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ON Hpy WELL POSEDNESS OF THE CAUCHY PROBLEM
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Wataru Ichinose  ( — ;ﬁ%a 5%]\)
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0. Introduction

In the present papér wé consider the Cauchy problem for the

équation

(0.1)  Lu(x,t) = (i3, + 1A + 23 by(x)a, + c(x))u(x,t) = F(x,t)
J=1 J '
in Rﬁ x [0,T] with initial data uo(x) at t = 0, where 1

is a real constant, and bj(x), c(x) are c® -functions whose
derivatives of any order are all bounded.

If 1 is a non-zero constant, the above equation (0.1) is
the typical equation.of non-kowalewskian type which is not para- -
bolic, Hence, the study.of the equation (0.1) is important for
"the study of the equations of general non-kowalewskian type.

The Cauchy problem for (0.1) Was.studied in the frame of
1.2 space by J, Takeuchi [8] and S. Mizohata [7]. On the other
hand, in the present paper we study in the frame of Hp space.
We note that studying (0,1) in the frame of Hy space corresponds
to studying équaﬁions of kowalewskian type in the frame of 8
space; where £ 1is the usual space of c® —functions.

Tn section 1 we state a sufficient condition (Theorem 1) and

a necessary condltion (Theorem 2) for equation (0.1) to be well



posed in Hg  space, and some Remarks. Theorem 1 and Theorem

2 will be proved in section 2 and section 3, respectively.

1. Theorems

For real s let H be the Sobolev space with the usual

AN

seR s

il

norm | ‘be the Fréchet space with

-|[S and let Hg

semi-norms |

ls (s = 0,41,+2,+++). We say that the equation
(0.1) is well posed in Hg space on the interval [0,T] (T %
0y, if for any uy(x) € Hy and f(x,t) € fg([o,T];HM)

there exists a unique selution u(x,t) € f:g([O,T];Ha5)v of (O.i)
~and moreover for any real constant s there exist a real
constant é’ and a constant Cq S,(T) >0 suéh that the energy

5

inequality

‘ t
[HuCest) |1 S CS,S»(T){I lugC) 1 +./; [eCe,8)[[ a6}

holds. ‘Here, for Banach or Fréchet space F g(x,t) € 68([0,
T];F) means that the mapping : [0,T] a‘t —> g(+,t) € F is
continuous in the topology of F.v

Our aim is to prove the following two theorems. In the

first theorem we consider the equation (0.1) with 1 = 1.

Theorem 1 ([2]). We assume that there exist constants M

and N such that

‘ 5 o
1.1 sup 2= Re b,(x + 2 4
an e 1R A 5 (x + 200)0d0]

< M log(l + p) + N

hods for any positive p, where 'Sm—1 denotes the unit sphere
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m

in R°. Then, we obtain

(1) The case m = 1. For any real T % 0 the equation

(0.1) with 1 =1 4is well posed in .H, space on [0,T].

(ii) The case m ; 2. If besides (1.1) we assume the
following (1.2) and (1.3), for any real T ¥ 0 the equation

(0.1) with 1 =1 4is well posed in H g space on [0,T].

(1.2) J‘U-Pm- ZI:L f b (X + 20w) |do < 0o

XéR

holds fdr any multi-index ¢ which is not zero.

(1.3) S4p IZ; ﬁ 5, Re b, - o Re b )dx; A dx,|
seJ % i R J
<

holds, where 3 is the family of all triangles 1in R™ and

jé (---)dxi,A dxj denotes the integral of two form over S.
Next, we give a necessary condition.

Theorem 2 ([3]). Assume that there exists a real constant

T ¥ 0 such that for any uo(x)é H g ~there exist a unique

solution u(x,t) € 22([0,T];Ha,) of the equation

(0.1)" Lu(x,t) = 0, wu(x,0) uo(x).

Then, we can find constants M and N such that

o m 0
(1.4) Fup Z_: Re b.(x + 2106w)w.ds
x€R™, wes™1 lJ"l fé J 32|

< M log(l+ p) + N

‘holds for any positive p.

Remark 1. If T = 1, the inequality (1.4) coincides with (1.1).
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So, If m = 1, the condition (1.1) is necessary ahd sufficient
for the equation (0.1) with 1 = 1 to be well posed in H&,space

on [0,T] for any T.

Remark 2. When <t -equals zero, the equation (0.1) is -
kowalewskian. Then, we remark that Theorem 2 gives the so-

called Lax-Mizohata theorem (Lax [5], Mizohata [6]).

2. Proof of Theorem 1

We use the calculations of the new type with respect to the

pseudo-differential operators for the proof of Theorem 1.

%
0,0

for any multi-indices o and B we have

S denotes the set of C% -functions p(x,&) such that

13308 p(x,8)| <0 (1 + [gD*

for positive constahts We define the pseudo-differential

C .
a,B
operator P = p(X,DX) with the symbol o(P)(x,8) = p(x,g) €

)
0,0 PY

pp(x) = e h(x,0)f(0)ae (ag = (2m)Mag )
for y(x) € JQ, where $(g) denotes the Fourier transform
fe’ix'gw(x)dx and ,J7 denotes the Schwartz space of rapidly
decreasing functions.
We first state the Calderén—Vaillancdurt.theorem, which is
essentially used for the proof bf Theorems 1 and 2.

Calderén—Vaillaanurt theorem ([1] or [4]). If p(x,g)

0
0,0

. belongs to S » for any real s we have
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e (x,D vl |

<

< 00 jof e, S92 1980 PO [ A+ENTY v,

X, &
with a constant C independent of p(x,£) and 1y, where

L4 = 2[m/2 + 1]. For real r [r] denotes the largest integef

0
not greater than r.
First, we note that the assumption (1.1) is equivalent to

the assumption that the inequality

o | 1 |
(2.1) fup |5 jﬁ J{Re b, dx, |
x€R™, wes™ 1 2 T Ly xioon J o d

< M log(l + p) + N

with the same constants M and N holds for any positive o,

where (e++) dx, means curvilinear integral along the
Lx,x+2pw J « :
. : . m .
straight line Lx,x+2pw from a point x € R to a point x +
2ow € R,

We shall find the solution u(x,t) of (0.1) in the form
u(x,t) = k(x,t;DX)v(x,t) = Kv(x,t)
as in [7]. We define k(x,t;g) as the solution of
(at + 2 fgi gjaxj + j=i bj(x)gj)k(x,t;g) =0

with k(x,03£) = 1, that -is,

exp { % fﬁ

: . 23
(2.2) k(x,t;8) 7 by (x)ax, }

X,X—2t§
exp {¢(x,t5€)}.

Then, the Cauchy problem for the equation (0.1) with initial

data uo(x)' at t = 0 Dbecomes



(2.3) K(iat + ANv(x,t) + Klv(x,t) = f(x,t)

with v(x,0) = uO(X), where K, = kl(x,t;DX) and

(2.4) kl(X,t;E) = (A + %;tﬁ(x)ax. + c(x))k(x,t;8).
J
We can see by (2.1) that the assumption (1.1) shows

(2.5) |Re ¢(x,t38)] <M log(l + T|g|) + N (t € [0,T]).
We can also prové that if o + B ¥ O,

0B L x s o]
(2.6) ;?2 lagax o(x,t58) | < Ca,B t (t € R)

is valid for a positive constant For, if m = 1, we have

C .
0B
¢(x,t38) = F(x - 2tg) - F(x) by using the function F(x) such
that %g(x) = bl(x)/2. In the case m > 2 we can also easily

prove it by the assumption (1.2). We set
k(X,t;E)‘= exp {—¢(X:t§£)}-

Then, the ihequalities'(2.5) and (2.6) imply that k(x,t;g)

~ M
and k(x,t;&) belong to SO 0"
>
~ . -M
Remark 3. In general, k(x,t;Z) does not belong to S0.0°
2

In more detail, we can prove from the form of ¢(x,t;g) that

M -M
if k(x,t; S esp. S
1 ’ (x,038) € Sy (resp. S5 )

0,0)’

and 'ﬁ(x,t;g) € SSMO (resp.
. >

S M must be zero.

Remark 3 states that we need the following calculations of

the new type.

Lemma. We suppose the same assumptions in Theorem 1. Set
fa'd
py(x,t58) = ry(x,8)k(x,t38) and p,(x,t58) = r (x,8)k(x,t;8)

for any rj(X,g) € SOO0 (j = 1,2). Then, if we define p(x,t;g)
>



by the single symbol c(Pl 0 Pg)(x,t;g) of the product of
pseudo-differential operators P, o P, (that is, p(x,t;DX) =

P. oP see [4]), p(x,t;&) belongs to S 0. and has the

1 2° 0,0

estimates for & = 0,1,2,+.-

> < sup l8q8§ p(x,t38) |
lal<ts [8lst x5t 2

< CQ’(T) ’H‘ Z: sup l :323}% rj(x, E)l
J=1 Ja|z2”,|B|22” x,¢
for t € [0,T], where &~ =2+ 2M + 2[m/2 + 1] and constants

CQ(T) are independent of rj(x,g).
Proof. Following [4], p(x,t;&) 1s written by

(2.7) p(x,tsi)

H

0~ J e Mp (x,t584n)p, (x+y,t;€)dydn

—ive
0- Jf ™ ey (x,g4n)r, (x4y,€)

x exp —{¢(x,t38 +n) - ¢(x+y,t;£)} dydn.
If we apply the Stokes theorem, we get from (2.2)

2 Re {¢(x,t38+n) - ¢(x+y,t;£)}

X,x=2t(§ +n) x+y,x+y-2t¢g

w +ﬂAldw

- + ‘ e Cdw )
}LX+y,x ? /Lx—Ztg,x+y—2tg . 17A2 v

Ly—otE,x=2t(£ +1)

where ==_%Z Re bj(x) dxj, dw dmplies the exterior derivative

of w, Al is the triangles whose boundary consists of the

straight lines LX,X_2t(g+n)’ LX—2t(g+n),x—2tg and Lx—2tg,x’

and also the boundary of A, consists of Lx,x—2t£, Lx-2tg,x+y—2t£’
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Lgty-ote,x+y 204 Dypyy x- We note that 1f m = 1, du vanlghes.
Hence, from the assumption (1.1) ( or (2.1)) and moreover in the

case m > 2 from the assumption (1.3) we obtain

(2.8)  |Re {¢(x,t38 + n) - olx + y,t58)}|
<M log(l + T|n|) + 2M log(l + |y|) + 3N + C

for t € [0,T], where C is a positivé constant.
If for (2.7) we use the integration by parts with respect
to the variables y and n, by (2.6) and (2.8) we can complete

the proof of Lemma. QR.E.D.
Now, as in (2.7) we can see by Taylor expansion
N :
o(K o K)(x,t;¢&)

1
1 ~1yene o
=1+7z 15’21 o ae o S ety MEga (kb5 ebon)

X (aik)(X'Py,t;i) dy&‘n:
where K = k(x,t;DX). Noting (2.6), we can prove in the similar

way to the proof of the above Lemma that
N .
o(K o K)(x,t3&) = 1 + ts(x,t3¢),

where s(x,t;g) Dbelongs to SO?O’ By the Caiderén—Vaillancourt
theorem we can see that I + ts(x,t;DX) is a L2 bounded operator.
I is an identity map.. So, it follows that if T1 (0 < T1 < T)
is sufficieﬁty small, there exists a inverée operator B(t) df
I+ ts(x,t;DX) as the mapping from L2 space to L2 space.
Therefore, the inverse operator K"1 of K as the mapping

from L2 space to L2 space exists and has the form

-1

(2.9) K1 =3B) o K.
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Applying (2.9) to (2.3), we have

(2.3) (13, + A) + B(t) o K o K v(x,t) = B(t) o Kf(x,t).
Moreover, noting (2.4) and (2.6), we can apply Lemma in this
section to K o K;. That is, it follows that B(t) o X o K,

is a L2 bounded operator for t € [O,le. Therefore, 1t is
easily seen in.the usual way that for any uo(x) € Hyp

and f(x,t) € 52([O,Ti];Ha,) there exists a unique solution
v(x,t) € fg([O,Ti];LZ) of (2.3)7 ( or (2.3)) with the initial

data uo(x) at t =0 and we have the energy inequalilty

) t .
[vCeat) ] < CClugCO ] + f [18C,8) ]y a8

| =1

Here, we

lo
belongs to S 0 and
g 0,0

for a positive constant C, where |]|-

used the fact that k(x,t;E)(1 + |&|°
the Calderdn-Vaillancourt theorem for the term Kf(x,t) = k(x,t;DX)
A_M(AMf)(x,t), where A is the pseudo-differential operator

2)1/2

" with the symbol (1 + |&] . By wu(x,t) = Kv(x,t) we obtain

, t
(2.10) [l 6]y < cCllugCO 1]+ o 112,001y de)
for t € [O,le with another constant C.
For any real s Asu(x,t) satisfies the similar equation to

(0.1), where wu(x,t) 1is the solution of (0.1) determined above.’

Hence, in the similar way to the proof of (2.10) we get

: . -t
(2.11) HuCut) gy £ S ugC ]l + j; [1E£C50) | |4 98)
for t € [0,T;] with a constant C,. Noting that T, is inde-
péndént'of thé‘choicé of thé initial surface, we can complete

the proof.
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Remark 4. We can see from (2.11) that if M in (1.1) equals
zero, the solution u(x,t) has no loss of regularity on [0,T]
for any T. On thé Othér hand; in Theorem 1 we have only to
assume (l;l) and (1.2) fof this case (M = 0), because the Stokes
theorem shows that (1.3) follows from (1.1). This is one of

the results in [7].

3. Proof of Theorem 2

In this sectlon we shall prove Theorem 2 by the energy method
as in [6]. In [6] the so-called micrd—localizations were fun-
damentally used. .But, in the present paper we use the essential-
ly different localizations. Réghly speaking, we localize the
solution of (0.1)” along the classical trajectory for the
Hamiltonian -tA.

The symbols w(x,t;é) of localizing (pseudo-differential)
operatos W are defined by the solution of "equation of motion

for the Hamilton function -rlglg "
(3.1) o W(x,638) = (w(x,638), ~t|£]°),

where for Cl-funCtions f(x,g) and g(x,g) {f,g} denotes the

Poisson bracket 5%% (aX £y 9, f3, g). Then, for the
3 .

)
solution wu(x,t) of (0.1)” we can easily get by (3.1)

(3.2) L(Wu)(x,t) = (A W) (x,53D Ju + [ %ijaxj+ c, Wlu,

 where c(AXw(x,t;DX)) = .%Z(ai w)(x,t3g)and [e,+] dimplies
the commutator of operators. This equality (3.2) will be used

fundamentally for the proof of Thedrem 2.

10



We prove by,contradiction.. Then, we may assume without

loss of generality

(A.1) There exists a positive T such that for any Uy (x) € Hy
" there exists a unique solution wu(x,t) € Eg([O,T];HDo) of
(0.1)%

(A.2) The inequality (1.4) does not hold for any large constants

M and N.

Since Eg([O,T];Ha,)' is a Fréchet space with semi-norms

. max
Oépéi

- the closed gragh theorem we can find a non-negative integer g

||h(-,t)][S (s = 0,41,%2,+++), by the assumption (A.1) and

and a positive constant C(T) such that for all solutions u(x,t)

of (0.1)"
(3.3) [TuCe,t) [ < ST [ |ug(-) ][4

for t € [0,T].

For the above q we take a constant M such that

(3.4) M > % + 2[% + 1] + 3q

and fix it. TFor this M we can take from the assumption (A.2)

() gl (k) ¢ gml

sequences and > 0 (k = 1,2,000)

Py
such that

k
I%f«% Re bj(x(k>+ 2T9w(k?)w§k)d9| > M log(l + o) + k.

Then, it 1s easy to see that tends to infinity as k tends

Pk
to infinity. Also, noting that
5 [° L=/

9y Re bj(x + 2Tew)mjd6 e Re b, dxj

J X,x+21pw
for T ¥ 0, we can assume

11
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.pk___; oo as k —>00 ,

(3.5) l-gpk b(X(k)+ 2T6w(k);m(k))d6

v

M log(1l + p) + Kk,
t o ,
(k : .
L oo™ 2060 50% a0 5 0 (5 € [0,0,D)

by taking another sequences, if necessary, where we set
(3.6) b(x3E) = - 2=Re b, (x)E,.

_ J J 7
Though the proof is easy, we omit it. We fix these sequences.

Let h(x) be the c® _function which takes the value 1 in

the set {x; |x| < 1/4}  and takes the value 0 in {x; |x| >

1/2}. Let & be a sufficiently sméll.positive constant such

that

(3.7) M>Z+2[7+ 1]+ (3+ 8)

and set by using the above sequence oy
n = n(k) = p£+6 .

Now we define wk(x,t;g) (k = 1,2,-++) by the solution of (3.1)
with the initial value pE/2h(pk(x - X(k)))h(pi(g,— nw(thn)
at t = 0, by using the above sequences. That is,

m/2 .x(k)—

(3.8) w (x,638) = p 216£))h(p2(g - nw®))/n).

h(p, (x -

We set for any multi-indices o and B8

(3.8)7 w2 B0xt58) = o2 a3 () (afm) (&) ()

x=pk(x—x -2ttg),
£=pi(£—nw(k))/n
We note that W&’O(X,t;g) =vwk(x;t;g).

Next, we shall define the initial value wk(x) (k = 1,2,°°°)

12



of the equation (0.1)” corresponding to the localizing operétor
W, = wk(x,t3DX) as follows. Take a C%®-function y(x) such
that = y(0) = 2 and the support of '$(£) is ihcluded in the set
{g; h(g) = 1}. We define

ix(k)-

&g - anG)

. A -
(3.9) b (E) = e
~and let .uk(x,t) be the solution of (0.1)” with the initial

value wk(x) at t = 0. Then, we can easily have for k = 1,2,

(3.10) | |w,ou, (e,t) h(-) 0
] 12 I

and also have from (3.3) and (3.9)

(3.11) [y (+,0)]] < o (mn? (0 = 539

for t € [0,T] with a positive constant Cl(T) independent
of k.
Hereafter, we consider the variable € only in the interval

[O,pk/n]. Of course, we assume that k 1is large enough so that

“pk/n = p;(2+8) < T. Now, take a positive integer s so that

(3.12) s[S+ 27 > I 2

5 + 202+ 17 + (3 + 8)(q + 1)

2

holds and fix it. Set by the localized solution wﬁ’suk(x,t)

(3.13) (t) = X (p3/m)tClerBl+1)/2T yosBy (L by,
00 = TGl 1P (01

Then, we bbtain

Proposition 1. We have

v

pm/2 + 2[m/2 + 1] + (3 + §)q

(3.14) 0, (t) < Cy oy

for t € [O,pk/n], where C, 1is a constant independent of k.

13
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Proposition 2. For large k we get

(3.15) o (p/m) 20,1+ o)

with a constant Cl‘> 0 independent of k.

Since we have determined constant § >0 so that (3.7)
holds, (3.14) and (3.15) is not compatible for large k.

Thus, we can prové Theorem 2.

Proof of Proposition 1. If we apply the Calderdn-Vaillancourt

theorem to the term Wg’suk(x,t), we can see by (3.11) that

(3.16) |IW§’BHK(°»t)|! < Ca,g pﬁ/Z + 2[m/2 + 11 + (3 + ¢§)g

for t € [O,pk/n], which complete the proof. Here, we used
2, _ =(1+¢) e Tn -
Q.E.D.

Proof of Proposition 2. We first note from (3.2) that

(3.18)  L(Wu)(x,t)

= fk(x,t)‘

{%;[bj(x)axj +e(x), Wl + (am)(x,83D,) Ju, (x,t).

Now, it is easily seen from (3.8) for the suppert supp w%*s(.,
t;+) of the function Wi’gﬁx,t;g) with respect to the variables
x and & that we havé for t E‘[O,pk/n]

(3.19)  supp wﬁ‘s(-,t;-)

Cix,e)s |x - (x4 onee )y <2/

(k)|

|£/n - < 1/(2912{)}-

14
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ByvUSing_(3.19)_ahd (3.11) wé get the estimates

(3.20) Il{bj(xi(% an) - bj(x(k)+ 2nTtw(k);nw§k))}Wkuk(.;t)I'
< const. gi | [W,u, (+,t) || + const.

for ¢t E'Io,pk/n], wheré const. means a positive constant
independent of k and hereafter we shall use the symbol

const. in the same sense. We omit the detail proof of (3.20).
Hence, from (3.18) we can easily have

(3.21) %, %€»||wkuk(.,t)[|2

1Y

{b(k(k)+ 2ﬁTtw(k);nw(k))‘— const. (1 +,ﬁl)}
k

X

2
[[Weu Cost) |17 = [ Cent) ] x| Wu, Cout) ]
- const. ||Wkuk(.,t)[[‘
for t € [0,p, /n].

We shall estimate |[|f, (+,t)[|. We first note that if

lo + B8] >s + 1 for ‘s defined so that (3.12) holds,
n 3, \[(|a + + 1)/2] R
(3:22) 3 (o/m) o+ 8] | e Bu (L t) ||

< C <
= G’B o

are obtained for any k and t € [O,pk/n] from (3.16). Now,

it is easy to see.that
(3.23) [ ](a0) (x,63D duy (+,8) ]|

ceomst. & ST (pd/m) | (W2 Bu (4,6 ).
Pk |atg]=2
Next, following [4], the symbol % O(Ebj(x)BX , Wk])(x,tgg)
J
is written by

el

. | ; 1,1y Y
b. w ; - > L = . £,
J(x)BXj k(x,t,i) 1<|Y|<v YT T (abe)(agw})EJ +



+ " the remainder term "
for any v =1,2,--+. Here, though the detail proof is omitted,
if we take a positive integer p such that: (1 + &§)(p + 1) >

m/2 + 4fm/2 + 1] + (3 + 8)(g + 1) and we use

= %:;j a%é-,— (-2Ttpk)|°‘|(pi/n)lslwﬁ’s(x,tsi)
at+B=y ; :

and (3.17), we can get

1Ty (x)ay 5 W Tuy (,6)]]

J
' 2 +
< const. - % pk(pk/n)la B‘llWﬁ’Bukb,t)ll
Pk 1<|a+B|<p+l
+ const.
for t € [O,pk/n]. Similarly, we can estimate ||[c(x), Wk]uk

(+,t)||. Hence, noting (3.22), we obtain together with (3.23)
(3.24) £, (e58)]| < const. 2 5. (t) + const.,
which shows by (3.21)

(3.25) = |1, (+,8)]]

v

'{b(x(k)+ 2nTtm(k);nw(k)) - const. (1 + gl)}
k

X

[[Wkuk('>t)l| ~ const. éi dk(t) - const..

-d

at
lIWi’Buk(-,t)l[ (1 < Ja + 8] < s) holds. Finally, we obtain

In the same way, the similar inequality to (3.25) for

(3.26) %E Ok(t) 3'{b(x(k)+ 2nrtw(k);nw(k)) - const. (1 + =)}
Z & o)
X Ok(t) - const.

for t € [0,p,/n].

16



—>
h

If we integrate (3.26) with respect. to the yvariable ¢

~from O to pk/n and then we use (3.5) and (3.10), we can

easily:get (3.15). Q.E.D.

Remark 5. In more detail, we can see from the proof of
Theorem 2 that the follbﬁing is necessary in order that there
exists a constant T ¥ 0 such that for any initial data ud(x)
€ Hyp a unique solution u(x,t) € fg([o;T];Ha,) of (0.1)°
exists and the 1nequality (3.3) holds for some q. For anyg
greater than m/2 + 2[m/2‘+ 1] + 3g there exists a constant

N such that the inequality (1.4) holds.
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