[U

goooboooogn
0 5220 1984 0 185-198

Finite Biautomata on Two-way Infinite Words

(Preliminary Report)
JuMkEsE® K E (Takeshi Hayashi)

College of General Education, Kyushu University

Abstract

The classes of two-way infinite languages accepted by finite biau-
tomata through several acceptance conditions are studied. A two-way
infinite word is a two-way infinite sequence of symbols of finite kinds.
A finite biautomaton is a pair of finite automata, one of which runs
leftward infinitely while the other rums rightward infinitely starting
at some point of a two-way infinite word. This paper deals with the
classes characterized by finite biautomata under four types of accept-
ance conditions which have been used to study behaviours of finite

automata on w-words.

1. Introduction

A two-way infinite word is a two-way infinite sequence of symbols of
finite kinds whose left/right shift denotes the same two-way infinite
word. Finite biautomata on this kind of words was firstly investigated
by Nivat and Perrin [4]. A biautomaton is a pair of finite automata, one
of which runs leftward infinitely while the other rums rightward infini-
tely starting at some point of a two-way infinite word.

Nivat and Perrin defined both nondeterministic and deterministic
biautomata through Buchi type acceptance condition [1]. The class of
two-way infinite languages accepted by nondeterministic biautomata can
be considered as an extension of w-regular languages [3] to two-way
infinite case. They have shown that nondeterministic mddels define a
larger class than deterministic ones. It has been also shown that
nondeterministic class is the Boolean closure of deterministic one.
These results are regarded as extensions of :the corresponding results
for w-languages and require more difficult arguments.

In this paper we consider nondeterministic and deterministic biau-
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tomata on two-way infinite words through other acceptance conditions
which have been used to study behaviours of finite automata on w-words

[5,6]1 and characterize classes they define.

2, Preliminaries

Definition: Let A be a finite alphabet, and A? denote the set of mapping
x ¢+ {0,1,2,...} » A. We call the mapping x an w-word, and write
x=agjaja,... where x(n)=a  (0=0,1,2,...).

Let A%=A%

We call the members of A% 00-words(infinitary words). For an OO-word w

* ..
U AY where A” stands for the set of finite words over A.

and n 2 0, we write
w(0)w(l)...w(n-1) if w is in AY,
wlnl={
apgayesedj_q if w=agaj..a;_; and izmin{n,m}
where ag,ajsw.a;_y are in A. In this paper unless otherwise stated, we
assume that u,v,w stand for arbitrary OO-words, X,y,z for w-words, f,g,h
for finite words, W,U,V for ©O-languages (subset of AOO),X,Y,Z for
languages(subset of A%),a,b for symbols in A, and n,m,i1 for natural
numbers(20).
We define a partial order £ in A® by
w £ v iff w=v or w=v[n] for some n,
and write
yw={f in A* | £ < w}={wlnl|n20}.
For an OO0-language W, we write
tW=u{dw | v e Wi={wlnl|l w € W, n20}.
For an increasing sequence
wOSwlSWZSWBS...
of elements w, in A%, the supremum of (w;) is denoted by sup(w;).
Given an OO-language W, sup(W) denotes the set of supremums of increas-
ing sequences whose elements are in W.
Now we extend the regular operations to OO-languages. First we
extend the concatenation operation in A* to A by |
wv(0)v(1)v(2)... if weA™ and veA?,
wv={
w if weA? and veA™®,
and define WV and W* as usual. That is,
WV

W*

{wv | weW, veVly

{e JUWUWWUWWWU...
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Here e stands for the empty word. We define the w-power of an co-
language W as ‘

WY = {wowlwz... | WysWisWose € w-{e}}
where wyw;wjy... means the w-word w such that.wowl...wn < w for all n.
For an OO-language W,

We8 = {winAY | ywc +W}.
We define another operation L€ for a language L < A* by

L® = {w in AY | w n L is infinite}= sup(L) n AY.
A%,

We call (u,v) in AP 4 bi-word. Over the set of bi-words A%x we

define an equivalence relation denoted by ~ as ‘
(usv) ~ (u',v') iff there exists f in A* such that v=fv' and u'=fRu
or v'=fv and u=fRu', where R is the reverse operator of A*.
We say an equivalence class of bi-words under ~ a bilateral word.

The set of bilateral words is denoted by ©x®  and the canonical sur-

Op® is denoted by p.

jection from A%Pxa® onto
A bi-word (u,v) is said to be

finite if u, v € A%,

right-infinite if u € A*, v € A%,

left-infinite if u € AY, v € A%,

two-way infinite (biinfinite) if u, v € AY.
We can identify the set of finite bilateral words with A%, 1f (f,g) €
A*XA*, we can make correspondence With‘ng. And we have (f,g) ~ (f',g")
iff ng=f'Rg'. Therefore we are allowed to dkenote ng the class p(f,g).

In the same way the set of right-infinite bilateral words can be
identified with AY by making correspondence of (f,y) € A*xAY with the w-
word fRy € AY,

We denote the set of left-infinite bilateral words b‘y “A. One can
define a bijection

x € YA+ xR ea?
in association with the identification of a bi-word (u,g) € AYxA* with
the w-word gRu € AY.

We can also define the product of a word in “A with a word in AR by
associating for x € A, v e AP with the equivalence class of (xR,v).
The corresponding element in ovoo.is denoted by xv. We also use the
following notation:

For an OO-language W, ‘
Ay = {w in YA | +(w8) c v (wR)I.
For a language L © A%,
L = {w in YA | +(w®) n LR is infinite}.

For a language L © A*,
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Y1, is a subset of YA defined by: (Y1)} = (LR)e,

If the word is two-way infinite bilateral, then we call it simply
biinfinite. The set of biinfinite words over A is denoted by
WAL (=pWNAW /)

@, ,&O . .
The set A"xA™ of bi-words is naturally ordered by
(u,v) < (u'sv') iff u < u' and v £ v!'
where £ is the relation already defined on A%,

For an increasing sequence (un,vn) of bi-words, the supremum denoted
by sup(u,sv ) equals to (sup(up),sup(v )).

For a language W c A*, we associate a biinfinite language
eWe={p(sup(fn,gn)) € YAY | (f,» g,) are strictly increasing sequences of
bi-words such that fﬁgn € W for all n }.

For a language W © A*, we associate a biinfinite language 2W2={(x,y)
€ AYxAY | x[n]Ry[m] € C(W) for all n,m20}/~, where C(W) denotes the set
of subwords occurring in W, that is C(W)={g € A* | fgh € W for some f,h

e A¥}.

Definition: A finite automaton is a 5-tuple M=(Q,A,T,D,F), where

(1) Qis a finite set of states.

(2) A is a finite alphabet.

(3) T is a subset of QxAxQ such that the set T(q,a)={pl(q,a,p) 1s
in T} is not empty for q in Q and a in A. Elements in T are called

(4) D is a subset of Q called the set of initial states.

(5) F is a subset of Q called the set of final states.

A finite automaton said to be deterministic if [D[=1 and [T(q,a)|=1 for
all q in Q and a in A.

For a finite automaton M, a finite word f=aoalu.ah_1, and two
states p and q in Q, we write '

P . SN q in M

if there exists a finite consecutive sequence of transitions
(qpsapsqq)s (qysajsqg)seees(q 15 a5-759,) such that qp=p and q,=q.

For a finite automaton M, L,(M) denotes the language accepted by M,
i.e. ,

L*(M)={f€A* | There exist peD and qeF such that p —fs q in M }.

Given an infinite word x and an automaton M, a computationa is an
infinite consecutive sequence of transitions (qo,ao,ql)s
(qps27599)seees (q 7523, 759, )seees where qp is in D and x=agajag...
We denote the set of computations of M for x by R(M,x). For a computa-

tion o, we define
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(1) I(a)={q | state q occurs in « iﬁfinitely many times},

(2) 0(a)={q | state q occurs in a}.
For a finite automaton M=(Q,A,T,D,F) and x in AY, we say that M accepts
x in the sense of C; (i=l,...,4) if there exists a computation a in
R(M,x) satisfying the condition C;, where

(cy) 1(a)nF=g.

(C,) I(e)<F.

(C4) O(a)nFzg.

(c,) o(a)cF. ,
We call o an accepting cgmputatlon of M on x in the sense of C ;s respec-
tively. For i=l,...;4 , we denote by L. (M) the set of w- words accepted
by M in the sense of C;, further to;clarlfy the initial state of a, we
use the notation L,;(M;d) for the set of w-words accepted by M in the
sense of C; with accepting computations beginning at the initial state
d. Therefore Li(M)=Ud€D Li(M;d). We say that M recognizes an w-language
L in the sense of C; if L=L (M)..

Definition: For i=l,....4s we define
(1) N,
(2) p;

n

{Li(M) | M 1is a nondeterministic finite automaton}

{L;(M) | M is a deterministic finite automaton}.

The classes D; and N; (i=l,...,4) have been characterized in terms
of general topology and the representations of the w-languages in these
classes have been obtained by applying several operations to regular
languages [5,6]. Table I summarizes the known results on deterministic
and nondeterministic finite automata on w-words. The classes concerned,

¢k, 7%, cg

denoted by w-R, and FR, are defined as follows:

(1) w-R: An w-language in w-R is of the form Ul 1% Yw for some
regular languages Xy and Y. w- R is called the class of w-regular lan-
guages [3].

(2) 6% an w-language in GR is of the form XAY, where X is a
regular language.

(3) F®:  An w—langﬁage in FR is described as X® for some regular
language X. ‘

(4) G%: An w-language in G% is written as X® for some regular
language X. ; ,

(5) F%} An w-language in Fg is of the form U?:IXiY? for some

regular languages X and Y.

o0
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TABLE I

R R R R
p; & ¥ ¢ F
N, &R F%, & !

Definition: A finite biautomaton is a 3-tuple M=(M_,M_,,S), where

(1) M_ and M, are finite automata with

M_=(Q_.A,T_,D_,F_) and M,=(Q,,A,T,,D,,F,) .

(2) S is a subset of D_xD,.
For a biautomaton M=(M_,M,,S), the set of bi-words accepted by M in the
sense of C;, denoted L;(M) is defined as

Li(M)={(x,y) € AYxAY | There exists (d_sd,) in S such that x is in
Li(M_;d_) ané.y is in Li(M+;d+)}.
For i=ls...s4s we define

Ni(A“wa)= {L;(M) | M is a biautomaton}.

A biautomaton M is said to be bilateral in the sense of C; if L.(M)
is closed under the relation ~. If M is bilateral in the sense of C;»
the set of biinfinite words recognized by M, denoted B;(M) is defined as

B, (M)=p(L;(M)).

For a biinfinite languagellé WpW

» L 1s said to be Ci—recognizable
if there exists a bilateral biautomaton M such that L=Bi(M). The classes
of Ci-recdgnizable biinfinite languages are denmoted by BN;, respectively
for 1i=1,...54.

A biautomaton M=(M_,M,,S) is said to be strictly deterministic, if
it satisfies:

(1) Both M_ and M, are deterministic finite automata.

(2) s={(d_,d,)}, where d_ is the unique initial state of M_ and d,
is the unique initial state of M,
A deterministic biautomaton is a finite union of strictly deterministic
biautomata. For a deterministic biautomaton M={M;, ..,M_}, the set of
bi-words accepted by M in the sense of C;» denoted Li(M) is defined as

Li(M)zquILi(MjL

For i=1,..454, we define

Di(waAw)= {L;(M) | M is a deterministic biautomaton}.

A deterministic biautomaton M is said to be bilateral in the sense
of C; if Li(M) is closed under the relation ~. For i=l,...,4, BD, are
the classes of biinfinite languages recognizable by deterministic bilat-

eral biautomata in the sense of Ci’ that 1s,
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BDi={L c @p9 | L=p(Li(M)) for some deterministic bilateral biautoma-

ton M}.

3, Characterization of BN.'s
Theorem 1 (Nivat and Perrin [4]). For L < “A%, the following conditions
are equivalent,

(1) L e BN;.

(2) L is a finite union of sets of the form ¥YXYZ¥ where X,Y,Z €
R(the class of regular sets).

(3) There exists L' in Nl(A“’xA“’) such that L=p(L').

(4) pTI(L) e N (A9xAY).
Proof. (1) => (2). Let L=B;(M). Then L=p(L;(M)) and Ly(M) is a finite
union of the sets of the form (Uv?,Wz%) with U,V,W,Z € R. If we set X=VX
and Y=URW, then p(UV?,Wz¥)=9xyz%.
(2) => (3). Since Nl(waAw) is clearly closed under union, it sufficies

to show that (2) implies (3) for a set of the form L=YXYZ¥ with X,Y,Z ¢

R. Let M, be an automaton such that Ll(M+)=YZw and M_ be an automaton:

such that Ll(M_)=(XR)w. If we choose S=D_xD_, then the biautomaton M=(M_
»M_sS) has the property that Ll(M)=((XR)“’,YZ“) and Lip(Ll(M)).
(3) => (1). Let M:(M__,M+,S) be a biautomaton such that L=p(L1(M)). We
define a biautomaton M' as follows:

Q'_=Q',=D'_=D',=Q_uQ,u{$}, where $§ is a new state,

F'_=F_, F',=F,,

§'=5u{(q.q)| q € Q_uQ};

For p,q € Q_uQ, and a € A, (p,a,q) € T'_ if (psasq) € T_ or (q,a,p)
€ T, or there exists r € Q_ such that (rsasq) € T_ and (r,p) € S. For p
€ Q_uQ, and a € A, if such q does not exist in Q_uQ,» then (p,a,$) is in
T'_. And ($,2,%) is in T'_ for each a in A. In the same way (p,a,q) €
T', if (p,a,q) € T, or (qsasp) € T_ or there exists r € Q, such that
(r,a,q) € T, and (p,r) € S. If such q does not exist, then (p,a,$) is in
T',. And ($,a,$) is in T',. |
It is easily seen that if Q,nQ_=%, the automaton M' is bilateral and
L=BI(M'). (This process of making biautomaton bilateral is called bilat-
eralization.) Therefore L is in BRj.
(1) <=> (4), Evident. OO
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Theorem 2. For L ¢ YAY, the following conditions are equivalent.
(1) L e BR,.
(2) L is a finite union of sets of the form 2XYZ? where X,Y,Z € R.
(3) There exists L' in Hz(waAw) such that L=p(L").
() ol e N,(AYxA%), |
Proof. (1) => (2). Let L=B,(M). Then L=p(L,(1)) and L,(M) is a finite
union of the sets of the form (UVa,WZa) with U,V,W,Z € R. If we set X=V%
and Y=URW, then p(UV3,wz?)=3xyz3.
(2) =>(3). Since NZ(A“’XA“’) is clearly closed under union, it sufficies
to‘show that (2) implies (3) for a set of the form L=2XYZ? with X,Y,Z €
R. Let M, be an automaton such that LZ(M+)=YZ"’1 and M_ be an automaton
such that LZ(M_,):(XR)a. If we choose S=D_xD_, then the biautomaton M=(M_
,M,,S) has the property that L,(M)=((x®)%,Y2%) and L=p(L,(M)).
(3) =>(1). By bilateralization which preserves the condition C,.
(1) <=> (4). Evident. [0

Theorem 3. For L ¢ YA?, the following conditions are equivalent.

(1) L e BH3. _

(2) L is of the form YAXAY where X € R.

(3) There exists L' in Hj(AwXA“’) such that L=p(L').

(4) p7H(L) e Ny(a¥xa%).
Proof. (1) => (2). Let L=B3(M). Then L=p(L3(M)) and L3(M) is of the
form (UAY,VAY) with U,V € R. If we set X=URV »then p(UAY,vAY)= YaxaY,
(2) => (1). Let L=YAXAY with X € R. Let M=(Q,A,T,D,F) be a finite
automaton such that X=L_(M). Then evidently we have XA("=L3(M). From M we
can easily construct three types of biautomata M;, M, and M4 such that:

Ly (M;)=(AY,A%x4"),

Ly(M,)=(A*xRa%,4%),

Ly(M3)={(fx,gy) | ng € X, x and y € AY}.
We can construct a biautomaton M' from Mis M, and M4 such that
LS(M')=Ui=31 L3(M;). It is easily seen that M' is bilateral and
L=p(L5(M")).
(2) => (3). Let L=YAXAY with X € R. Let M, be an automaton such that
L3(M+):XA“’ and M_ be an automaton such that L3(M_):A°’. If we choose S=D_
xD,, then the biautomaton M=(M_,M,,S) has the property that L3(M)=(Aw,
XAY) and L=p(L3(M)).
(3) => (2). Along the same line as done in (1) => (2).
(1) <=> (4). Evident. {J
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Theorem 4. For L © YAY, the following conditions are equivalent.

(1) L e BN4.

(2) L is of the form 2X? where X € R.

Proof. (1) => (2). Let L=B4(M) and M=(M_,M,,S). Then L=p(L4(M)). Put

Y=(A*-L, (M_))R(A* -1, (1,))u (L, (M_))R(A* -1, (M, ) ) u(A*-L, (M_))RL, (M,)
and X=A*-A*YA*. We will prove that L=2X2. Notice that C(X)=X where C(X)
is the set of subwords occurring in X. Let z € L, then z can be written
as ny such that x € L4(M-) and y € L4(M+). The acceptance condtion Cy
implies that x[n] e L,(M_) and y[m] e L, (M,) for all n and m. Therefore
for all n and m, x[n]Ry[m] € (L*(M*))R(L*(M+)). This implies that
x[n]Ry[m] ¢ A*YA* since M is bilateral. Thus we have x[n]Ry[m] € X=C(X)
for all n and m. Therefore z=ny is in 2X2, Conversely, let z be in 2X2,
There exists (x,y) € A®xA% such that z=x"y and x[nlRy[m] € ¢(X)=X for
all n and m. Since x[n]Ry[m] ¢ A*YA*, x[n] € Ly(M_) and y[m] € L,(M,)
for all n and m. Thus x is in L4(M_) and y is in L4(M+). Therefore z is
in B,(M). ' .
(2) => (1). Let X be in R, then there exists a (deterministic) finite
automaton M=(Q,A,T,{d},F) such that C(X)=L,(M). From M ,we can easily
construct finite automata M_ and M, such that (L*(M_))RL*(M+)=C(X) with

M_=(Q_,A,T_,D_,F_) and
M,=(Q,,A,T,,D,,F,).
Set M'=(M_,M,,D_xD,). We will show that L4(M')=p-1(axa).

Let (x,y) be in L,(M'). Then x is in L,(M_) and y is in L,(M,).
Therefore x[n] is in L (M_) for all n and y[m] is in L,(M,) for all m.
Thus we have x[nl®y[m] is in (L*(M_))RL*(M+)=C(X) for all n and m.
Therefore p(x,y) is in 2xX2,
Conversely, if p(x,y) is in 2X2 and let (x',y") be a bi-word such that
(x,y)~(x',y") with (x'[n])Ry'[m] € C(X) for all n and m. Suppose there
there exists £ in A* such that yéfy' and x'=f®x. The other case is
symmetric. '

For all m large enough, we have f < y[m]. Put y[ml=fy'[m-|£]]. (For
f in A*, |f| denotes the length of f.) Since x[n]Ry[m]=x[n]Rfy'[m-
£ 11=CER%0n )Ry m-1£1T=(x'[n+ 1£11)Ry' [m-1£]]1 € C(X) for all n and m
large enough. This implies x[n]Ry[m] is in C(X) for all n and m. There-
fore x[n] is in L,(M_) for all n and y[m] is in L,(M;) for all m.
Therefore (X,y) is in L4(M') and the inclusion p~1(axa) c L4(M') has

been demonstrated. [J

Remark. The class BN, has been studied under the name of sofic systems

by Weiss et al. [2,7].
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4. Characterization of _Iigi'_s_

Theorem 5 (Nivat and Perrin [4]). For L « “AY, the following conditionms
are equivalent.

(1) L e BD;.

(2) L is of the form ®X® where X € R.
Proof. (2) => (1). Let X be in R, then there exists a deterministic
finite automaton M=(Q,A,T,{d},F) such that X=L,(M). Remark that if M is
deterministic, then (L*(M))e=L1(M). For each q in Q, we can make a
deterministic automaton Mq_=(Qq_,A,Tq_,{dq_},Fq_) such that

LM )={£X | d 5 q in ¥ L.
And we set Mq+=(Q,A,T,{q},F). Then the biautomaton

Mq=(Mq_,Mq+,{(dq_,q)})

is strictly deterministic. The automaton M'=y is a deterministic

qeQ Mg
biautomaton. We will show that Ll(M')=p_l(eXe).

Let (x,y) be in Ll(M'). There exists q in Q such that (x,y) is in
Ll(Mq)' Then x is in Ll(Mq_) and y is in Ll(Mq+)‘ Since these automata
are deterministic, we have Ll(Mq—) =L*(Mq_)e and Ll(Mq-(-) = L*(Mq+)e.
There also exist strictly increasing sequences (fn) and (g ) such that
x=sup(fn), y=sup(g_ ) with

—R - S :

d fn>qandq gn>tnforth.nF.

eye

Then we have f%gn € X. Therefore p(x,y) is in
Conversely, if p(x,y) is in €X®, and let (f,»8,) be a strictly increas-
ing sequence of bi-words such that (x,y)~(x',y') with x'=sup(f)) »
y'=sup(gn), and f%gn € X for all n., Suppose there exists f in A* such
that y=fy' and x'=fRx. The other case is symmetric.

For all n large enough, we have f < f,. Put £ =fh . Since
hﬁngn:fﬁgn € X for all n, there exists a state q in Q such that there
hold:

d ——h§-> q and q —-ngﬂ—> t, €F
for infinitely many n. Thus we have x=sup(hn) € L*(Mq-)e:Ll(Mq—) and
y=sup(ngn) € L*(Mq+)e:L1(Mq+)’ Therefore (x,y) is in Ll(Mq) and the
inclusion p_l(eXe) c Ll(M') has been demonstrated.

(1) => (2). Let M be a bilateral deterministic automaton such that
L=B;(M). Then M=UI]-_1=1 M; and each M; is a strictly deteministic biautoma-
ton. We will prove that L=°%X® where
x=ul_; (L DR ).
In fact we have
L=ul_; (L 01 DRy,
=ul_y (L (i )R,y )8

10
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Thus L © ©X® holds. Conversely, let z be in ©X®. There exists an in-
R
n
z=sup(fn)Rsup(gnL By choosing an appropriate subsequence, we can as-

sume fggn € (L*(Mi_))RL*(Mi+). Then we have sup(f_) € Ll(Mi-) and

sup(gn) € Ll(Mi+).Thus z is in Bl(M).G

creasing sequence of bi-words (fn,gn) such that £ gn € X and

Theorem 6. For L c ¥AY
(1) L e BD,.

(2) L is a finite union of sets of the form ?XYZ? where X,Y,Z € R.
(3) There exists L' in Dz(waAw) such that L=p(L").

(4) p H(L) € D,(a%xA%),

Proof. (1) => (2). Let L=B2(M).Then L=p(L2(M)) and M is a finite union

s the following conditions are equivalent.

of strictly deteministic biautomata. For each component automaton M;,
L,(M;) is a finite union of the sets of the form (uv3,wz?) with U,V,W,Z
€ R. If we set X=V® and Y=URW, then p(UV3,Wz2)=2xYZ2.

(2) =>(3). Since Dz(waAw) is clearly closed under union, it sufficies
to show that (2) implies (3) for a set of the form L=2XYZ? with X,Y,Z €
R. Let M, be a deterministic automaton such that LZ(M+)=YZa and M_ be a
deterministic automaton such that LZ(M_)=(XR)a. If we choose S={(d_
,d+)}, then the biautomaton M=(M_,M,,S) is strictly‘deterministic and
has the property that .

L,(M)=((x})3,722) and L=p(L,y(M)).
(3) => (1). By modification of bilateralization for deterministic autom-
ata as shown below which preserves the condition CZ' Let M=(M_,M+,S) be
a strictly deterministic biautomaton such that L=p(L,(M)). (Strictly
speaking, we must assume that M is deterministic biautomaton which is a
finite union of strict ones. But the proof is along the same line.)
Without loss of generality we can also assume that the initial state of
M_ has in-degree 0 when M_ is viewed as a directed graph because it can
be easily transformed to satisfy without changing the accepting language
if it does not. The same assumption is also made on M,. For each q in Q_
-{d_}, where d_ is the initial state of M_, we define a biautomaton
Mo =(My oM,
M -=(QsA,T_»{q},F).
To define M , to be deterministic, we make use of subset construction

q
method to simulate finite behaviours of M_ backwardly. Qq+=Q+U{ P|Pis

+’Sq) as follows:

a subset of Q_.},
Dq+:{q}’

F+=Fys

11



194
4, Characterization of _]}l)_ii

Theorem 5 (Nivat and Perrin [4]). For L € “A%, the following conditions
are equivalent.

(1) L € BDy.

(2) L is of the form X® where X € R.

Proof. (2) => (1). Let X be in R, then there exists a deterministic

finite automaton M=(Q,A,T,{d},F) such that X=L,(M). Remark that if M is

deterministic, then (L,(M))®=L;(M). For each q in Q, we can make a

deterministic automaton Mq_=(Qq_,A,Tq_,{dq_},Fq_)\ such that
L*(Mq_)={fR | 4 —=f> q in M 1.

And we set Mq+=(Q,A,T,{q},F). Then the biautomaton
Mq=(Mq_.Mq+,{(dq_,q)})

is strictly deterministic. The automaton M'=y is a deterministic

qeQ Mg
biautomaton. We will show that Ll(M')=p-1(eXe).
Let (x,y) be in L;(M'). There exists q in Q such that (x,y) is in
Ll(Mq)‘ Then x is in Ll(Mq_) and y is in Ll(Mq+). Since these automata
- e - e
q_) —L*(Mq_) and Ll(Mq+) = L*(Mq_,_) .

There also exist strictly increasing sequences (f ) and (g, ) such that

are deterministic, we have Ll(M

x=sup(fn), y=sup(gn) with
d *—fRn—> q and q ~-&n-> t, for t in F.
eXe

Then we have f%gn € X. Therefore p(x,y) is in
Conversely, if p(x,y) is in ©X%, and let (f,s8,) be a strictly increas-

ing sequence of bi-words such that (x,y)~(x',y') with x'=sup(f ) .

R
n

that y=fy' and x'=fR%. The other case is symmetric.

y'=sup(g ). and f g € X for all n. Suppose there exists f in A* such
For all n large enough, we have f < fn' Put fn=fhn. Since
hﬁngn=f§gn € X for alln, there exists a state q in Q such that there
hold: ,
d -—h§—> q and q —-ngn—> t, €F
for infinitely many n. Thus we have x=sup(h_ ) € L*(Mq_)e=L1(Mq_) and
y:sup(ngn) € L*(Mq+)e:Ll(Mq+). Therefore (x,y) is in Ll(Mq) and the
inclusion p—l(eXe) c Ll(M') has been demonstrated.
(1) => (2). Let M be a bilateral deterministic automaton such that
L=B;(M). Then M:UIilzl M; and each M; is a strictly deteministic biautoma-
ton. We will prove that L=°X® where
-, R
X=uiop (LM )7L (ML),
In fact we have
-0 R
L-Ui.__l (Ll(Mi-)) LléMi"‘)
-, e e
=uj=q (LM D)™, ,)) .

10



L=p(L5(M)).
(3) => (2). Along the same line as domne in (1) => (2).
(1) <=> (4). Evident. 0

Corollary 2. BN3 BD3. ,
Proof. From Theorem 3 and Theorem 7. O

Theorem 8. For L < “YA?, the following con&itions are equivaleﬁt.

(1) L e BD,. }

(2) L is of the form 2X? where X € R.
Proof. (1) => (2). Along the same line as in the proof of Theoremr 4, Let
L=B,(M). Then L=p(L,(M)) and M is a finite union of strictly determinis-
tic’ automata. For each component automaton Mis let Y =

(A*-1, (M, )R -1, (M) u(L, (u, _))R(A*-L, (v, s -Lo(M;_)RL ().

Let Y=U?:1Yi and X=A*-A*YA*.We can easily shown that L—aXa.
(2) => (1). Along the same line as in the proof of Theorem 4. Let X be
in R, then there exists a deterministic finite automaton M=(Q,A,T, {d} F)
such that C(X)=L, (M). For each q in Q, we can make a deterministic
 automaton q_=(Q LA, Tq_,{dq_},Fq_) such that

L*(Mq_)={fR | 4 —f-> q in M }.
And we set Mq+=(Q,A,‘I‘,{q},F). Then the biautomaton

IO NS (C NS

is strictly deterministic. The automaton M'=u is a deterministic

Yqeq M
biautomaton. We can easily show that L (M') =p l(axa) by using the fact
that C(X)=Ugeq (Lu(Mg N L), O
Corollary 3. BN,=BD, .

Proof. From Theorem 4 and Theorem 8. [J
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