_{n}\supset B)\cdots)$ respectively.

Free and bound occurrence of a variable in a formula is defined as usual.
To define P-forms, we introduce countably many $symbols**$, which are foreign

to ID. P-forms are defined as follows:
(P1) $*i$ is a P-form.
(P2) A formula is a P-form.
(P3) If P and Q are P-forms, then $P\wedge Q$, PVQ, $\forall x.P$ and $\exists x.P$ are P-forms.
(P4) If F is a formula and P is a P-form, then $F\supset P$ is a P-form.

The degree of a P-form P is the largest n such that $*n$ occurs in P. If P is a P-form of
degree n and $F_{1},$ $\cdots,$ F_{n} are formulas, $P[F_{1}, \cdots, F_{n}]$ denotes the result of replacing the
$symbols*1$, , $*n$ in P by $F_{1},$ $\cdots,$ F_{n} respectively.

For syntactic variables, we use
$x,$ $y,$ $z,$ a for variables,
$x,$ $y,$ z for sequences of variables,
$r,$ $s,$ $t,$ u for terms,
$r,$ $s,$ $t,$ u for sequences of terms,
$P,$ $Q,$ R for predicate constants,
$A,$ $B,$ $C,$ $F,$ $G,$ H for formulas,

-3-

$26_{-}’\rangle$

$P,$ Q for P-forms,
$\Gamma,$ Δ for sequences of formulas.

They may have indices.
Sequents are defined as follows:

(S1) $\Gammaarrow F$ is a sequent.
The notation for substitution is defined as follows:

(ST) Let x be $x_{1},$ $\cdots,$ x_{n} and t be [1 , t_{n} . $s_{x}(t)$ represents a term obtained by simul-
taneously substituting t_{i} for all occurrences of x_{i} .

(SF) Let x be $x_{1},$ $\cdots,$ x_{n} and t be t_{1} , , t_{n} . $A_{x}(t)$ represents a formula obtained by
simultaneously substituting t_{l} for all occurrences of x_{i} with renaming of bound variables
in A if variables in t would be bound in A .
If A and B are formulas such that A is $B.(t)$, we express this fact by writing A as $B(t)$

and B as $B(x)$.
We say d’ is a variant of d with respect to e ($d,$ e are sequences of terms or formulas) if

d’ is obtained by renaming variables of d , and $d’$ and e do not have free variables in common.

1.3. Inference rules
An inference rule is of the form

$\underline{S_{1}}$
.

SS_{n} $n\geq 0$

where $S_{i},$ S are sequents.
We call $S_{1},$ $\cdots,$ S_{n} the premises and S the consequence of the inference rule.
A proof is defined as usual.
The inference rules consist of the following.

(i) intuitionistic logic
(ii) inference rules for equality
(iii) production introduction and production elimination

1.3.1. Logic
Logical part of ID is the intuitionistic logic.

The rules are
(A_{X})

$\overline{\Gamma,A,\Deltaarrow A}$

(Wk) $\frac{\Gammaarrow A}{B,\Gammaarrow A}$

(Cntr) $\frac{A,A,\Gammaarrow B}{A,\Gammaarrow B}$

(E_{X}) $\frac{\Gamma,A,B,\Deltaarrow C}{\Gamma,B,A,\Deltaarrow C}$

(Cut) $\frac{\Gammaarrow AA,\Deltaarrow B}{\Gamma,\Deltaarrow B}$

$(\wedge I)$ $\frac{\Gammaarrow A\Gammaarrow B}{\Gammaarrow A\wedge B}$ $(\wedge E)$ $\frac{\Gammaarrow A\wedge B}{\Gammaarrow A}\frac{\Gammaarrow A\wedge B}{\Gammaarrow B}$

$(\vee I)$ $\frac{\Gammaarrow A}{\Gammaarrow AB}\frac{\Gammaarrow B}{\Gammaarrow AB}$ (E) $\frac{\Gammaarrow ABA,\Gammaarrow CB,\Gammaarrow C}{\Gammaarrow C}$

$(\supset I)$ $\frac{A,\Gammaarrow B}{\Gammaarrow A\supset B}$ $(\supset E)$ $\frac{\Gammaarrow A\supset B\Gammaarrow A}{\Gammaarrow B}$

$- 4arrow$

2 \S \S

$(\forall I)$ $\frac{\Gammaarrow A(a)}{\Gammaarrow\forall x.A(x)}$ $(\forall E)$ $\frac{\Gammaarrow\forall x.A(x)}{\Gammaarrow A(t)}$

$(\exists I)$ $\frac{\Gammaarrow A(t)}{\Gammaarrow\exists\kappa.A(x)}$ $(\exists E)$ $\frac{\Gammaarrow*.A(x)A(a),\Gammaarrow B}{\Gammaarrow B}$

$(\perp E)$ $\frac{\Gammaarrow\perp}{\Gammaarrow A}$

where in $(\forall I)$
a must not occur free in Γ and in $(\exists E)$ a must not occur free in B and Γ .

1.3.2. Inference rules for equality
The intended meaning of a predicate constant $=$ is, of course, equality. We need some

rules to characterize equality. The basic rules are

$\overline{arrow t=t}$ $\overline{s=tarrow t=s}$ $\overline{r=s,s=tarrow r=t}$

$\overline{s=tarrow r_{x}(s)=r_{x}(t)}$ $\overline{A(s),s=tarrow A(t)}$

where s and t are of the same length.
Moreover, as for equality and falsity, we can introduce any rules so long as they do not

violate the constraint on levels. (See 1.3.3.) For example, we can introduce the following rules
by Clark[5].

$\frac{c=c’}{\perp}$ for distinct individual constants $c,$ $c’$

$f(x_{1}, \cdots,x_{n})=g(\gamma_{1}, \cdots,y_{m})$

for distinct function constants $f,$ g

\perp

$\frac{f(x_{1},\cdots,x_{n})=f(y_{1},\cdots,y_{n})}{x_{i}=y_{i}}$ for any function constant f

$\frac{f(x_{1},\cdots,x_{n})=c}{\perp}$ for any function constant f and individual constant c

$\frac{t=x}{\perp}$ for any term t in which x ocuurs

They are formulated as what we call productions. (See 1.3.3.) With these rules, we can explain
the mechanism of unification used in Prolog. (See 4.1.) We call these rules Peq.

On the other hand, we can interpret function constants by introducing some rules, e.g.

$\overline{fact(0)=s(0)}$ $\overline{fact(s(x))=times(s}$(x),fact $(x))$

1.3.3. Production introduction and production elimination
These rules are most important and useful when we prove formulas in ID. These rules

are the elaboration of those in Martin-Lof[10]. First we define production.

1.3.3.1. Production
Productions are schemata for defining predicates inductively. It has a figure of the form

$\frac{F_{1}\cdots F_{n}}{P(t)}$ $n\geq 0$ (p)

where t is a sequence of terms, P is a predicate constant, F_{i} is a formula

$P_{i}[Q_{i1}(t_{i1}), , Q_{ik_{l}}(t_{ik})]$

-5-

$\theta 4^{f:}\cdot\not\in$

P_{i} is a P-form of degree $k_{i},$ Q_{ij} is a predicate constant and the condition on levels
$(^{*})$ the levels of Q_{ij} should be less than or equal to the level of P and the levels of predicates

in P_{i} should be less than the level of P

is satisfied.
We call $F_{1},$ $\cdots,$ F_{n} the conditions of the production (p).

Example

$\overline{List(Nil)}$
$\frac{List(1)}{List(cons(x,1))}$

1.3.3.2. Production introduction
A production introduction of a production (p) is

$\frac{\Gamma,s=t’,\Deltaarrow F_{1}’\cdots\Gamma,s=t’,\Deltaarrow F_{n}’}{\Gamma,s=t’,\Deltaarrow P(s)}$ (pI)

where $t’,$ $F_{1’},$ $\cdots,$ F_{n}
‘ is a variant of $t,$ $F_{1},$ $\cdots,$ F_{n} with respect to s .

Example

$\frac{cons(u,cons(v,w))=cons(x,1)arrow List(1)}{cons(u,cons(v,w))=cons(x,1)arrow List(cons(u,cons(v,w)))}$

1.3.3.3. Production elimination
To define production elimination, we introduce the definition of link which is a relation

between predicate constant.
(1) A predicate constant is linked with itself.
(2) If a predicate constant P occurs in the conclusion of the following production

$\frac{P_{i}[\cdots,Q_{ij}(s_{ij}),\cdots]}{P(s)}$
. . .

then P is linked with every predicate constant which is linked with Q_{ij} .
Production elimination of the inductively defined predicate constant P is of the form

$\frac{\Gammaarrow P(t)\min orpremises}{\Gammaarrow F}$ (pE)

We explain how to make minor premises. First, we choose an arbitrary set Ps of predi-
cate constant such that it contains P and its members are linked with P . We associate a for-
mula and a sequence of terms with each predicate constant in Ps as follows.
(1) We associate F and t with P .
(2) For a predicate constant Q other than P , we associate an arbitrary formula and sequence

of terms whose length is the arity of Q .
A minor premise is constructed for each pair of a predicate constant Q in Ps and a production
whose conclusion contains Q . Let the production be of the form

$\frac{Q_{i}[\cdots,R_{ij}(s_{ij}),\cdots]}{Q(s)}$
. . .

and let
$r^{l},$ $G’,$ $r_{ij’},$ $G_{ij}’$ be a variant of $r,$ $G,$ $r_{\iota f}G_{ij}$ with respect to Γ ,

z_{ij} be a sequence of all the variables in r_{ij} ,

$s’,$ $F_{i},$ H_{i} be a variant of $s,$ $Q_{i}[\cdots,R_{ij}(s_{ij}), \cdots]$, $Q_{i}[\cdots ,H_{ij}, \cdots]$

-6-

$2S5$

with respect to $r’,$ $G’,$ $r_{ij’},$ $G_{ij}’,$ Γ ,

where
G and r are associated with Q ,

$H_{ij}=\{ijS_{ij}G_{ij}’)$ $otherwise\iota fG_{ij}andr_{ij}$

are associated with R_{ij}

The corresponding minor premise is
$r’=s’,$ $\cdots,$ $F_{i},$ H_{i} , , $\Gammaarrow G’$ (PpE)

For $P,$ t and F , we may have several production eliminations according to Ps and the
association which we make.
Example

For a predicate constant ‘List’ defined in the above example, production elimination is of
the form

$\frac{\Gammaarrow List(t)t_{y}(z)=Ni1,\Gammaarrow F(z)t_{y}(z)=cons(x,1),List(1),\forall z.(t_{y}(z)=1\supset F_{y}(z)),\Gammaarrow F(z)}{\Gammaarrow F(y)}$

where y is the only variable in t , and x and 1 do not occur free in Γ . To help the under-
standing of the reader, we list the correspondence between the constructs in the second
minor premise of the above schema and those of (PpE) .

t . . . r

$t_{y}(z)$. . . $r’$

$cons(x,1)^{ij}z\cdots z\ldots S^{l}$

$F(y)$. . . G

$F(z)$. . . $G’$

List Q

These are our definition of ID. If we want to make explicit that ID has a set of produc-
tions I , we use the notation ID(I). Provability symbol $\vdash_{ID(I)}$ is used as usual.

2. Production

2.1. Meaning of production elimination
Production elimination may seem very complicated. We explain its meaning by an exam-

ple.

(n1)
$\overline{Nat(0)}$

(n2) $\frac{Nat(x)}{Nat(s(x))}$

0 is an abbreviation of an individual constant Zero. The intended meaning of $Nat(x)$ is that x

is an natural number. One of the production eliminations of Nat is

$\frac{\Gammaarrow Nat(x)yyy=s(z),Nat(z),W.(y=z\supset F(y)),\Gammaarrow F(y)}{\Gammaarrow F(x)}$

As its derived rule, we have

$\frac{\Gammaarrow Nat(x)\Gammaarrow F(0)Nat(z),F(z),\Gammaarrow F(s(z))}{\Gammaarrow F(x)}$

This is exactly the induction schema on natural numbers. This also means that Nat is the
minimal solution of the equation

$X(O)\wedge\forall\kappa.(X(x)\supset X(s(x)))$

where X is a predicate variable which is unknown.

-7-

$\circ\angle S8$

Similarly, we are able to derive an induction schema from the production elimination
$\Gammaarrow P(x)$ minor premises

$\Gammaarrow F$

and it implies that P is the minimal solution.
Roughly speaking, minor premises of a production elimination are obtained by replacing

the predicate of productions by the formula associated with it, but the replacement is allowed
only when the argument of the predicate belongs to some domain which is determined by the
sequence of terms associated with the predicate constant. ($r’=s’$ and $r_{ij’}=s_{ij’}$ of (PpE) defines
the domain.) This means that production elimination expresses the minimality of the restricted
predicate.

2.2. Advantage of production elimination
The reason why we use production is that it is very natural to define predicate. For exam-

ple, a set of productions

$\overline{List(Nil)}$
$\frac{List(1)}{List(cons(x,1))}$

with a production elimination is more natural than
$\forall x$. (List $(x)rightarrow x=NilV3].(x=cons(y,1)\wedge List(1))$)

and easy to treat. Moreover, the latter form of the predicate definition, i.e. the predicate
definition by if and only-if, does not imply the minimality of the defined predicate. We give an
easy example to show that the if and only-if definition does not imply minimality. The
definition of a predicate constant ‘False’

False $0rightarrow False()$

does not decide ‘False’ at all, while the definition by a production with a production elimination
implies that False $0rightarrow\perp as$ is seen in Example 3 in 2.3.

Another reason why we adopt the production elimination is that it provides a wide variety
of induction schemata. It is natural that the production elimination takes a form of the induc-
tion, because the least fixpoint of the transformation associated with productions (see Apt and
van Bmden[2]) is equal to the union of the finite powers of the transformation applied to the
least element. (The least element corresponds to the base case and the transformation to the
step of the induction.)

2.3. Examples of production elimination of plain production

Now we give some examples of productions in which predicate constants are of at most
level 1 and the conditions are all atomic. We call such a production a plain production.

Example 1
Production elimination does not necessarily derive a ordinary induction $scheIr_{arrow}a$. Let Nat
be a predicate constant defined in 2.1. Another production elimination of Nat is

$\frac{rarrow Nat(s(x))s(y)=0,\Gammaarrow F(y)s(y)=s(z),Nat(z),W.(s(y)=z\supset F(y)),\Gammaarrow F(y)}{\Gammaarrow p(x)}$

Since the intended meaning of $Nat(s(x))$ is that $s(x)$ is a natural number, i.e. x is a
natural number, the proof of $Nat(s(x))arrow F(x)$ and that of $Nat(x)arrow F(x)$ will have some
relation. If the following rules (some of Peano axioms)

$\frac{s(x)=s(y)}{x=y}$ $\frac{s(x)=0}{\perp}$

are introduced, we have

$\frac{\Gammaarrow Nat(s(x))Nat(z),\Gammaarrow F(z)}{\Gammaarrow F(x)}$

-8-

JZ\S 7

as its derived rule.
Example 2

If we have productions

$\overline{Isblock(A)}$ $\overline{Isblock(B)}$ $\overline{lsblock(C)}$

then,
$\Gammaarrow Isblock(x)$ $y=A,\Gammaarrow F(y)$ $y=B,\Gammaarrow F(y)$ $y=C,\Gammaarrow F(y)$

$\Gammaarrow F(x)$

is a production elimination, which permits us to argue by case-analysis. In the above pro-
duction elimination, y should not appear in Γ , but x may appear in Γ . However, if x

appears in Γ , it is desirable that the minor premises are $x=A,\Gammaarrow F(x)$ etc. We are able
to derive such a rule as follows.

$\Gamma(x)arrow Isblock(x)\frac{y=A,\Gamma(x),\Gamma(y)arrow F(y)}{y=A,\Gamma(x)arrow\Gamma(y)\supset F(y)}\frac{y=B,\Gamma(x),\Gamma(y)arrow F(y)}{y=B,\Gamma(x)arrow\Gamma(y)\supset F(y)}\frac{y=C,\Gamma(x),\Gamma(y)arrow F(y)}{y=C,\Gamma(x)arrow\Gamma(y)\supset F(y)}$

$\Gamma(x)arrow\Gamma(x)\supset F(x)$

$\overline{\Gamma(x)arrow F(x)}$

Example 3
We define a nullary predicate False $()$.

$\frac{Fa1se()}{Fa1se()}$

For any formula F, we can prove False $()arrow F$ using production elimination of False. The
proof is

$\frac{\overline{False()arrow False()}\overline{Fa1se0,F,False()arrow F}}{False()arrow F}$

So we can prove

False $()$ $rightarrow\perp$

As is explained in section 3, we can regard the above production as a program of Prolog.
If we execute False $()$, it does not terminate because of an infinite recursion. But as the
meaning of False $()$ is 1, it is desirable that the execution fails. We implemented Prolog
which has a facility to make this possible. Note that this facility is reasonable because we
adopt the least fixpoint semantics.

3. Prolog and its foundation

3.1. Pure Prolog

We are concerned with a program of Prolog which corresponds to a set of productions of
ID. We suppose that
(i) every predicate has a fixed arity
(ii) an argument is a term of ID.

For example, if we execute the following goal

$<-Add(s(s(0)), s(0),$ z)

under a program

Add$(0, y, y)<-$
Add$(s(x), y, s(z))<-Add(x, y, z)$

-9-

2 6_{0}^{Ω}

we get a response
$z=s(s(s(0)))$

When a predicate A is executed under a program P and execution terininates with suc-
cess, we write

$P\vdash Pro\log A$

and when a predicate A is executed under a program P and execution fails, we write
$P\#_{Pro\log}A$

A program of Prolog can be regarded as a set of plain productions such that the levels of
the predicate constants are 1. The above program is converted to

Add (O, y, y)
$\frac{Add(x,y,z)}{Add(s(x),y,s(z))}$

Executing a predicate in Prolog corresponds to generating its proof in ID. In the case of
the above example, the following proof is generated.

$\frac{\overline{\Gammaarrow Add(x_{2},y_{2},z_{2})}}{\Gammaarrow Add(x_{1},y_{1},z_{1})}$

$\frac{\overline{\Gammaarrow Add(s(s(0)),s(0),z)}}{\Gammaarrow\exists.Add(s(s(0)),s(0),z)}$

where Γ is
$s(s(0))=s(x_{1}),s(0)=y_{1},z=s(z_{1}),x_{1}=s(x_{2}),y_{1}=y_{2},z_{1}=s(z_{2}),x_{2}=0,y_{2}=y_{3},z_{2}=y_{3}$

Compare this proof with the procedural interpretation (Kowalski [9]). Applying the infer-
ence rule corresponds to calling the body and Γ to the unification. We get an answer $z=$
$s(s(s(O)))$ by analyzing Γ .

Note that the above proof is normal. (For the definition of a normal proof see
Prawitz [12], Martin-Lof[10].)

We say Γ is a u-seq if Γ is a sequence of formulas $s=t$ and Γ is consistent. Therefore,
whether Γ is a u-seq or not depends on equality rules.

3.2. Foundation of Prolog
Usually it is explained that Prolog is based on SLD-resolution. (Kowalski [9], Apt and van

Bmden[2]) But it is more natural to regard a Prolog program and execution of it as a set of pro-
ductions and generation of a normal proof than to regard them as a set of Horn clauses and
SLD-resolution, since it reflects more faithfully the procedural interpretation of predicate logic
and the completeness is proved more easily and naturally using the normalization theorem.
(See 3.4.) Relations between natural deduction and resolution are investigated in e.g. Bibe1[3],
Andrew[l]. Some resolution procedures are more clearly understood in terms of deduction,
even if deduction and refutation are equivalent. In our case, equivalence is almost trivial, but
we have another advantage when we extend a Horn clause to a more general first order for-
mula. (See 4.2 and 4.3.)

3.3. Partial correctness of Prolog

For a Prolog program $P.p$, we can make a set of productions P .
According to the (rather informal) explanation of Prolog in section 3.1,

P. $p\vdash_{Pro\log}A$ \Rightarrow $\vdash_{1D(P)}\Gammaarrow\exists x.A$ for some u-seq Γ

where A is a predicate defined in P , and x is a sequence of free variables in A .

-10-

269

This means partial correctness. Furthermore, in the case of Prolog with occur-check,

P. $p\vdash_{Pro\log}A$ \Rightarrow $\vdash_{ID(P\cup Peq)^{arrow*.A}}$

3.4. Completeness of Prolog
Completeness can be described by

$\vdash_{ID(P\cup Peq)^{arrow\exists x.A}}$ \Rightarrow P. $p\vdash_{Pro\log}A$

Does this really hold? There are two problems.
The first problem is that the proof $ofarrow\exists x.A$ in ID(PUPeq) must be normal, for A to

terminate with success under $P.p$. In general, the proof $ofarrow\exists x.A$ is not necessarily normal.
But according to the normalization theorem (Martin-Lof[10]), if the proof of formula F exists,
there is a normal proof of F. In this case, since A is a predicate, a normal proof $ofarrow\exists x.A$

consists of only production introductions except for the last rule $\exists I$.
The second problem is as follows. As is explained in section 3.1, Prolog searches for a

normal proof of A . If the search is ideal, Prolog will find a normal proof of A if A holds. But
usually, Prolog uses a depth-first search and it may result in non-termination. If a breadth-first
search is introduced, Prolog will find a normal proof whenever it exists, i.e. the completeness
holds.

To conclude, $if\vdash_{ID(P\cup Peq)}arrow*.A$, P. $P\vdash_{Pro\log}A$ holds or the execution of A does not ter-
minate. But it never happens that A fails in spite $of\vdash_{ID(P\cup Peq)}arrow\exists\kappa.A$.

Compare our treatment of the completeness to that of SLD-resolution in Apt and van
Emden [2]. Ours is much simpler, though the simplicity depends partly on the fact that we have
not strictly defined the execution procedure of Prolog. As mentioned above, if Prolog is ideal
(i.e. uses breadth-first strategy), it is complete. This corresponds to the completeness of SLD-
resolution. When Prolog searches a proof, there are two choices, that is,
(i) order of proving premises,
(ii) selection of productions.

Our approach gives an intuition that (i) does not influence completeness and in fact it is right.
Corresponding result is also proved in the case of SLD-resolution (Apt and van Emden[2]). If
our proof of the fact that (i) need not be considered is described strictly, it will be essentially
not so different as the case of SLD-resolution, but our approach has an advantage of ease of
understanding.

4. Extensions

4.1. Negation as failure
Negation as failure can be interpreted as a series of successive production eliminations.

We explain the situation by an example.
Example

Consider the following Prolog program
(N1) Nat(0) $<-$
(N2) Nat $(s(x))<$ -Nat (x)
(N3) $<-Nat(s(t(0)))$

Since execution of (N3) fails, it is supposed that $\neg Nat(s(t(0)))$ holds if we use negation as
failure. (N1) and (N2) are converted to the productions (n1) and (n2) in 2.1 and
$\neg Nat(s(t(O)))$ is proved in ID ($\{(nl),$ $(n2)\}$ UPeq) as follows.

$\underline{\Pi}$

$\frac{\overline{Nat(s(t(0))),\Gammaarrow Nat(s(t(0)))}\overline{s(t(0))=0,\Gamma’arrow\perp}\overline{s(\iota(0))=s(x),Nat(x),s(\iota(0))=x\supset\perp,\Gamma’arrow\perp}}{Nat(s(t(0))),\Gammaarrow\perp}$

$\overline{\Gammaarrow\neg Nat(s(t(0)))}$

- 11 -

2 /0

where Γ is a u-seq in which x and y do not occur free, $\Gamma’$ is $Nat(s(t(O))),$ Γ and Π is

$\overline{Nat(t(0)),\Gamma’arrow Nat(t(0))}\overline{t(0)=0,\Gammaarrow\perp Nat(t’’(0)),\Gamma}’\overline{arrow\perp t(0)=s(y),Nat(y),t(0)=y\supset\perp.’\Gamma’’arrow\perp}$

where $\Gamma’’$ is $Nat(t(O)),$ $\Gamma’$.
Note that $s(t(O))=0arrow\perp,$ $t(O)=0arrow\perp,$ $t(O)=s(y)arrow\perp$ correspond to three failures in exe-
cuting (N3), i.e. $s(t(O))$ does not match with $0,$ $t(O)$ with $0,$ $t(O)$ with $s(y)$.
In general, we can describe negation as failure by

P. $p\#_{Pro\log}A$ \Rightarrow $\vdash_{ID(P\cup Peq)}arrow\forall x.\neg A$

and justify it by converting a failure tree in the sense of Clark[5] into a proof of ID. Since it is
almost obvious, we leave it to the reader.

As is known from the above discussion, unification of Prolog can be regarded as a built-in
equality test procedure in ID(Peq). Therefore, if we have some other equality rules and the
procedure to test the equality and use it instead of unification, we $1_{h}ave$ a variation of Prolog,
e.g. Prolog whose terms are functions.

4.2. Introducing higher level predicates

4.2.1. Condition on levels
Up to now, we have only considered what we call plain productions. Plain productions are

enough for the so-called pure Prolog, but, as was discussed in 4.1, the usual Prolog interpreter
can actually treat negations of predicates by negation as failure and in fact a predicate constant
can be defined in terms of the negation of other predicates. But allowing arbitrary productions,
which may not satisfy the condition on levels defined in 1.3.3.1, we can soon prove a contradic-
tion. The simplest example is the following production:

$\frac{\neg Liar()}{Liar()}$

Considering Liar $()$ as the minimal solution of
$\neg X\supset X$,

we can conclude that Liar $()$ is true. But using the following production elimination
Liar $()arrow Liar()$ $\neg Liar(),\neg\neg Liar0$,Liar $()arrow_{\neg}Liar()$

Liar $()arrow_{\neg}Liar()$

and assuming Liar $()$ to be true, we immediately get a contradiction (1). This means that the
production elimination and the naive least fixpoint semantics are not compatible, when the con-
dition on levels is violated. It is because the (illegal) production does not introduce a $monoarrow$

tone transformation in the sense of Apt and van Emden[2], as was discussed in 2.2.
The condition on levels requires that the predicate constants of lower levels should have

been completely defined before the process of defining the predicate constants of the higher
levels. It guarantees that the associated transformation is monotone at each level of the
definition, so that production elimination is a valid rule with respect to the least fixpoint seman-
tics.

4.2.2. Extension with negation

We consider Prolog programs in which a negation of a predicate may appear as a condition
of a clause. With this extension, when transforming clauses to productions, we should expli-
citly check the condition on levels.
Example Member and Insert

- 12 -

2 \neg_{*}

$\overline{Member(x,cons(x,1))}$
$\frac{Member(x,1)}{Member(x,cons(y,1))}$

$\frac{Member(x,1)}{Insert(x,1,1)}$ $\frac{\neg Member(x,1)}{Insert(x,1,cons(x,1))}$

If we assign level 1 to Member and level 2 to Insert, the above productions satisfy the
condition on levels.
Analyzing existing Prolog programs, we have come to believe that almost all the logical

Prolog programs satisfy the condition on levels with an appropriate assignment of levels.
For the extended programs, negation as failure can be justified by transforming the execu-

tion with negation as failure into a series of successive production introductions and production
eliminations, just as in 4.1.

4.3. Towards verification and synthesis

4.3.1. Notion of verification and synthesis

As was discussed in Clark and Tarnlund[7] and also mentioned in 0 , since a Prolog pro-
gram can be mapped to a logical formula (in our case, to a set of inference rules), many of the
properties of the program are naturally formalized and proved inside pure logic, i.e. without
resort to any device such as Hoare’s axioms and rules. In the case of logic programming, the
correctness problem of a program is formulated rather as the equivalence problem of two pro-
grams. The typical example is the following two definitions of Fibonacci sequences:

$\overline{Fib_{1}(0,1)}$ $\overline{Fib_{1}(1,1)}$

$\frac{Fib_{1}(x,y)Fib_{1}(x+1,z)}{Fib_{1}(x+2,y+z)}$

$\overline{G(0,1,1)}$
$\frac{G(x,y,z)}{G(x+1,z,y+z)}$ $\frac{G(x,y,z)}{Fib_{2}(x,y)}$

Fib_{2} can be regarded as an implementation of Fib_{1} (Fib_{1} is the specification of Fib_{2}), or, more
moderately, Fib_{2} is an optimization of Fib_{1} . The correctness of Fib_{2} relative to Fib_{1} can be
stated as

$\forall xy$ (Fib_{I} (x,y) $rightarrow Fib_{2}(x,y)$)

To prove this formula is the verification of Fib_{2} with respect to Fib_{1} . To generate (automati-
cally) the definition of Fib_{2} from the definition of Fib_{1} , possibly with the proof of the above
formula, is the synthesis of Fib_{2} from Fib_{1} , or the transformation of Fib_{1} to Fib_{2} .

4.3.2. Specification with quantifiers
In general, the specification of a program often contains universal quantifiers and other

logical symbols. Consider the following production:

$\frac{Member(y,1)\forall x(Member(x,1)\supset Leq(x,y))}{{\rm Max}(y,1)}$

This production satisfies the condition on levels, if we assign level 2 to ${\rm Max}$ and level 1 to
other predicate constants. Since quantifiers and implication are not allowed in ordinary Prolog,
the above production is indeed an extension to Prolog. The higher level predicate ${\rm Max}$, which
is to be used for the program specification, is defined by a production. (We may execute ${\rm Max}$

by invoking the general theorem prover of our logical system.) One of the possible implemen-
tations of ${\rm Max}$ is the following set of productions:

$\overline{{\rm Max}_{1}(x,cons(x,Ni1))}$

$\frac{{\rm Max}_{1}(x,1)Leq(x,y)}{{\rm Max}_{1}(y,cons(y,1))}$ $\frac{{\rm Max}_{1}(x,1)Leq(y,x)}{{\rm Max}_{1}(x,cons(y,1))}$

In the case of ${\rm Max}$, we may add the following formula
$W1({\rm Max}(y,1)rightarrow Member(y,1)\wedge\forall x$(Member $(x,1)\supset$ Leq (x,y)))

-13-

272

as an axiom, since it is equivalent to the introduction and the elimination of the production.
But, in our system, all the nonlogical informations, such as programs and specification, are for-
mulated in the form of productions, so that the condition on levels always guarantees the con-
sistency of the system.

4.3.3. Course-of-values induction
In proving properties of a logic program, we need various kind of induction schema

according to the recursion structure of the program. In our system, each induction schema can
be derived as production elimination of an appropriate set of (possibly non-plain) production.
Example course-of-values induction on natural numbers

$\frac{Nat(y)\forall x(Nat(x)\wedge Less(x,y)\supset Natc(x))}{Natc(y)}$

For the condition on levels, the level of Natc should be bigger than that of other predicate
constants. From the elimination of the above production, we can derive the following
schema $>$

$\Gammaarrow Natc(t)\forall x$ (Nat $(x)\wedge Less(x,y)\supset F(x)$), $\Gammaarrow F(y)$

$\Gammaarrow F(t)$

If we have proved
$\forall x$ (Nat $(x)rightarrow Natc(x)$),

then we can replace Natc(i) by $Nat(t)$ in the schema and get the ordinary course-of-
values induction schema on natural numbers.
Usually, such induction schemata are formulated as meta schemata, and in order to justify

them on the basis of the primitive schema, one should carry out meta-level arguments. In our
system, however, the corresponding justification takes the form of an ordinary formula, as
above, and needs no meta-level devices. This is because of the generality (and complexity) of
the production system.

5. Concluding remarks
First, let us briefly summarize the model theory of our system. Remember that a specific

system of ID is determined by a set of rules concerning with the equality and the falsity and a
set of productions with a conclusion whose predicate constant is of level ≥ 1 . For introducing
functions into the system, we did not specify the rules for the equality in advance, but allow
each system to have its own equality rules. The rules for the equality are formulated as produc-
tions. For building the model for a specific system, we should first define the domain of indivi-
duals and assign an interpretation for each function constant. The equality symbol will be inter-
preted as the equality on that domain.

Once the model for the equality has been constructed, as we pointed out in 4.2, the model
for the system is constructed by taking a least fixed point at each level, starting from the set of
productions with a conclusion whose predicate constant is of level 1, and proceeding in the
increasing order of levels, using the model for the lower level predicates. Since a condition of a
production may contain quantifiers, the associated transformation is not necessarily continuous.

Since the schema of production elimination corresponds to the least fixpoint semantics it
has a strong relationship to the formalization of non-monotonic logic. In fact, the circumscrip-
tion of McCarthy[ll] is almost the same as the elimination schema of Martin-Lof[10]. The
difference is the use of the level hierarchy, which guarantees the existence of the minimal
model.

In Bowen[4], he proposed programming in full first order logic by relating sequent cal-
culus with logic programming. His formalism almost applies to ours, since sequent calculus and
natural deduction do not differ so much, as far as intuitionistic logic is concerned.

-14-

2 $A3$

References
[1] Andrew, P. B.: Transforming matings into natural deduction proofs, 5th Conference on

Automated Deduction, Lecture Notes in Computer Science 87, Springer-Verlag, 1980,
pp.281-292.

[2] Apt, R. K. and van Emden, M. H.: Contributions to the theory of logic programming,
J.ACM, vol.29, No.3 (Jul. 1982), 841-862.

[3] Bibel, W.: A syntactic connection between proof procedures and refutation procedures,
Theoretical Computer Science 3rd GI Conference, Lecture Notes in Computer Science 48,
Springer-Verlag, 1978, pp.215-224.

[4] Bowen, K. A.: Programming with full first-order logic, Machine Intelligence 10, 1982,
pp.421-440.

[5] Clark, K. L.: Negation as failure, Logic and Data Bases (ed. H Gallaire and J. Miker), Ple-
num Press, New York, 1978, pp.293-324.

[6] Clark, K. L. and Darlington, J.: Algorithmic classification through synthesis, Compt. J.,
vol.23, No.1 (1980), 61-65.

[7] Clark, K. L. and Tarnlund, S-A.: A first order theory of data and programs, Proc. IFIP-77
Congress, North-Holland, 1977, pp.937-944.

[8] Hansson, A. and Tarnlund, S-A.: A natural programming calculus, Proc. 6th Int. Joint
Conf. on Artificial Intelligence, 1979, pp.348-355.

[9] Kowalski, R. A.: Predicate logic as a programming language, lnformation Processing 74 (ed.

Rosenfeld J.), North-Holland, 1974, pp.569-574.
[10] Martin-Lof, P.: Hauptsatz for the intuitionistic theory of iterated inductive definitions,

Proc. Second Scandinavian Logic Symposium, North-Holland, Amsterdam, 1970, pp.179-
216.

[11] McCarthy, J.: Circumscription —-A form of non-monotonic reasoning, Artificial Intel-
ligence, $vo/.$ 13 (1980), 27-39.

[121 Prawitz, D.: Natural deduction, Almquist and Wksell, Stockholm, 1965.
[13] Prawitz, Dl: Ideas and results in proof theory, Proc. Second Scandinavian Logic Symposium,

North-Holland, Amsterdam, 1970, pp.235-307.
[14] Sato, T.: Negation and semantics of Prolog programs, Proc. First Int. Logic Programming

Conf., 1982, pp.169-174.

-15-

