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§ 1. Introduction. One of the most important problems

e
in the theory of computation is to find the prcise relation-

ship between the two kinds of computation : one is deter-
ministic computation and the other is nondeterministic one.
A fundamental open question is to determine,whether or not
(1) , P = NP,

where P is the class of languages accepted in polynomial
time by determ;nistinTuring machineé and NP is the counter-

part of riondeterministic one. (Some authors use the termi-

nology "accept" for nondeterministic machines and "recog-
nize" forbdeterministic‘ones. Here we always use the word
"accept".) Further; let P(k) [NP(k)] be theLclass of langu—
ages accepted in’k—th order‘polyanial time by determinis—
" tic [resp. nondeterministic] Turing machines. We do not
know whether or not

(2) | P(k) = NP(k)

holds for any positive integer X either. Baker, Gill and
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Solovay [l] (and others) show that the corresponding relati-
vized question to (1) holds for some oracle :sets on one hand
and does not hold for some other oracle sets on the other
hand. That is, they construct oracle sets A and B such that
(3) P(A) = NP(A) and P(B) # NP(B).
This result gives a strong influence to methods which will
be used to sol&e (1) . |

‘Now, first in this paper, we show that we can obﬁain

analoguos results of (3) for question (2); namely, there can

be various hierarchies on complexity subclasses of relati-

vized NP (Theorems 1, 2 and 4). Secondly, we state that

analogous results holds for another type of time complexity
classes. Finally, we extend a result of Book, Wilson and

Mei-Rui [3] to a class of higher level (Theorem 9).

and results.
§2. Preliminaries} We mostly use standard terminology
A . -

[1]-

and notation for time-bounded complexity. See, e.g.,

KEZTTlLet > = {O,l} be an alphabet. 3., * denotes the set

of all finite strings consisting of members of :Z. A subset

~.

L of z* is called a language and we denote the complement
of Lby L : L = 5 * - L. For x ¢ 5%, le denotes the

length of x. Our model for computation is the oracle Turing

e

machines. An oracle Turing machine (abbreviated by OTM) is

U

R\*We assume familiariy with them.
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a multitape Turing machine with an query tape and with three
special internal states called the quefy state g, the yés
state dy and the no state dy - When an OTM M is associated
with an oracle set X g;‘zﬁy we denote it by MX and call an
OTM with oracle-X.‘When an OTM MX enters the state q., the
machine asks the oracle X whethér the striﬁg wfittgnfon its
query»tape”béloﬁgs to X. If the string is in X, then MX ent-
ers gy otherwise it enters dy-

If the next-move-operation of M is single-valued, then

we call M to be deterministic, otherwise M to be nondetermi-

nistic. Now, suppose that MX runs on an input x:e_z* and it
halts after some running time. (Notice that we always con-
sider OTM's that halt for every input;) If the finél state
in the computation is a special state called an accepting
state we say"MX accepts x. Otherwise we say it rejects x.
Let L be a language.L is accepted by an MX (denoted by L
= T(MX)) if the following condition holds : For any string
x xe L iff MX accepts x.

Let w be the set of all natural numbers, and let f be

M
a function from w to w. An OTMLis f-time-bounded if every

computation of M on any input x halts in fewer than £(|x])

steps, whatever oracle X is used. Let 3; be a family of
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such functions. An OTM M is said to be 3;—time—bounded if M

is f-time-bounded for some f in :}. We consider the follow-
ing families of functions
_ 3$(k) = {p : p is a k-th order polynomial}',

o0
3P = {p : p is a polynomial } = U ?P(»k.) ,
I - k=1

I

Fop) = {an12P™7 ¢ pis in Fo0}

o
}EXP = {An[zp(n)] : p is in ?P} = k[:)l {}EXP(k)"
whefe k is a positive integer. Let X'be an oracie éet.
DTIME(X, £) [ NTIME(X, £) ] is the class of languages accept-
ed by deterﬁinistic [resp. hondeterministic] f—time—boundea
OTM;s with oracle X. We conéider the following classes of

languages

p(x, k) = U{DTIME(X, £) : £ is in Fo0}

00 .

P(x) = \J P(X, k),
k=1 . . :
DEXT (X, k) = {J{DTIME(X, £) : £ is in ?EXP(k)} '
DEXT (X) = DEXT(X,1) = \J{DTIME(X, £) : £ is in ?EXP(l)} .
o0
DEPT(X) = |J DEXT(X, k),

k=1

and their corresponding nondeterministic classes NP (X,k),
NP (X), NEXT(X, k), NEXT(X) and NEPT(X), respectively. Nonrel-

ativized classes P, NP, DEXT and NEXT occur in literature, too.



Wwe will use»nonrelativized.classes P(k) and NP(k), also.

For a positive real number a, Mol denotes the least
integer larger than or equal to a. We often use exp(a,B) in-
stead of aB when 8 hasva_rather complex expression.

" xnO(f(n))-time-bounded " means that An[df(n)]—time—bound—

ed for some constant ¢ > 0. Similarly for the word " O(f(n)f

steps". For simplicity, we often omit the symbol " in "
- (in the former case.

Now we shall state our theorems.
Theorem 1. Thére is an oracle set A such‘that for all
k > 0 P(AK G NP(AX) G P(AX+1). That is, we obtain
the following hierarchy
P(A,1) < Np(A,l) g, P(A,2) G NP(2,2) g

(So, for this A, we have P(A).= NP(A)..)

Theorem 2. There is an oracle set B such that for éll
k > 0 P(B,k) = NP(B,k), so that we obtain the following
hierarchy :

P(B,l) = NP(B,1)§ P(B,2) = NP(B,2) c_;

(So, for this B, we have P(B) = NP(B).)

Theorem 3. For any k > 0, if P(k) = NP(k) then P(k+1)

= NP (k+1l). So, e.g., if P(l) =NP(l) then P = NP.

Of course, Theorem 3 can be relativized for every
oracle set. In contrast with this theorem, we obtain the

following theorem :
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Theorem 4. For each k > 0, there is an oracle set Ck
such that P(C,,k) # NP(C,,k) but P(ck,k+1)'= NP (C, ,k+1).
So, we obtain the following hierarchy : ‘

Vi) 1<£1i<k = P(C,1) #NP(C,1) T & (VI J>k

— P(C,3) = NP(C,3) I.

Theorems 1 to 4 can be extended to'a case of exponen-

. e
tial time-bounded comp&gity as follows :

Theorem 5. There is an oracle set D such that for all

k > 0, DEXT(D,k) & NEXT(D,k) & DEXT (D, k+1) .

Theorem 6. There is an oracle set E such that for all

k > 0 DEXT(E,k) = NEXT(D,k).

Theorem 7. For any k > 0, if DEXT(k) = NEXT(k) then

DEXT (k+1) = NEXT (k+1).

Theoﬁém‘S.fFor each k > 0, there is an oracle set Fk'
such that DEXT(Fk,k) # NEXT(Fk,k) but DEXT(Fk,k+l) =

NEXT(Fk,k+l).

Next, Book [2] shows that for any oracle set X
(a) P(X) = NP (X) implies DEXT(X) = NEXT(X),
(b) DEXT(X) = NEXT(X) dimplies DEPT(X) = NEPT(X).

In contrast with (a), Book, Wilson and Mei-Rui [3] have
shown that there is an oracle set W such that P{W) # NP (W)

but DEXT(W) = NEXT(W). Here we show a counterpart of (b) for



their result. This is due to the first author.
Theorem 9. There is an oracle set G such that DEXT(G)

# NEXT(G) but DEPT(G) = NEPT(G).

3. Proofs (l). In this section, we prove Theorems 1
and 2. First we show a lemma. |

Egg@g A. Letm ahd k be fixed positive integers. Let
f(n) = exp(n,m+ i) and’let f'(n) = nmjéxp(n, i)1. Then there
is a c-f-time-bounded TM T for some constant c such that
for any input w T outputs a string v (e.g., consisting of
0's only) whose length iskf'(lwl).

Sublemma. Let k be a fixed positive integer. Let g(n) =

r

exp(n, 1+ %) and let g'(n) =" exp(n, %)1 . Then there is a

c-g-time-bounded TM T for some constant c such that for any

1
input w T, outputs a string v whose length is g'(|w]).

Proof. Given an input w, let d = g'(]w|). Then 4 is the

least integer d such that (wlg:dk. T

1
strings of lengths lk, 2k, 3k,... and finds a number 4 such

k-1 k

successively generates

that d < lwl < dk. T. can do this in 0(d +l) steps,

1
since lk + 2k + ... + dk§; dk+l . L Sb, in order to get a
string v of length g'([w|), the number of entire steps per-

formed by a TM T, with input w is bounded by O(g(|w])), since

1

S
1) K. Kobayashi points out that O(dk) suffices for this

upper bound.
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k+1 k+

d < (exp(|wl, %)+l) l<; c.exp(|w], l#%) = c.g(|w|]) for

some constant c. [

Proof of Lemma A. Let w be a given string. The TM T.l in

the sublemma with input w generates a string vy of length
g' (|wl) in fewer than O(g(]w])) steps. Another T T, with

input w generates a string v, of length ]wlm in fewer than

2
O(|wl™) steps. We can easily define such a T,. Then we can

define a desired TM T by combining T, and T, so that T gén—

2
erates a string v ofvlength f'(|w]) in fewer than O(f(lwl))v
stepé, sincek L | A
O(exp(lw]|, 1+%)) + O([wlmj + O(exp(|w], %)-O(!wlm)
= O(exp(|w], m+%)),
because ‘of m>0. O
Now let Aki[<k,i> 1 be é recursive pairing function
from (w -{0} ) x w onto w. If e = (E;i} wé write (e)O =k

1

nondeterministic] polynomial-time-bounded OTM, -and let fe

and (e), = i. Let Pe [ NPe ] be the e-th deterministic [resp.

be its strict time-bound. We may assume, without loss of

generality, that fe(n) = ce-nk, where k= (e)o, exp(ce,
(k+%)/k) is an even integer. For any oracle X and any k > 0,
let

L (x) ={o" cJuex[lul = 1}.
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Cleraly, Ly (X) is in NP(X,k).
| Theorem 1. There is an oracle set>A such that fbr all
k>0, P(A/k) # NP(A;k) # P(A,k+1).

Proof. We construct an oiacle set A in stages as in
proofs}described in [lL[aL[4]; Let A(s) be the set of all
strinés placed into A prior to stage s. SeﬁvA(O) = A(l)yi 3
(ﬁhe empty set), and start at stage 1. At’ah odd stage we
shall try to satisfy the condition P(A,k) # NP(A,k) for
some k, and at an even stage to satisfy the condition
NP(A\,k) g,: P(A,k+l) for some k. The index e of each machine
Pe will be cancelled at some odd stage ng ( in order of the
magnitude of e) when we ensure that Pi’does nét acéept the
language Lk(A), where k =r(e)o.

Stage 2s+l. Let e be the first uncancelled index'and
put e =(k,i) . Let b = max {(a)O : a<el}. Note that b >
1. Suppose that the following conditions are satisfied :
(1) . exp(2s+1, b/(k-(b+%))) ié an (odd) integer.‘For
simplicity, we denote it by m.

(1i) exp(2s+1, 1/(b+3)) > £__  (exp(n__y, b'/(3-(b'43)))),
where j = (e—l)o and b' = max {(a)o :a < e—l} if e > 0.
If e‘= 0, then, as convention, the right-hand side of the

inequality is 0.
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(iii) fe(m) = ce-mk<( 2s+1 <:2m , where mk = exp(2s+l, b/(b+%)

Then, we eﬁ%ute the following procedure. Run the deter-

A(2s+l)

e on the string 0™. If the machine

ministic machine P
rejects Om, then we add to A a string u of odd length mk not
queried during the computation : A(2s+2) = A(2s+l) v {u}. By
.(iii)} such a string u exists. If Qm is accepted let A(2s+2)
= A(ZS?l).lCéncél the index e at this stage in either case,
and set n, = 2s+1.

If at least one of the conditions (i)-(iii) does not
hold, then we do nothing and set A(2s+2) = A(2s+l). Clearly
every index eventually be cancelled.

Stage 2s+2. Let e be the last index that was cancelled
at an odd stage before 2s+2. If there is no such e, we skip
this stage and set A(2s+3) = A(2s+2). If. e> 0 let 4 =
max {(a)O : a é_e} . ‘Consider a stfing y such that
(1) y = OklOilxlOn & k< d & 2542 = |y|
k+1/2 x T % L

= exp( c(k,i)’ —= Y)x| e %]

*
for some k, i, n €w and x€ 3, .

A(2s+2)
<k,1i)

length of any string queried during any computation of this

For such an y, run NP on the string x. Note that

machine on x 1is less than

k k a
C(k,iSIXl < exp(2s+2, m) < exp(2s+2, d+l/2) < 2s+2.

-10-



A(2s+2)
<k,1>

y into A. Otherwise, we do not so. Let A'(2s+3) be the set

If any computation of NP -accepts x, then we place
of all strings placed into A by performing the above proc-
edure for all y satisfying (1), and set A(2s+3) = A(2s+2)
U A'(2s+3). If there is no y satisfying (1), then we do

nothihg and let A(2s+3) = A(2s+2). So, information about

a
<k,1i>

strings of A of the form y (of even length) in (1).

nondeterministic computation of NP is encoded into

(= ¢]
Define A by A = |(J A(s). We show that A is a desired
s=0

oracle set.
Claim 1. The string u placed into A at stage 2s+1 is

not queried in any computation performed at any ealier stage.
[Proof. Length of any string gueried at stage n__g is less
than |u|, since by (ii)

f (exp(n ————QL““)) £ exp(2s+l *-i—;)-< mk

e-1 e-1"' j%b'fl/Z) " b+1l/2 -
By similar computation, we see that |u| is larger than length
of any string queried at any earlier odd stage. Next, at a
stage 2t <n__q - length of any string queried in any comp-
utation is less than |u|, since

exp (2t __QL__) < exp(n ——;d——) < exp(2s+1l ——;——)<(|u(

" d'+l/2 e-1'" b'+1/2 " b+l/2 !

where d' = max {(a)0 :age"} (< Db') and e" is the last (i.

e., largest) index cancelled at an odd stage before 2t. (If

-11-



e = 0 we do not have to consider this situation.) Length of
any string queried at any stage 2t between ne_l‘and 2s+l is

less than ju| also,since

b! ' b
exp(2t,-aI%7§) = exp(2t,-BT:I75)<: exp(2s+1, 51175) = |u} ,
where d = max {(a)0 : a<e-1}y="Db'. Thus, u is not queried.

. at any earlier stage £ 2s+l1.]

Claim 2. When an even stage 2s+2 is executed, any such
string y is not queried at any ealier stage. [Proof. Length
ofvany string queried at any ealier odd stage 2s'+l £ 2s+2
is less than Y] since fe,(m')'< 2s'+l < |y| , where e' is
the cancelled index at stage 2s'+l and m' is the m defined
in (i) with 2s'+]l instead of 2s+1. Length of any string
queried at any eariler even stage 2s' & 2s+2 is less than
|y|, since it is less than 2s'. So, y is not queried at any
earlier'stage.]

Claim 3. For all k > 1, NP(A, k) g_._ P(A,k+1). [Proof.

Let k> 1 be given. Let L be an arbitrary language in NP (A, k).

Then, there is an i such that L = T(NP?‘k i>). We construct
14

a deterministic O(nk+l/2)—time—bounded OTM M with oracle A
as follows : Let e' =<(k,i» . Since e' 1is eventually cancel- .
led, ne, = 2s'+l is determined. Given an input x, first M

generates the string y such that

k

(2)  y = 0°1071x10™ and 2s'+1 < |y| = expl(c k+1/2

<k,id" k )
7

NI

_
x| x|

-12-~-
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By Lemma A, this is done in O(lx}k+l/2

) steps. There are
only finitely many (possibly zero) x's for which there is no
y such that (2) holds. So, we can make a finite table so
that M accepts x if and only if x is in L for such x's. Now,
let 2s+2 = |y] . Since 2s+2 > n_,, letting e be the last
index cancelled before stage 2s+2, we.héve e{f;‘e.'So,

k £ 4, where 4 = ma# {_ (a)y = a< e).» . Hence, (1) holds for
these 2s+2, y, k, i, n, and x. If y is in A, then M accepts
%, otherwise M rejects x. Thus, the constructed machine M

with oracle A accepts x iff vy is in A iff NP?ézitf)
14

A
<k,i)

L. That is, MA accepts L. Obviously M is a deterministic
nk+1/2)

accepts x iff NP accepts x [by Claim 2] iff x is in

O -time-bounded OTM. So, L is in P(A, k+1/2), where
P(A, k+1/2) is the claSS~of languages accepted by deter-

ministic 6(5K+l/2

)=time-bounded OTM's with o;aéle»A. By,the
Hierarchy Theorem, P(A,k+1/2) g; P(A,k+1). Thereforé

‘ NP(A,k)g; P(A,k+1).]

Claim 4. Lk(A) is not in P{(A,k) and hence P(A,k) #

NP(A,k). [Proof. Let i be arbitrary > 0, and consider e =
b

i . . - b
<k ,i). Then n, is determined, and let m exp(ne, k(b+l/2))’
where b = max {(a)b : a< e} . Then P? rejects 0™ iff

Pé(ne) rejects 0" [by Claim 1] iff JueAl|u) = m* ] iff

" e Lk(A). So, Pé does not accept Ly (A). Hence L, (3) is

-13-
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not in P(A,k).]

Claims 3 and 4 prove Theorem 1. [

‘Theorem 2. There is an oracle set B such that for all
k>1 P(B,k) = NP(B,k). /

Proof. Let B(s) be the set of all strings‘placed into B
before stage s, and let B(0) = g&.

Stage s. Consider a string y such that

(3) y = 0%1011x10" and s = [Y] = cex i>)x(k for some
k>1l, i, n ew and x € Zf,
Run NP?és;> on x. Length of strings queried in any computat-

B(s)
<k,1iy

place y into B. Otherwise we do nothing. We execute this pro-

ion of NP on x is less than s. If x is accepted we

cedure for every y satisfying (3), and let B' (s+l) be the
set of all strings added to B at this stage s. Let B(s+l) =

B(s) U B'(s+l). If there is no such y we let B(s+l) = B(s).

©0
Define B = (JB(s). Then B is a desired set. [
s=0

§4. Proofs (2). In this section we prove Theorems 3 and

Theorem 3. For any k > 1, if P(k) = NP(k), then P(k+1)
= NP (k+1).

Proof. Basic idea is due to Book [2]. Let k 21 be

fixed, and assume P(k) = NP{k). For r = k or k+1, let

P(r,i) [resp. NP(r,i) ] be the i-th deterministic [resp. non-

-14-
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deterministic] r-th-order-polynomial-time-bounded TM with

r

its strict time-bound f(r,i) , Where f(r,i>(n) = c<r,i>-n .

1/k) is a positive

This tl@e we assume that eXP(C(k+l,i>’
integer for every i. Now let Ll be an arbitrary language in
NP (k+1). Take an i so that L = T(Np<k+l,i>)' Define L,, as in
[2; p.225], by
— m". 3
L,=1{0"1lw : we L, &
r 1
m 1/k
|0 lw]‘z eXP(c<k+l’i> » 1/k)-wl Wi },

Using NP(k+l Y we can define a nondeterministic O(nk)-
r

time-bounded TM M. which accepts(Lz. Hence L. is in NP (k).

2 2
Since P(k) = NP(k), there is an index j such that L, =

k+1

T ( ). Using P we can define a deterministic O(n ) -

Pk, 3y <k,

time-bounded TM M which accepts L [For, on a given input

1
w M first produces wl0™ such that'lomlwl =
1/k7

-

1/k)-{w| [l
1+1/k

'exp(c<k+l,i>, By Lemma A , such action needs

at most constant-lwl steps only. Then M simulates

on 0Mlw . If M accepts 0™ilw then M accepts w, other-

P .

<ky32 2 at most k+1
wise M rejects w. This simulation needsjconstant-c<k+l,i>w\
steps only.] Therefore NP(k+1l) is contained in P(k+1l). O

Theorem 4. For each k 2 1, there is an oracle set Ck

such that P(Ck,k) # NP(Ck,k) but P(Ck,k+l) = NP(Ck,k+l).

Proof. Let k > 1 be fixed and we use subenumerations

{F’ : (e)0 = .k or k+1 and ~{NPe : (e)0 = k or k+1 }, where

-15-
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Pe and NPe are OTM's stated in the preceding section. This

time, we assume that exp(c 1/(k+1)) is a positive

<k+1,i>’
integer for every i. As before, C is constructed at stages.
Let C(sj be the set of all strings placed into C before

stage s. At each stage, some strings (possibly nothing) will
be put in C and some other strings (possibly nothing) willjbe
reserved for the éomplement'é; At eaéh stégé; if a'stfing

is neither placed into C nor reserved for C yet, we say it

to be unreserved at this stage. As before, the index i of

each OTM P will be cancelled at some odd stage when we

<(k,i>
ensure that P<k i does not accept the language Lk(C), which
is defined in the preceding section with X = C. Let C(0) =
@, n_, = 0 and f(k,—l>(0) = 0.
Stage 2s. Consider the following condition
(1) S S

If (1) does not hold, we skip this stage and let C(2s+1)

C(2s). Suppose (1) holds. (Clearly all sufficiently large

s satisfy (1l).) Consider strings y such that

(2) y = 0t1x10" & |y} = s for some i, n € w and x € I*.

(3) ¥yr Ypreeer ¥y |
be an enumeration of all such y's. We put yj = Ol(j)lleon(J)

for 1< j<r. Set C,(2s) = C(2s) and consider Y- For

0

-16- -
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[

1(2s)

simplicity, we write y, = 0%1x10" = y. Run NPSE;
in fewer than nk+l steps. Note that the length of a string

queried in any computation of this machine on x is less

k+1 k+1

than s . If x is accepted within n -1 steps, we' add to

|Y5k+l-

Cj(ZS) the even string yOm, where m = Further we.

reserve all unreserved strings queried in this aqcepting
computation £6r C. If no computation of this machine ac-

", k+ :
cepts x in fewer than nk l steps, then determine whether the

addition of some unréserved strings to Cj_l(ZS) will lead to

acceptance. (This and.the foliqwing ideas are due to [3; p.
5791.) If SO (case (a)), then plaée those unreservéd str-
ings queried in an éccepﬁing computation into C and E‘appr—
opriately so that acceptance is preserved. Place yOm into C.

Let Cj(ZS) be the set obtained from Cj_l(2s) by adding all.

such strings as above.‘If"not (case (b)), then we only do re-

" servation of yOm for C. Let C(2s+l) = Cr(ZS) and go to the

Cs(2s)

(k+1l,iy ©°° X

next stage. Note that any computation of NP
is not affected by any possible later addition to C. And for

the case of the above illustration

m . . . Cs(2s)
(4) y0© is in C iff Np<ﬂ+l,i)

nk+l steps.

accepts x in fewer than

If there is no y satisfying (2), let C(2s+l1l) = C(2s).

Stage 2s+1. Let i be the first uncancelled index. Sup-

-17-
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pose the following 4 conditions hold :

. k+1 _ m _
(1) f(k,i—l>(ni—l) < s + s ( =]y0"] for |y] = s,
where m = )y|k+l ) 4
. . . k
. o k k+1
(iii) f(k,i)(25+l) = c(k,i>(25+l) < (s+l) + (s+1) <
(2s+1) ¥*1,
k
(iv) (25+l)k+1 + 225 < 2(Zs+1) )
Then we cancel i and set n, = 2s+1. Run PC(2§+1) on z =
i <k,i>
025+l, We reserve all unreserved strings queried in the com-

putation for C. If the machine rejects z, then we take a
string u of length (2s+1)™ such that u is not queried in the
computation and is unreserved at the beginning of this stage.

(Existence of such a string u is proven in Claim 2.) Set

C(2s+2) = C(Zs+l)L/{u}. If the machine accepts z, then we
. k
)

reserve all strings of length (2s+l)" for C and let C(2s+2)

= C(2s+1).
If one of the conditions (i) - (iv) does not hold, then
we skip this stage and let C(2s+2) = C(2s+1l). Clearly each

index i will eventually be cancelled.

0o
Define C by C = \U C(s). We show that C is a desired
s=0
oracle set.

Claim 1. Any string w = yOm, where m = ‘y\k+l, placed
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into C or reserved for C at an even stage 2s was not queried
at any earlier stage. Hence, w is‘unreserved at the begin-
ning of stage 2s. Proof is done by using (i) and (iii).

[ Length of any stfings gueried at any earlier even stage 2s'
(< 2s) is less than (s')k+ls jw]. Let 2s"+1 be the latest
odd sfage which was executed before 2s, and let-iwbebthe
Canéelled index atAthié stage. By (i)'ana (iii) f(k,i-l>(ni—l)

< |w| and £ (2s"+1) « |Jw|. So w is longer than any

<k,i»
string queried at any earlier stage.]

Claim 2. When an odd stage 2s+l1 is executed, there is
such a string u. Note that even thﬁéh u had been gueried in
some cofplutation for the case (b) at an earlier even stage
2s’ (<<\25+l) the case (b) remains true after adding u to C.

[Proof. By (ii), we do not have to consider any earlier odd

stage. So, we evaluate the number of strings reserved at

earlier even stages. Let 2s' <« 2s+1. At stage 2s', for each
string y = 071x10™ such that |§[ = s' the number of strings
reserved at this stage is less than nk+l < (s')k+l. So. the

number of strings reserved with respect to all such y's is

1
less than (s')k+l-(the number of such x's) <;(s')k+l-2S <

1 .
22(S 2) by (1). Hence the entire number of strings reser-

ved at all earlier even stages £ 2s is less than i 22(s -2)
s'=s
k+1

, where s, is the least s, such that s, .250 ¢ 22!

2s 50—2)

< 2
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holds. The number of strings queried at stage 2s+l1 is less

than (2s+l)k+l (by (iii)). So by (iv), their sum is less

k
than 2(2s+l) .

Every string placéd into C at an even stage
is of even length.]

By using Claim 2 we can show P(C,k) # NP (C,k) as be-
fore.-Finally we show P(C,k+1l) = NP(C,k+1l). Let L be an
arbitrafy language in NP(C,k+1l) and let i bé’such that L =

+1

T(NPC ). We define a deterministic >\n0(nk ) -time-

¢k+1,1i
bounded OTM M with oracle C as follows : Given an input x,
M produces a string y such that y = OllxlOn, where n =

exp (c 1/(k+1))-|x|. This is done in fewer than O([xt)

(k+1,1i>»
steps. Put s = |y| , and consider the condition (1). We exe-
cute stage 2s. Let the above y be the j-th member in the
enumeration (3) : y = yj. M produces a string yOm, where

m - }y|k+l° This is done in fewer than O((xjk+l) steps.

Then M asks the oracle C if yOm is in C. If the answer is

yes, then M accepts x. Otherwise M rejects x. By (4) and

. . . C . C+ (2s)
Claim 1, x is in L iff NP<k+l,i> accepts x iff NP< +1,1

. Cs(2s) . ~ , k+1 _

accepts x iff NP(%+l,i> accepts x in fewer than n (=

k+1

-1x| )steps iff yOm is in C. Therefore M accepts

Cik+1,1y
L. (Of course , if neccesary, we use a finite table, too.)

+1

Clearly M is a deterministic AnO(nk ) -time-bounded OTM.

So, L is in P(C,k+l) and hence NP(C,k+1l) C P(C,k+1). IO
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Proofs of Theorems 5, 6, 7 and 8 are entirely similar

to those of Theorems 1, 2, 3 and 4. So we omit them.

5. Proofs (3). 1In this section, we show Theorem 9.
Let DEi [resp. NEi] be the i-th deterministic [resp. non-
deterministic] :}Exp(l)—time—bounded OTM with its strict

di-n d, > 0. Further , let

time-bound gi, where gi(n) = 2
DEP, [resp. NEP;] be the i-th F_ . -time-bounded OTM with
its strict time-bound anl 2Pi(™) 1 uhere p, is a poly-
nomial. Now, first we state a proof df (b) stated in ﬁhe last

paragrph of §l.

Proposition. (Book [2]) For any oracie set X, if

DEXT (X) = NEXT(X) then DEPT(X) = NEPT(X).
2599£' Let, for any oracle X,
K(X) = {Oilxlon : some computation of NEP? accepts x
in fewer than 2"° steps}:

Clearly, K(X) is in NEXT(X) and hence NEPT(X) cC ?(K(X)) as
in [1l; Proof of Lemma 1 on p.433]. Suppose DEXT(X) = NEXT(X).
Then K(X) is in DEXT(X) and so there is an index i such that
DEiX accepts K(X). To show NEPT(X) € DEPT(X), let L be an
arbitrary language in NEPT(X). Then there is an index j such

K(X)

that Pj accepts L. Define a deterministic SEXP -time-

bounded OTM M with oracle X which accepts L : Given an input
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X, M first simulates the computation of PjK(X) on x. If a

string w is queried in the computation, then using oracle X

X

A .
M 51mu¢§tes the computation of DEi on w and decides whether

w is in K(X). The latter simulation can be done in fewer

than 2d11w| steps. M accepts x if PjK(X)

accepts x. So, M
accepfs L. Length of such a string w is less than pj([x]) and
the number of queried strings is less than pj(lx]). So, theA
entire steps of the computation of M on x is bounded by ZP(IX”
for some polynomial p. Hence M is a deterministic :FEXP-
time-bounded OTM. Therefore L is in DEPT(X). U

In contrast with this proposition we have

Theorem 9. There is an oracle set G such that DEXT(G) #
NEXT (G) but DEPT(G) = NEPT(G).

Proof. Let G(s) be the set of all strings placed into

* G before stage s and let G(0) = g. At some stages we reser-
ve some strings for G and the index e of each DEe is cancel-
led at some stage ng when we ensure that DEeG does not accept
the language

Loy (G = {0 : Fuecl |u] =27 17}.
Clearly L

(G) is in NEXT(G). Let n_ 1 and g_,(0) = 1.

EX 1 -
Stage 2s. Consider strings y such that
(1) y = 0t1x10™ and 2s = ]y( = 2pi(|x|) for some i, n g w

and x € I¥*.
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Run NEPiG(zs) on x. If it accepts x, then we take a string

yw such that

(2) jw) = pi(|x|)2 + ¢, where ¢ = 0 or 1,
(3) ]yw['is odd and
(4) yw is not reserved for G, yet.

And we add yw to G. Such a string yw exists. {See Claim 2.)

G(2s) rejects x we do nothing. Let G'(2s+l) be the

If NEP:
i
set of all strings placed into G- at this stage after per-
forming the above procedure for every y for which (1) holds,
and let G{(2s+1l) = G(2s) U G'{(2s+1l). If there is no such y
let G(2s+1) = G(2s).
Stage 2s+1. Let e be the first uncancelled index at the

beginning of this stage. Suppose the’following 4 conditions

are satisfied

(1) 2s+1 > ge_l(log ne-l?’
(ii) log(2s+2) is an. even number,
(i1ii) There is no string of length larger than 2s+1 which

is reserved for G before this stage,

(log (25+2)) 2 2542

(iv) g (log(2s+2)) < 2 <2 .

Then we cancel e at this stage and put n, = 2s+1l. Run

G(2s+1) log(2s+2)

DEe on the string Zygy] = 0 . We reserve for

G all strings of lengths larger than 2s+1 negatively queried

G(2s+1)

in the computation. If DEe

rejects z then we

2s+1'

-23-



choose a string u of length 2s+2 not queried in the com-

putation and add it to G(2s+l) to make G(2s+2). By (iv),

, . . G(2s+1) :
such a string u exists. If DEe accepts Zog41 let
G(2s8+2) = G(2s+1). If at least one of (i) - (iv) is not
satisfied, then we do nothing and put G(2s+2) = G(2s+l).

Cleariy each index e,will eventgally'be_cancelled;

Let G 5'[J G(s). G is a desired oracle set :
s=0 ‘

Claim 1. When an odd stage 2s+l1 is executed, the fol-
lowing condition holds, too
(v) For any ¢, y, i, x and n, if ¢ = 0 or 1 and y =

C1xl)

0t1x10™ and 25+l € |y| < 2Pi then there is =a

string w such that |(w] = pi(lxl)2 + € and |yw| is

G(2s+1)

odd and DEe does not guery yw in the computation

On Zos+l”
i[Proof is by (iv).]

Claim 2. When an even stage 2s 1is executed, such a yw-
exists énd this string is not queried in any computation
performed at any earlier stage. [Proof. Let y = Oilxlon
with 2s = |y| = 2P (Ix]) be any stfing taken at stage 2s.
Let 2s'+l be the last odd stage executed before 2s, and let
e be the cancelled index at 2s'+1l. By Claim 1, there is a
string w such that {w| = pi([x})2 + €, [yw‘ is odd and
G(2s'+1)

DEe does not query yw in the computation on ZZs'+l'/
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since only strings of lengths less than 2s'+l are queried
at odd stages £ 2s'+l (because of (i) with s'), yw is not
reserved for G yet. Moreover, only'strings of lengths less
than 2s are queried at even stages. < 2s. So.yw is not
queried at any earlier stage.]

Claim 3. When an odd stagev25+lﬂis_executed,usuch a
string u-is not queriédlat‘anyfeérlier'§tage.ﬂ[frdof is”
by (iii).]

As before, we see LEX(G) is not in DEXT(G), by using
Claim 3. Finally, we show NEPT{(G) is contained in DEPT(G).
Let L be in NEPT(G) and let i be such that L = T(NEPiG).

We define a deterministic :}Exp—time—boundéd OTMVM with

oracle G whiéh accepts L. Given x, M first produces a

string y such that

(5)  y = ot1x10® & [ v :’-"2pi_(le"l’ﬁ)'

Let |y]| = 2s. Then M produces a string w such éhat [w] =
pi(\x])2 + e (e = 0 or 1) and such that |yw| is odd. M
accepts x iff yw is in G. So, by Claim 2, M accepts x iff

.G(2s) G

NEPl accepts x iff NEPi

accepts x 1iff x is in L.
Hence L is accepted by MG. Guessing such a string w can
L . P; (1x1)2+1
deterministically be done in fewer than const 2 %

steps. So, using oracle G M can deterministically decide

whether it accepts X in fewer than 2p(\xl) steps for some

=25~



polynomial p. Hence L is in DEPT(G) . Consegquently NEPT(G)
is contained in DEPT(G) .

A language on a one-letter alphabet is called a tally
language. It is known,by Bock, that if DEXT = NEXT then P
can not be separated from NP by any tally language. Cont-
rast with this, we have :

. Collorary. There is an oracle set G such that
DEPT(G) = NEPT(G) but DEXT(G) is separated from NEXT(G) by

a tally language.
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