EXISTENCE OF DISTRIBUTION FUNCTIONS AND AVERAGE ORDER OF ARITHMETICAL FUNCTIONS.

By

J.L. MAUCLAIRE

Waseda University, School of Education, Dept. of Math., Tokyo.

1. Let f(n) be a real sequence indexed by positive integers. f is limit-periodical B^{λ} , $\lambda \geq 1$, if given $\epsilon > 0$, there exists a periodical function P_{ϵ} such that

$$\overline{\lim_{X\to +\infty}} \, \frac{1}{x} \, \sum_{n\leq x} \, \big| \, f(n) \, - \, P_{\varepsilon}(n) \, \big|^{\,\lambda} \, \leq \, \varepsilon \, .$$

It is known that there is a very close correspondence between B^{λ} and \mathcal{L}^{λ} ($\prod_{p} \mathbb{Z}_{p}$, $\prod_{p} dm_{p}$), where \mathbb{Z}_{p} is the ring of the p-adic integers, dm_{p} the normalized Haar measure on \mathbb{Z}_{p} , p describing the whole set of the prime numbers (see, for instance, [1].)

 $\underline{2}$. If f belongs to \underline{B}^1 , f real, then, the distribution function $\sigma_{\mathbf{f}}(.)$ of f exists ([2]) and moreover, if $\sigma_{\mathbf{f}}(.)$ is continuous in t, then, the function $I_{\mathbf{t},\mathbf{f}}(.)$ defined by

$$I_{t,f(n)} = 1 \text{ if } f(n) < t$$

= 0 if not

is an element of B^1 ([3]).

From this, it is very easy to deduce the fact that given some real f in B^1 , if there exists an r>1 such that

$$\frac{\overline{\lim}}{\sum_{x\to+\infty}} \frac{1}{x} \sum_{n\leq x} |f(n)|^r < +\infty,$$

then, for any λ satisfying $1 \leq \lambda < r$, we have $f \in B^{\lambda}$, (for, if σ_f is continuous in t, then $I_{t,f}(n)$ f(n) belongs to B^1 . Now since

$$\sum_{n \leq x} |f(n) - I_{t,f}(n)f(n)|^{\lambda} = \sum_{n \leq x} |f(n)|^{\lambda} |1 - I_{t,f}(n)|,$$

we get the required result by use of Hölder inequality, taking the limit for t tending to infinity.)

 $\underline{3}$. The study of elements of \underline{B}^1 with values 1 or 0 only, led me very recently to the following result ([4]).

THEOREM. Let f(n) be an element of B^1 with values 1 or 0 only. Suppose that $\lim_{X\to +\infty} \frac{1}{x} \sum_{n\leq x} f(n)$ is not zero. Define an arithmetical function $\delta(n)$ by :

$$\delta(n) = 0 \quad \text{if} \quad f(n) = 0$$

$$\delta(n) = \min_{m} \{m - n \mid m > n\} \quad \text{if} \quad f(n) = 1.$$
 Then,
$$\delta(n) \in B^{1}.$$

The proof is not difficult (see [4]); it needs in an essential way the existence of the correspondence between B^1 and \mathcal{Z}^1 ($\prod_p \mathbb{Z}_p$, $\boxtimes_p dm_p$). The other ingredients are the fact that the application $x \mapsto x+1$ from $\prod_p \mathbb{Z}_p$ to $\prod_p \mathbb{Z}_p$ is ergodic, and a (not so) well-known result of M. Kac ([5]) on Poincaré cycles. I would like to know if it is possible to get this result without the use of the correspondence between B^1 and \mathcal{Z}^1 ($\prod_p \mathbb{Z}_p$, $\boxtimes_p dm_p$). If no other method exists, then, as far as I know, this theorem would be the first of this kind.

4. Application.

I shall restrict mylself to a very special case, which is a good illustration of the usefulness of what has been explained before.

Consider the set of the square-free numbers. It was proved by Erdös ([6]) that, if $\delta(n)$ is defined by :

- $\delta(n) = 0$ if n is not square-free,
- $\delta(n) = \min_{m \text{ square-free}} \{m-n \mid m > n, m \text{ square-free}\}$

if n is square-free,

then: $\sum_{\substack{n \leq x \\ n \leq x}} \delta(n)^{\alpha} \sim C(\alpha)x$, if $0 \leq \alpha \leq 2$, and Hooley ([7]) extended this result to the case $0 \leq \alpha \leq 3$. The existence of a distribution function for δ was proved by Mirsky ([8]).

A direct application of what has been explained before is possible, since the caracteristic function of the square-free numbers is $|\mu(n)|$, where μ is the Möbius function, which is B^1 , with a not zero mean value: the theorem, in 3, gives that $\delta(n)$ is B^1 ; since δ takes only integral values, what has been stated in 2, gives that:

- \underline{a} . the set of the square-free numbers such that $\delta(n) = k$, $k \geq 0$ fixed, admits a density d_k and $\sum_{k \geq 0} d_k = 1$. Moreover, the caracteristic function of such a set is in B^1 .
- \underline{b} . δ is an element of B^{λ} for any λ satisfying $1 \le \lambda < 3$. (for $\delta(n)$ is in B^1 and $\lim_{n \to +\infty} \frac{1}{x} \sum_{n \le x} \delta(n)^3$ exists.)

 \underline{c} . A necessary and sufficient condition for δ to be in $\mbox{\ensuremath{B^{\infty}}}$ is that

for any $\alpha \geq 0$,

$$\frac{\overline{\lim}}{X \to +\infty} \frac{1}{X} \sum_{n \le X} \delta(n)^{\alpha} < + \infty$$
 (*)

(This (*) is conjectured by Erdös ([6]).)

In the same way, it is immediate that \underline{a} , \underline{b} , \underline{c} still hold if in place of the whole set of the square-free numbers, we restrict ourself to some subset A defined by

$$A = \left\{ n \in \mathbb{N}^* \mid \begin{array}{c} n & \text{square-free,} \\ n = b & \text{mod a,} \end{array} \right\}$$

with (a,b) = 1, $a > b \ge 1$.

REFERENCES

- [1] J.L. MAUCLAIRE. Suites limite-périodiques et théorie des Nombres. I. Proc. Japan Acad. 56 A 180-182 (1980).
- [2] B. JESSEN and A. WINTNER. Distribution function and the Riemann Zeta function. Trans. Amer. Math. Soc., 38, 48-88 (1935).
- [3] H. DELANGE. Sur certaines parties de IN de fonction caractéristique presque-périodique B. Compte-rendus des Journées de Théorie analytique et élémentaire des Nombres, Reims, 9-10 mars 1981; (Publications du Département de Mathématiques de l'Université de Reims). 1981.
- [4] J.L. MAUCLAIRE. Suites limite-périodiques et théorie des Nombres VIII. Proc. Japan Acad. vol. 59, ser. A, n° 4 164-166 (1983).
- [5] M. KAC.- On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc. 53, 1002-1010 (1947).
- [6] P. ERDÖS.- Some problems and results in elementary Number theory, Publ. Math. Debrecen 2, 1951, 103-109.
- [7] C. HOOLEY.- On the intervals between consecutive terms of sequences, Proc. Symp. Pure Math., vol. 24, Analytic Number Theory, Amer. Math. Soc. 1973, 129-140.
- [8] L. MIRSKY. Arithmetical pattern problems relating to divisibility by rth powers. Proc. London Math. Soc. (2) 50 (1949), 497-508.