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Introduction
In their paper [PH], Paris and Harrington showed that in Peano Arithmetic
PA Harrington principle (H) is equivalent to the uhiform reflection principle

RFN_. . Since uniform reflection princinles RFN (p =1,2,3,...) make

) z
a hier}archy over PA ([Sm],*4, la), it is natural tg ask for a hierarchy of
extensions of (H) which corresponds to the hierarchy of reflection principles.
In order to prove the unprovability of (H) in PA, Paris and Harrington
considered a theory T, showing that (H) implies Con(T) and Con(T)
implies Con(PA) in PA. If one see the proof precisely, then we can find
that (H) is equivalent to MOd(T)w and Mod(T)w implies Con(T), where

MOd(T)m means that every finite subset of T has a model on w. We consider

theories Tn (n€w) and Too, which are extensions of T = TO' However all

the sentences MOd(Tn)w (ne w) and Mod(T_) become equivalent to (H).
In addition, all of Con(Tn) (n ew) are equivalent to Con(PA).. By consid-
ering Tn (n€w) we cannot produce any hierarchy corresponding tc.

RFN, (p=1.2,3,...0. "
p

Next we extend Harrmgton principle directly and define sentences (Hp)

(p =1,2,3,...) where (Hl) is (H). Then this hierarchy is the one just seeked

5 for every p =1,2,5,...
p

So the problem is solved in one sense. However, since the principles (Hp)

for, since (Hp) is exactly equivalent to RFN

are rather complicated in the view point of arithmetical and combinatorial

formula, so it is desirable to find more simple hierarchies.



§1. Equiconsistency of PA and Theory Tn and equivalency of Mod(Tn)wto (H)
1.1 Definitions and notations '
(1) PA ; Peano Arithmetic with p-symbol.

(2) (H); Harrington Principle i.e.
Ve¥rvk 3 M(M —=> (03

(3) Theory T, (n€w), T

T is the theory of T in [PH].

0
' Tn (n z1) is as follows;
Language of Tn ; 0,1, 4, », < and constants ] (i€w).
Axioms of Tn;
(i) Defining equations for 0, 1, +, +, < and the mathematical
induction axioms for Zn-formulas.
2

(id) ci <Ci+1'

(ili) For any i <k, k' and Zn—fo_rmula o(¥,z) (where k, k' and

z have the same length),
Vy < el ¢(y,ck)) <> ¢(y,c(k"))].

T_ is obtained from Tn by changing the Zn—formulas into unrestricted

ones.

+1CT°°'

Remark) T0 C Tn C Tn

1.2 Equiconsistency and conservativity.

Proposition 1. PA Con(TO) -+ Con(PA) (2.2in [FH]D.

Proposition 2. PA I Con(PA) ~» Con(T_).

So Trl (new), T_, and PA are provably equiconsistent in PA.
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Ezgpgs_iligg__&. T, 1is a conservative extension of PA.

Lemma. Let q>].(37,z) = ¢].‘(y1, R A LTI ,zn) G=1,...,D
pe a finite set of formulas in PA. For any number k > n, there is a sequence
of terms ©T....,¢ _; in PA which satisfies

. a2 o~ .

() PAF c; < Cii1 for 0 <i <k-1 and

() PAFVY < ¢lé:(y,800) <> ¢;(y.ekN]  j=1,....1 for i<k,
k' <k. ‘ |
From this Lemma, we can derive Proposition‘z and 32 immediately. In [PH],

both Proposition 2 for T and the Lemma are not mentioned explicitly. But

0
Dr. Uesu pointed out to me that the proofs of 2.10 and 2.11 of [PH] can
be regarded the proof of the above Lemma. For, (H) is not provable in
PA, but for each nﬁmber e, the formula VkVr 3 M (M—2 (k)i) is

provable in PA. In this proof the fact that "¢]. is limited" is never used,

so the Lemma holds for any formulas (b]..

1.3. ‘Models of finite subsets of Tn on w.

Let Mod(Tn) be the formula expressing "Every finite set of axioms
w

of Tn has a model on w".

Proposition 4. For all new, PAF (H) «» MOd(Tn)m-

Proof) The Proposition 2.11 in [PH] leads to one direction,

PA - (H) ~ MOd(Tn)w’ by constructing a model. The axioms in (i) of Tn
are also satisfied in this model, because the truth-definition for in-formulas
can be constructed in PA itself. On the other hand, Paris and Harrington

proved that PAF Mod(T,) - RFN and PA F RFN +> (H), so
07w Zl 7 Zl

PA MOd(Tn)w > (H).

Con(Tn) and MOd(Tn)w give no hierarchy corresponding to RFNZ
n



s2. Extensions of Harrington principle and Reflection principles
2.1 Harrington Principles and Reflection principles

In this section we suppose that PA and T have all the symbols of
primitive recursive functions and their defining equations as axioms.

A Hp—sentence ¢ of PA can be written as

) (D

¢ := VXOQX1 pr—lA(XO’Xl""’Xp-l

where Q'S are 3 or V alternately, and A is a quantifier free formula.

Then define

% .= < < <
o) (zo,zl,.v..,zp_l) : VXO .ZOQxl Zy e-- pr_1 Zp_lA(XO,Xl,...,Xpﬂl),
¢ e
Definition 1. M— (k)r

¢
For k, e, r, Méw and a Hp-sentence o, M —;ﬁ(k)i is the following
formula:
For every partition P : [M]€ > r there is a subset YCM (Y = {yo,yl,

. ’yq—l}’ Vo <¥1 < -es <yq_1) such that

(i) Y is homogeneous for P,

(i) card(Y)

I

k,
(ii) Y is relatively large, i.e. card(Y) 2 min(Y), and
(iv) ¢*(y0,y1,...,yp_1) holds. |
Note that M —— (k)i is a primitive recursive formula.
Definition 2. (Hp)
For p=1,2,..., (Hp) means the foilowing sentence:
For all k, e, r and for all true Hp—sentence ¢, there exists an Mé€w

¢

such that M —— (k) .
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If p =1, since the condition (iv) holds trivially, (Hl) concides with
the Harrington principle (H). Clearly (Hp+1) implies (Hp).

Proposition 1.

(Hp) is a Hp+1-sentence of PA.
Proof).
For every Il -sentence ¢ of the form (1) there is a number f such that

¢ is equivalent to the formula

(f) ::‘0755(0QXl ... Qx - 1 p 1(fx Xp—l).

. ' . . o = .
where T'p_1 is Kleene's Tp—l if pr—l is 3Xp-1 and is Tp-l if
pr_l is vxp—l'

So (Hp) is expressed as
VkVeVer[VxOQxl/... Qx p- 1 p 1(f X ""Xp—l)
; (f)
> IMGBI —5— (k) )1,

which is a Il ,-sentence.
p+1
Definition 3.
For every true Hp—sehtence ¢ of the form (1) we define a finite sequence

of afithmetical functions
fl(XO) , f3(X0,X2) , f5(xo,x2,x4) ..
by the following way:

Il(XO) = UXIQXZ een pr—'lA(XO’Xl"" WX )

p-1

f3(x0,x2) = ux3QX4 . pr—lA(XO’fl(XO)’Xz" cosX



X

f (x0 ' XgsXy ) = px5Qx6 pr—lA(XO’fl(XO)’XZ’f_3(X0’X2)’X4’X5’" p-l)

We call (fl’f3’ e ,fS) the function sequence of ¢.

Proposition 2.

Let ¢ be a true Hp—sentence and (flf 3f5 ...) be its function sequence.
Put the functions f* f’g, f; . as following:
* f—

* _ . ‘ :
f3(y0,y2) = max{fa(xo,xz), XO < yo, X2 < yz}

f;(VO’YZ’y4) = max{f5(x0,x2,x4); X< Vg Xg < Vg X4 < y4} |

Then the condition (iv) of Definition 1 is equivalent to:
. ' % * %

Av)' £(yy) <vp» £554:¥9) <V g f5(y5 V9.V < V5
(The proof is obvious.)

Proposition 3.

(H ) is equivalent to the sentence obtained from the definition of (H )
by replacmg the condition (iv) of M- (k) w1th the following condition:

(iv)" For all i il,...,i cw

0’ p-1

. . . _ %
10<11<...<1p_1<q1 > ¢(xi0,xil,...,x ).

Proof).

Use 2.9 in [PH].



123

2.2 Truth of (Hp)
Proposition 4.
(i) (Hp) is true.

(i) For each e and each true Hp-sentence o)
o b
PA}l VkVr3a M(M — (k)r)°

(ii) PA} RFNZ > (Hp).
p
Proof) (Cf. 2.1 and 2.1in [PH])

(i) Suppose Hp were false, construct thé tree of counter examples
<P,M>, take an infinite path by Konig lemma, and put a homogeneous infinite
set by infinite Ramsey theorem. Then we can find its finite subset that
satisfies the conditions (i)-(iv) for Y in Definition 1.

(i), (i) Formalize the above proof.

2.4 Relation to reflection principles

Proposition 5. (2.41in [PH])

For every model A of T there is a model j of PA such that for

all prenex formula 6(y) in PA and for all i <k and a< c;-

J Eoa) iff A Eoe*a,ck).

Proposition 6.

In PA + (Hp) it is proved that for all true Hp—sentence ¢ and finite
subset 8 of T, 8 + {¢*(c(-.. ,cp_l) } has a model on w.
Proof) '

Similar to 2.11 om [PH].



Proposition 7.

PA + (Hp) - RFNZp

Proof)

In PA, suppose (Hp) and let ¢ be a true Hp~sentence. By Proposition
6 and Compactiness ‘theorem T + {cb*(co, . . ,cp_l)} has a model. Then by
Proposition 5 PA + {¢} is consistent.

Formalizing the above discussion, we can obtain
PA+(H )Ty (Fo) » = o). 2
( p) L ) PrpA(7¢) (2)

where Trp is the partial truth-definition of order p (Cf. [Sm]). Let ¢(a)
be a Hp—formula whose only free variable is a. Since for the sertences ¢(n)

for a1l numeral n (2) holds, we have

PA + (H) & Tr (@D > 7Pr, (F79(a)D.
And PA Trp(rcp(é)") > d(a) (5.21 in [Sel),
so for all Zp—formula Y(a),

PA + (Hp) + PrpA(”w(a)"‘) > y(a).

Combining this proposition and Proposition 4 (m) , we have the following
theorem.

Theorem.

PA("’(Hp) - RFNZ (p=1,2,3,...).
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