OoooO0O0O00oon
0 5160 1984 0 9239

A Formal Theory of Symbolic Expressions

Masahiko Sato (/)Tr_ E?}_ ;ffi 7,7/)

Department of Information Science
Faculty of Science
University of Tokyo

Introduction

This paper is an excerpt from the full paper Sato[5], which is in preparation. In this paper
we continue our study of the domain S of symbolic expressions. In contrast to our former
paper Sato[4] (which we will refer to [in the sequel), in this paper, we will study the domain S
formally within a formal theory SA of symbolic expressions.

Through our attempts at formalization of the domain S we encountered several technical
difficulties. Most of these difficulties came from the fact that cons of 0 and 0 was again 0. (We
will not go into the details of the difficulties, but we just mention that it is mostly related to the
induction schema on sexps.) We were therefore forced to reconsider the domain itself, and by a
simple modification (or, rather simplification) on the definition of symbolic expressions we got
a new domain. This domain, which we will denote by the symbol S, will be the objective of
our study in this paper. We will refer to our old domain of symbolic expressions which we stu-
died in T as S ;.

This paper can be read without any familiarity with I. We should, however, remark that
these two domains are very similar to each other and we will study our new domain with the
same spirit as in [.

Besides our previous works [4, 6], the domain of symbolic expressions recently attracted
the attention of some logicians. Feferman[2] introduced second order theories of symbolic
expressions and showed that elementary metamathematics can be naturally developed within his
systems. Hayashi[3] also introduced a theory of symbolic expressions and gave sound founda-
tion for his computer implemented system that synthesizes a LISP program from the construc-
tive proof of its specification. The most important reason for the choice of symbolic expres-
sions as the domain of discourse is because they provide a natural and easy way of encoding the
metamathematical entities such as proofs or programs. We will adopt the domain of symbolic
expressions as our basic objects of our study for the very same reason.

The paper is organized as follows. In Section 1, we introduce our new domain S of sym-
bolic expressions informally. In Section 2, we introduce the concept of a formal system, which
is a simplified version of the corresponding concept we studied in . As in I, formal systems
will play fundamental roles in our formal study of S. We also point out that a formal system is
essentially equivalent to a program written in a logic programming language. In Section 3 we
introduce a formal theory of symbolic expressions which we call BSA (for Basic Symbolic
Arithmetic). We also explain the intended interpretation of the theory. The theory BSA is an
adequate theory for developing metamathemaics within it. We refer the reader for our full
paper [5] for the details of the development.

This paper is based on the result of activities of working groups for the Fifth Generation Computer Systems

Projects.

. .
D)
't

1. Symbolic expressions

1.1. sexps

We define symbolic expressions (sexps, for short) by the following inductive clauses:

1. + 1S a sexp.
2. If s and t are sexps then cons(s, t) is a sexp.
3. If s and ¢ are sexps then snoc(s, t) is a sexp.

All the sexps are constructed by finitely many applications of the above three clauses, and sexps
constructed differently are distinct. We denote the set of all the sexps by S. We denote the
image of the function consby M and that of snocby A. We then have two bijective functions:

cons: SXS - M
snoc: SXS —» A

Moreover, by the construction of S, we see that S is the union of three mutually disjoint sets
{+}, M and A. In other words, S satisfies the following domain equation:

S = {+} + A+ M= {+} + SxS + Sx§
We will use the symbol ‘=" as informal equality symbol, and will reserve the symbol ‘=" for

the formal equality sign. Elements in M are called molecules and those in A are called atoms
and * is called nil We define two total functions, carand cdr, on M by the equations:

“car(cons(s, t)) = s
cdr(cons(s, t)) = t

Similarly we define two total functions, cbrand ccr, on A by the equations:

cbr(snoc(s, t)) = s
cer(snoc(s, t)) =t

Compositions of the functions car, cbr, ccrand cdr will be abbreviated following the convention
in LISP. For instance:
cabedr(t) = car(cbr(cer(cdr(t))))

We must introduce some notations for sexp. The so-called dot notation and list notation
introduced below is fundamental.)

[t byl = cons(ty, [, -, 4y by) (n21)

A sexp of the form [¢, - - -, £] will be called a kst We will also use the following abbrevia-
tions.

s[. ¢] for [s . t]
s{ty, Lt b for [s, b, L by

n

slt,, -, tlfor{s, £, -, t]

FFor snoc, we only use the following notation
(s . t) = snoc(s, t)
Parentheses will also be used for grouping. Thus (t) will not denote snoc(t, *) but will denote

t. (Readers of our previous papers, please forgive our change of notations.)

The basic induction schema on S can be stated as follows. Let & (t) be a proposition about
a sexp t. Then we may conclude that @ () holds for any ¢, if we can prove the following three
propositions.
(i) ()

(i) If @ (s)and & (%) then ¢ ([s . t])
(iii) If & (s) and & (t) then @ ((s . £))

1.2. symbols and variables

An atom of the form

(x . z)

will be called a symbol Let ¥ be the set of 128 ASCII characters. We define an injective func-
tion p : £—M by using 7 bit ASCII codes, regarding * as 0 and [+] as 1. For instance, we have

pla) = [[+], [*]. +. ». +. », [+]]
p(1) = [[+], [#], =, +, =, [+]]
We extend p homomorphically to 2°, ie., we define p*:¥" - M by

p' (o, --0,)=1[p(o,), - .p(c,)](0,€%). Now consider a string of alphanumeric char-
acters such that

(i) its length is longer than 1,
(i1) it begins with a lowercase character and
(iii) its second character is a non-numeric character.

Such a string will be called a name. Let 7 be a name. Then, by definition, 7 denotes the sym-
bol

(+ . [x.p(m)])
An atom of the form

(var . z)
is called a variable (Note that ‘var’ denotes a specific symbol. See Example 1.1 below.) We
introduce notations for variables. A string of alphanumeric characters such that

(i) it begins with an uppercase character, or

(ii) it consists of a single lowercase character, or

(ii1) its first character is lowercase and its second character is a numeral

denotes a variable as follows. Let m be such a string. Then, by definition, m denotes the vari-
able

(var . p*(m))
We will regard the under score character '_’ as a lower case character for convenience.
Example 1.1.

var = (¢ [+ [[LD L1 L D)) [l Les s 410 (LI L0 L2 [+ 14 11D

[1
Var = (var . [[[+].«.[+].+.[+].[s1.+] [[x L)oo 401 [LI 0s D02 [+)041D) OO

2. Formal systems

2.1. formal system

In I, we have defined the concept of a formal system Here we will redefine a formal sys-
tem by giving a simpler definition of it. As explained in I, our concépt of a formal system has
jts origin in Smullyan[7]. However, unlike Smullyan’s, our formal system will be defined
directly as a sexp. This has the advantage of making the definition of ‘a universal formal system
simpler. Another practically very important aspect of our concept of a formal system is that it
can be quite naturally viewed as a so-called logic program. This means that we can execute for-
mal systems on a computer if we have an interpreter for them. In fact, Takafumi Sakurai of
the University of Tokyo implemented such an interpreter. (See {6].) We can therefore use for-
mal systems both as theoretically and practically basic tools for our study of symbolic expres-
sions.

Note. When we introduced formal systems in I, we were ignorant of the programming
language PROLOG. But after we had submitted I for publication, we knew the existence of the
language. Since it was clear, for anyone who knows both PROLOG and Post-Smullyan’s formal
system (or, the concept of inductive definition), that they are essentially the same, we asked T.
Sakurai to implement an interpreter for our formal systems which we introduced in I. The
interpreter was named Hyperprolog, and it was used to debug the definition of Ref which we
gave in I. In this way we could correct bugs in our formal systems in the stage of proof read-
ing. We believe that the existence of an.interpreter is essential for finding and correcting such
bugs We also remark that Hyperprolog was quite useful in designing our new formal system,
which we are about to explain, since it can be simulated on Hyperprolog. Finally we remark
that we have designed a new programming language called Qute which can compute relations
defined by our new formal system. Qute was also implemented by T. Sakurai. (See Sato and
Sakurai[6].) O

Now let us define our formal system. We will call, by definition, any sexp a formal system
Our objective, then, is to define a relation proves(p, a, FS) which holds among certain triples p,
a, FS of sexps where the sexp FS is treated as a formal system. We will employ informal
inductive definitions to define the relation proves. We will say that p is a proofof a in the for
mal system FS, if proves(p, a, FS) holds. We write:

P]—Fs a for proves(p, a, FS)

We will say that a is a theorem in FS if proves(p, a, FS) holds for some p, and will use the
notation:

}-FS a

for it.

2.2. inductive definitions

As an example of informal inductive definition, let us define the relation member(z, L)
which means that z is a member of L:

(M1) = member(z, [z . L])

(M2) member(z, L) == member(z, [y . L])

(M1) means that the relation member(z, [z . L]) holds unconditionally for any sexp z and I,
and (M2) says that if the relation member(z, L) holds then the relation member(z, [y . L])
also holds for any sexp z, L and y. We have omitted the usual extremal clause which states
that the relation member(z, L) holds only when it can be shown to be so by finitely many appli-
cations of the clauses (M1) and (M2).

Let us now consider about the nature of (informal) inductive definitions in general. All
inductive definitions which we consider in this paper consist of a finite set of clauses (or, rules)

of the form
(T 7. 70 ==y

where n=0 and T is the name of the clause which is used to identify the clause. For example,
in (M1) n is 0 and in- (M2) n is 1. Suppose we have a finite set of inductive clauses like
above,; and we could conclude that a certain specific relation holds among specific sexps from
these inductive. clauses. Let us write our conclusion as a. (If our set of inductive clauses con-
sist only of (M1) and (M2) above, then « is of the-form member(z, L) where z and L are cer-
tain specific sexps such as orange or [apple, orange].) We now show that we can associate with
a an informal proof II of a. According to the extremal clause, a is obtained by applying our
inductive clauses finitely many times. Let (I') be the last applied clause. Since the clause (T')
is schematic, when we apply (I') we must also specify for each schematic variables z; a sexp v,
as its value. Let x, - - - ,x, be an enumeration of schematic variables occurring in (T') and let

A = <zi=vy, 0, =Y >
By substituting v, for z;, we can obtain the following instance of (T):

(FA) Ay, ", &, == A

Note that the conclusion of (T,) must be « by our assumption that « is obtained by applying
(an instance of) (T'). That (T',) is applicable alsoc means that each «, has already been shown
to hold b'y applying inductive clauses finitely many times. Since the number of applications of
inductive clauses which was used to show a, is smaller than that was required to show «, we
may assume, as induction hypothesis, that we have an informal proof II, of «a, for each
1=1=n. Using these data, we can construct a proof Il of « as the figure of the form:

m,o- I,
(T)a

Example 2.1.

From (M1) and (MR2), we can conclude that member(orange, [apple, drange]) holds, and
we have the following proof associated with this. :

(M1) < z:=orange, L:=[]>
(MR) < z:=orange, y:=apple, L:=[orange]>

O

2.3. definition of the relation proves

Based on this intuitive idea of informal proof, we define the relation proves etc. as follows.
First we define me (for mot equal) which has the property that ne(z, y) holds iff z and y are two
distinct sexps.

(N1) == ne(+, [u. v])
(N2) == ne(+, (u.v))
(N3) = ne([s. t], +)
(N&) == ne((s .), +)
(N5) == ne([s . 1], (u. v))
(N6) == me((s . 1), [u.v])

(N7) ne(s, w) = ne([s . t].[u.v])
(N8) me(t, v) = ne([s.t],[u.v])
(N9) me(s, w) = ne((s.t), (u.v))

(N10) mne(t, v) = ne((s.t), (u.v))

We next define assoc which is used to get the value of a variable from a given environ-

ment.

(A1) = assoc(z, [[z . v]. L], v)

(A2) mne(z, y), assoc(z, L, v) == assoc(z, [[y . w] - L] v)
Example 2.2.

assoc(c, [[a . apple], [b . banana], [c . carrot]], carrot) [0

The relation getis used to extract the i-th member of a list L.
(G1) = get(+,[v. L], v)

(G2) get(i, L, v) => get([x . 1], [w . L], v)
Example 2.3.
get([+, «], [lisp, prolog, qute], qute) O

The following relation eval gives a simple evaluator of a sexp under a certain environ-
ment. Substitution of values to variables can be simulated by eval

(E1) assoc((var . t), Emv, v) = eval((var . t), Enw, v)

(E2) —> eval(+, Env, +)

(E3) eval(s, Env, w), eval(t, Env, v) —> eval([s . t], Env, [u . v])

(E4) eval(s, Enw, w), eval(t, Env, v) =3 eval((snoc . [s. t]), Enw, (u . v))
(E5) == eval((+ . 1), Env, (. t))

(E6) == eval((quote . &), Enw, t)

We will use the following abbreviations for atoms whose cbris snoc or quote.

(: s.t) for (snoc . s, t])
(: t) tor (snoc . [¢, +])
“t for (quote . t)

Example 2.4.

eval([x, of, y, and, z, is, "(apple . orange)],

[[x - snoc], [y . apple], [z . orange]],
[snoc, of, apple, and, orange, is, (apple . orange)]) O

In terms of these relations we can ﬁow define provesand [lproves.
(L1) = lproves([]. []. FS)
(L2) proves(p, a, FS), lproves(P, A, FS) => lproves([p . P], [a . 4], FS)
(P1) assoc(Prd, FS, R), gei(i, R, [c . C]), eval(c, Enw, a), eval(C, Env, A),

lproves(P, A, FS) => proves([[Prd, i, Enw] . P], [Prd . a], FS)

We can also define the relation '—FS a by the following inductive definition.

(T1) proves(p, a, FS) = théorem(a, FS)

We show by an example how our intuitive idea of proof has been formalized. Recall that
the relation assoc was defined by the two clause (A1) and (A2) and that its definition depends

also on the relation me Since me has 10 clauses ((N1)-(N10)), we need 12 clauses to define
assoc. We formalize these 12 clauses in two steps. In the first step we formalize clauses (A1)
and (AR2) into a sexp Assoc and clauses (N1)-(N10) into a sexp Ne. In the second step we
obtain a formal system [Assoc, Ne] as a formalization of assocand me. The sexp Assoc, which is
the translation of clauses (A1) and (AR2), is defined as follows:

[assoc
e [x - vl LI vl
Clx [y - w]l - LL v]
, nelx, y]
, assoc[x, L, v]]

]

We explain the general mechanism of our translation of clauses. We translate clauses that are
used to define a same relation into a single sexp. We therefore translate (A1) and (AR) into
Assoc and (N1)-(N10) into Ne. Recall that each clause is of the form:

Yo Y T
and that the general form of y or 7, is:
Prd(Arg,, - - -, Arg,)

We translate Prd into corresponding symbol. For instance assoc is translated into ‘assoc’.
Arg’s are translated as follows. Since Arg is a schematic expression for sexp it has one of the
following forms: (i) a schematic variable, (ii) *, (iii) [a . 8], (iv) (a .). In case of (i) we
translate it into corresponding (formal) variable. Thus z is translated into ‘x’. If Arg is * then
it is translated into *+. If Arg is of the form (iii), its translation is [a® . 8] where a® (8*) is the
translation of « (B, resp.). Similarly, but slightly differently, case (iv) is translated into
(: a«* . B*). (Since -the translation must be one to one, we cannot translate (a . §) into
(a® . B*) because, then, (ii}-(iv) will leave no room for the translation of schematic variables.)
By extending this translation naturally we obtain the above translation of (A1) and (AR). For
the sake of readability we introduce the following abbreviation for the above sexp Assoc.

+ assoc
[x, [[x.v]. L]l v
Ix, [y -w] . LLv
- ne[x, y]

- assoc[x, L, v]

Example 2.5. By the similar idea as above we can translate the informal proof in Example 2.1
into the following formal proof p : ‘

[[member, [+], [[x . orange], [y . apple], [L . [orange]]}].
[[member, =, [[x . orange], [L . []]]]]]

Let Memberbe the following sexp:

+ member
|x, [x . L]

|x. [y . L] '
— member{x, L]

Then we can easily verify that
P F[Member] member[orange, [apple, orange]]
holds and hence

}'[Mmber] member[orange, [apple, orange]]

i’?j

holds. (0

2.4. universal formal system

By translating the relations we have defined so far we obtain a formal system Univ which
is universal among all the formal systems. We thus define Univ as the sexp:

Univ = [Ne, 4ssoc, Get, Eval, Lproves, Proves, Th,eorem]

where Ne, Assoc, Get, Eval, Lproves, Proves and Theorem are respectively:

+ ne
L+, [u.v]
[+, Cu . v)
I[s t], «
[(:s.t),
s t] Cuv)
[(:s.t), [u.v]
I[s t]. [u.v]
— ne(s, u]
I[s t], [u. V]
- neft, v]
lts.t) Gu.v)
- nefs, u]
s t), Gu. v)
- neft, v]
+ assoc
[x, [[x . v].L],v
Ix, [[y - w]. LLv
- ne[x, y]
— assoc[x, L, v}
+ get
[+, [v . LLv
[[+ i) [w . LLv
— get[i, L, v]
+ eval
1(:var‘t),EnV,v
— assoc{(: var . t), Env, v]
l*, Env,
I[s . t], Env, [u. v]
— evalls, Env, u]
— evalft; Env, v]
l(tsnoc.[s,t]),Env, (tu.v)
- evalls, Env, u]
— evalft, Env, v]
[(:+.t), Env, (+.t)
((t quote . t'), Env, t
+ lproves

|11, [1. Fs

f[p _P]l.[a. A] FS
— proves|p, a, FS]
— lproves[P, A, FS]

+ proves
|[[Prd, i, Env] . P], [Prd . a], F'S
— assoc[Prd, FS, R}
- get[i, R, [e . C]]
— eval[c, Env, a]
- eval[C, Env, A]
— lproves[P, A, FS]

+ theorem
’ la, FS
- proves[p, a, FS]

The following theorem establishes that Univ is in fact a universal formal system.
Theorem 2.1.

(i) ne(z, y) <= ‘—Univ ne[z, y]
(i1) assoc(z, L, v) <> }—Univ
(i) get(i, L, v) <= I yu getli. L, v]
(iv) eval(t, E, v) <= }—Univ evallt, E, v]
(v) lproves(P, A, FS) <> ’—Univ lproves[P, A, FS]
(vi) proves(p, a, FS) <= |-y.. proves[p, a, FS]
(vii) theoremfa, FS) <> }—Univ theorem[a, FS]

assoc[z, L, v]

We omit the simple but tedious combinatorial proof of this theorem. The following corollary is
simply a restatement of the last two sentences of this theorem.

Corollary 2.2.
(i »p I_FS a <= f—Univ proves[p, a, FS]
(1) }—FS a <> f—Univ theorem|[a, FS]

3.. Formal theory of symbolic expressions: BSA

In this section we introduce a formal theory of symbolic expressions which we call BSA
(for Basic Symbolic Arithmetic). The theory is a first order intuitionistic theory which is proof
theoretically equivalent to HA (Heyting arithmetic).

Traditionally, metamathematical entities such as terms, wffs and proofs have been con-
sidered as concrete figures which can be displayed on a sheet of paper (with some kind of
abstraction which is necessary so as to allow finite but arbitrarily large figures). Our standpoint
is, however, not like this but to regard these entities as symbolic expressions. By taking this
standpoint we can define SA formally in terms of a formal system. It is also possible to define
BSA in this way, but for the convenience of the reader who is perhaps so accustomed to the
traditional approach we first define BSA in the usual way and will then explain how BSA so
defined can be isomorphically translated into S. We reserve BSA as the name for the system
which we will define as a formal system in Section 3.7, and use BSA to denote the theory
which we now define by a traditional method.

3.1. language
The language of BSA consists of the following symbols.

o ndividual symbols: nil

function symbols : cons, snoc

pure variables : var, for each sexp ¢
predicate symbols : eq (equal), 1t (less than)
logical symbols : and, or, imply, all, exist

other symbols: (,), *," (comma), free

3.2. variables, terms and wfis

Using the language introduced above, we define syntactic entities of BSA. We first define
variables as follows.

1. For each sexp t, the pure variable var, is a variable.

2. If T is a variable then free(z) is a variable.
For a variable z we define its pure partas follows.

1. If z is a pure variable then its pure part is z itself.

2. If the pure part of z is y then the pure part of free(z) is also y.-
The definition of {ermsis as follows.

1. A variable is a term.

2. nil is a term.

3-4. If s and f are terms then cons(s,) and snoc(s, t) are terms.
We define wjffs (well formed formulas) as follows.

1-2. If s and t are terms then eq(s, t) and It(s, t) are wifs.

3-4. If a, - .a, (n=0) are wfis then and(a,, - - -, a,) and or(a,, - - -, a,) are
wifs. .

5. If ¢, ", a, (n=0) and b are wils then imply((a,, - - -, @,), b) is a wfi.

6-7. If =z, -, z, (n=0) are distinct pure variables and a is" a wff then
all((z,, -, z,), @) and exist((z,, - - -,), a) are wfls.

A wif is called an atomic wffif it is constructed by the clauses 1-2 above, and a wff is

called a gquantifier free wffif it is constructed by the clauses 1-5 above. We will call both a term
and a wff as a designator.

We will use the following symbols with or without subscripts as syntactic variables for
specific syntactic objects.

z, y, =z for variables

r, s, t, u, v for terms
a, b, c for wffs
d

, e for designators

3.3. abbreviations

We introduce the following abbreviations.

x for free(z)

s = tforeq(s, &)

s < tfor (s, t)
=

s t for or(lt(s, t),eq(s, t))

10

a A
a, Vv

a, o,

a <>

Y x,,
Az, -,

““ A a, for and(a,, -, a,)
“ -V oa, foror(a, -, a,)
a, - b forimply((a,, - -, a,), b)
b for and(imply((a), b), imply((d), a)) |
. z,; a) for all((z), -~ -, z,), @)
z,; a) for exist((z,, -~ - ,z,),a)

We assume that the binding power of the operators A, V and — decrease in this order, and we
insert parentheses when necessary to insure unambiguous reading.

3.4. substitutions and free variables

Let £ be a term, z be a variable and d be a designator. We then define a designator e
which we call the result of substifuting t for x in d as follows. The definition requires one auxi-
liary concept, namely, the elevation ofa term with respect to a finite sequence of pure variables,

which we also define below.

[L.1.1.

If dis z then eis t

[.1.2 If dis a variable other than z then e is d.

1.2, If dis nil then e is nil.

[.3. If discons(t, t,) and e, (e,) is the result of substituting ¢ for z in ¢, (t,, resp.)
then e is cons(e, e;).

I.4. If dis snoc(t, &) and e, (e,) is the result of substituting ¢ for z in £, (t,, resp.)
then e is snoc(e;, e,).

IL.1. If diseq(¢, t,) and e, (e,) is the result of substituting ¢ for z in ¢, (&, resp.)
then e is eq(e|, e,).

I.2. If dis I(¢, &) and e, (e;) is the result of substituting £ for = in ¢, (t,, resp.)
then e is It(e, e,). v

I.3-41f dis and(a,, " -, @,) (or(a,, - -, a,)) and ¢ (1=1=n) is the result of sub-
stituting ¢ for z in @, then e is and(e, - - -, e,) (or(e;, - - -, e,), resp.).

I.5. If disimply((a,, - -.s,). b), ¢ (1=12=n) is the result of substituting t for z
in a and ¢ is the result of substituting ¢ for z in b then e is
imply((e,, - - -, e,), c).

I.6. If disall{(z,, -, z,), @), u (y) is the elevation of ¢ (z, resp.) with respect to
the sequence of pure variables z;, - - -, z, and b is the result of substituting =
for yin a then eis all((z,, - - -, z,), b)

LI.7. If disexist((z,, -, z,), a), u (y) is the elevation of ¢ (z, resp.) with respect
to the sequence of pure variables z,, - - -, z, and b is the result of substituting u
for y in a then e isexist((z,, -~ -, z,), b)

Let ¢ be a term and z,, - -, x, (n=0) be a sequence of distinct pure variables. We
define a term u which we call the elevation of ¢ with respectto z,, - - -, z, as follows.

I.1. If tisa variable whose pure part is z;, for some 1 (1 = i = n) then w is free(t).

1.2. If t is a variable whose pure part does not appear in the sequence z, - - -, z,
then u is ¢
If ¢is nil then w is nil.

3. If ¢isaterm cons(¢,, &) and u, (u,) is the elevation of ¢, (4, resp.) with respect
to the sequence z,, - - -, z, then u is cons(u,, Uy).

4. If tisaterm snoc(t,, &) and u, () is the elevation of ¢, (&, resp.) with respect

to the sequence z,, - - - ; z, then u is snoc(u,, uz)

-11 -

That the result of substituting a term for a variable in a designator is again a designator of
the same type can be proved easily by induction. (To prove this, one must also prove that the
elevation of a term with respect to a sequence of distinct pure variables is also a term.)

Example 3.1.

(i) Let = and y be distinct pure variables and let a be the wff 3(z; £=1y). Let us substi-
tute = for y in a. To do so, we must first compute the elevations of z and y with respect to z.
They are # x and y respectively. Now the result of substituting # x for y in =y is z=# z.
Thus we have that 3(x; z= # z) is the result of substituting z for ¥ in a. Let us call this wff
b. Then the reader should verify that the result of substituting ¥ for z in b is a.

(ii) Let =z be a variable distinct from =z and vy .above and consider the wff
Hz, y; z=cons{z, y)). Then the result of substituting the term cons(z, y) for z in this wfl
is calculated similarly as above and we obtain the wff d(z, y; cons(# z, #y) =cons(z, y)). O

Remark. As can be seen in the above examples we have avoided the problem of the colli-
sion of variables by iniroducing a systematic way of referring to a non-local variable that hap-
pens to have the same name as one of the local variables. We remark that our method is a gen-
eralization of the method due to de Bruijn [1]. O

‘We can define simultaneous substitution similarly. Let t,, -~ .,t, be a sequence of terms,
T, LT, be a sequence of distinct variables and let d be a designator. We will use the nota-
tion dxl, o _zﬂ[t, - .t] to denote the result of simultaneously substituting ¢, - - - .¢, for
z, .z, in d.

We say that a variable z occurs free in a designator d if d [nil] is distinct from d. A
designator is said to be closedif no variables occur free in it.

We need the following concept in the definition of proofs below. Let £ be a term, z be a
variable and d be a designator. We then define a designator e which we call the result of" bind
substituting t for x in d as follows. The definition goes completely in parallel with the definition
of substitution except for the clause 1.1.2. We therefore only gives the clause 1.1.2. below.

[.1.2 If d is a variable other than z then:
if the pure parts of d and z are the same then:
if d is a pure variable then e is d;
if z'is a pure variable then e is defined so that d=#e;
if r=4#z and d=#d, then e is # e; where e, is the result of
bind substituting ¢ for z, in d,;
if the pure parts of d and z are distinct then e is d.

Let ¢, -, be a sequence of terms, z,, - - *,x, be a sequence of variables whose pure parts
are distinct and d be a designator. We can define the result of simultaneously bind substituting
t, .t for =z, - -,z, 1n d similarly as above, and we use the notation
drr : ,xn[[tl’ <t] for it

3.5. proofs

We formulate our formal theory BSA in natural deduction style. Since we eventually give
a precise definition of BSA using a formal system, we give here an informal definition in terms
of schematic inference rules. Namely an inference rule is a figure of the form:

(ll (ln

n=0

a
where a,, a are formulas. @ may have assumptions that are discharged at this inference rule,
and we show such assumptions by enclosing them by brackets. We call a,, - - -, a, the premises
and a the consequence of the inference rule. We first collect logical rules. The logic we use is
the first order intuitionistic logic with equality.

_12..

(W) % e (M) e A N e

a A Aa, v a,

(V) a . (VE) @V Ve ¢ c

(=1) b (=E) & = .G, > b a - a
a,, - an%b b
(VI) a"r”'-‘n[[yl_’] (VE) Yz, .z, a)
ME z,; a) e A |
o, L 0v. %l
@n % omlh Wl gpy Aa e b
Hez,, -z, a) b

(=) (= subst) a:r’,"',:c"[sl' sl s =t s, =
t=1 a':rl :rn[tl t'n]
In the above rules the variables z,, - - - ,z, must be distinct pure variables. The variables
Y,. .Y, must be distinct and must satisfy the eigen variables conditions That is, in (V/), they
must not occur free in Y z,, - -, z,; a.) or in any assumption on which e, . ’xn[[yl, T
depends, and in (3E£), they must not occur free in 3(z,, - - - ,z,; a), b or any assumption
other than Q- ,xn[[yl, -+ - ,4,] on which the premise b depends.

Note that we may identify the wffs and() and or() with the truth values #rue and false
respectively by letting n to be 0 in (A/) and (VE') For this reason, we will use L as an abbrev1a—
tion for or(), ~a for a—_Land s t for ~(s=1).

The remaining rules are specific to the theory BSA. First we consider the rules for equal-
ity.

(conss= nil) cons(s, t) = nil (snoc#nil) snoe(s, t) = nil
L 1

(conss= snoc) cons(s, &) = snoc(u, v)
L

(cons=cons), cons(s,, s;) = cons(t,, t,)

s, 7

1=1,2

- 13-

(snoc=snoc), snoc(s), s;) = snoc(f, L)

1=1,2
s, = & .
Next we collect rules for < (less than).
(<+) 1<+ (<snoc) 7 < smoc(s.t)
1 1
< < cons s < £
(<) =1,2 () & =1,2
t, < cons(t, t,) s < cons(i;, &)

[r=s][r<s]i{r=t] [r< t]

(< consE) T < comns(s, t) c c c c

As the final rule of inference for BSA we have the induction inference.

[alz]] [ely]] [elz]][aly]]

(ind) a,[nil] a,[cons(z, y)] a,[snec(z, y)]
a,[]

The assumptions discharged by this rule are called induction hypotheses In this rule, the vari-
ables = and y must be distinct and must satisfy the eigen variables condition. Namely, the vari-
ables r and ¥ may not occur free in any assumption other than the induction hypotheses on
which the premises a,[cons(z, y)] and a,[snoc(z, y)] depend.

3.6. interpretation
We now explain the intended interpretation of the theory BSA. The intended domain of

interpretation of our theory is S. We first define the denotation [t] of a closed term t as fol-
lows. '

1. [nil]] = =+

2. [eons(s,)] = [[s] . [t]]

3. [smoc(s, 0)] = ([sT . [£I)
It should be clear that each closed term denotes a unique sexp, and for each sexp t there
uniquely exists a closed term ¢ which denotes {. '

We next assign a truth value (#rue or false) with each quantifier free closed wff. ‘We first
define the set of descendants of a sexp as follows.

1. The descendants of * is empty.
2. The descendants of [s . t] 1s the union of the descendants of s and £ and the set
§s, ¢}

3. The descendants of (s . t) is empty.

Thus, for instance, the descendants of [[«] . (* . *)] is the set §x, [*], (+ .)}, We say that s is
a descendantof tif sis a member of the descendants of ¢.

Let s and t be closed terms and let s and ¢ respectively be their denotations. Then the
closed wff s = tis trueif s and ¢ are the same sexp, and it is falseif s and ¢ are distinct. The

- 14 -

closed wff s < tis trueif sis a descendant of ¢ and is false otherwise.

Let a be any closed quantifier free wff. Since it is a propositional combination -of the
atomic wffs of the above form, we can calculate its truth value by first replacing each atomic
sub-wfl by its value and then evaluating the resulting boolean expression in the usual way.

We now define the class of primitive wffs for which we can also assign truth values if they
are closed.

1-2. If s and t are terms then s = tand s < { are primitive wffs.

3-4. e, -, a, (n=0) are primitive wffs then @y A- - - A @, and @, V- - -V @, are
primitive wfls.

5. If a;., -, a, (n=0) and b are primitive wffs then @, - -, @, — b is a primi-
tive wif.

6-7. If =, - -, z, is a sequence of distinct pure variables, ¢, - - -, £ is a sequence of
terms, (1=1i=n) is the elevation of t, with respect to z;, -~ -, z, and a is a
primitive wff then \7’(1:1, L o <uy, o, x,<u, a) and
Hazy, -,z <y, A - Az, <u, A @) are primitive wifs.

The primitive wfIs defined by the clauses 6 and 7 above will respectively be abbreviated as:
Yz, <t, -, z,<t; a)
N, <ty, -, z, <t a)

Since for each sexp t we can calculate the set of its descendants which is a finite set, it should
be clear that we can uniquely assign a truth value for each closed primitive wff.

Next, we define X-wffsas follows:

1. A primitive wff is a Z-wil.

2-3. f a, -, a, (n=0) are T-wffsthen a; A- - - A a,and a; V- - -V a, are T-wfls.

4. If @, -, a, (n=0) are primitive wffs and ‘b is a £-wff then a, - - -, @, = b
isa Z-wif

5. If z,, -, z, is a sequence of distinct pure variables and a is a Z-wff then
Az, .z, a)isa L-wfl.

We can define the truth of a closed Z-wff inductively. The definition for the cases 1-4 is given
similarly as for primitive wffs. For the case 5, we give the following definition. A closed L-wff
d(z,, - - -, z,; @) is defined to be trueif we can find a sequence of closed terms ¢, - - -, ¢, for
which a »-,zﬂ[tl' <+, t,] becomes true

We may say that BSA4 is correctif any closed L-wff which is provable in' BSA is #rue In

this paper we assume the correctness of BSA without any further arguments. In particular we
assume that BSA is consistentin the sense that there is no proof of the wff L.

3.7. BSA as a formal system
We now define BSA as a formal system and then define an isomorphism from BSA to
BSA. [t is possible to regard this isomorphism as an (symbolic) arithmetization of BSA. Here
“we will not define the concept of proof in BSA since we give a full description of BSA as a for-
mal axiom system in the next Section.

Let Non_member, Pure variable, Pure variable_tst, Variable, Term, Wﬁand WF lstrespec-
tively be the following sexps.

+ non_member
|x, []
lx, [y %]
: —~ ne[x, y]
- non_member[x, X]

15

3
3.

+ pure_variable
F(: var . t)

+ pure_variable_list
10
| [x . X]
— pure_variable[x]
— non_member[x, X]
— pure_variable_list[X]

+ variable
[x
— pure_variable[x]
| (: free . x)

- variabl'e[x}
+ ‘term
| «
| x
— variable{x]
[[s - t]
— term[s]
— term[t]
| (: snoc . [s, t])
- term[s]
— term|t]
+ wff
leq[s. t]
- term[s]
— term|[t]
[1t[s, t]
—term(s]
-— term[t]
|and[, A] :
— wff list[A]
for[. A]
— wff_list[A]
Jimply[A, b]
— wif_list[A]
- wil[b]
lall[(: abs - [X, a])]
— pure_variable_list{X]
- wfi[a]
|ex[(: abs . [X, a])]
— pure_variable_list[X]
— wfi[a]
+ wff list

- 16 -

- wfffa]
— wiff_list[A]

Then the formal system:
BSA, = [Ne, Non_member, Pure _variable, Pure _variable_list Variable, Term, W/,
WIT_kst]
defines basic concepts in BSA. Thus, for instance, we say that (a sexp) a is a wff if
psa,wf[a] holds.
Example 3.2.

(: #+ . »)is a term since we have f—BSAoterm[(: .+] 0O

In this way we can continue to give a complete definition of BSA as a formal system. But
as we said earlier we will not do so here because we will give a complete definition of BSA in
the next Section.

We now explain that the concepts which we defined formally here are essentially the same
as the corresponding concepts which we defined for BSA. To this end we define a translation
from syntactic objects like terms or wffs in BSA into S. We denote the translation of d by d.

Terms in BSA are translated as follows.

1.1. var,'is (var . ¢).

1.2. free(z)' is (free . z1).

2. millis «,

3-4. cons(s, t)Tis[st . #i]and snoc(s, t)Tis (: st . #).
The translation of wffs in BSA is defined as follows.

1-2. eq(s, t)T iseq[s?, ff]and It(s, #)F is 1t[sf, #].

3-4. and(e,, " .,q,)tisand[q,, - - -, @,7]andor(a,, - - ,a,) isor[q,l, - -, a,’]

5. imply((e,, " .a,).b) isimply[[e,f, - - -, a,f]. &'].

6-7. all{(=z,, " .z,).a) is all[(abs . [[z,f, - -+, z,], at])] and
exist((z,, -~ . z,).a)l isex[(abs . [[z,T, - - -, z,T], al])].

It is then easy to verify that this translation sends each syntactic entity in BSA into
corresponding entity in BSA. Thus if a is a wff in the sense of BSA then o' is a wff in BSA,
that is, we have I—BSAowﬁ[aT]. Moreover for each wff a in BSA we can uniquely find a wfl @
in BSA such that @' is @ A similar correspondence holds also for terms. It is also obvious
from our definition that the translation is homomorphic with respect to the inductive definition
of syntactic entities. We may thus conclude that both BSA and BSA give definitions to the
abstract concepts such as terms or wffs in terms of their respective representations. For this
reason we will use the same abbreviations which we used for syntactic entities in BSA4 as abbre-
viations for the corresponding objects in BSA. We will also use syntactic variables to make our
intention clear. Thus for instance if in some context we wish to refer a certain sexp as a wff,
we will use syntactic variables a, b or ¢ for it

Example 3.3.

V(x; Z(x; x = #x)) is an abbreviation of the sexp
all[(abs . [[x]. ex[(abs . [[x], eq[x, (free . x)]])]])]
which is a wff in BSA. [J

1'7

33

References

de Bruijn, N.G.:’ Lambda calculus notation with nameless dummies, A tool for automatic
formula manipulation, with application to the Church-Rosser theorem, I/ndag Math , 34
(1972) 381-392.

Feferman, S.: Inductively presented system and formalization of meta-mathematics, Logiwc
Colloquium '80, North-Holland, 1982.

Hayashi, S.: Extracting Lisp programs from constructive proofs: A formal theory of con-
structive mathematics based on Lisp, Publ RIMS, Kyoto Univ. 19 (1983) 169-191.

Sato, M.: Theory of symbolic expressions, [, Theoretical Computer Science 22 (1983) 19-55.
Sato, M.: Theory of symbolic expressions, I, in preparation

Sato, M. and Sakurai, T.: Qute: A Prolog/Lisp type language for logic programming,
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, 507-513,
1983.

Smullyan, R.: Theory of Formal System, Annals of Mathematics Studies, 47, Princeton
University Press, Princeton, 1961.

-18 -

