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§1.  Introduction.
In the theory of differential equations, Liapunov function is one
of the most important tools to study the stability of equiblium points

and also the global behavior of the solutions. Let us consider, for

example, the equations in a domain § C ]R2,
x = F(x,y)
. ’ in Q {1.1)
y = G(x,y)

where F and G are éupposed to be suitably smooth.

V(x,y) on Q is called the (global) Liapunov function for (1.1)

when %}F + %l;(} L 0 (or>0)on Q. Then, V is decreasing on

every solution of (1.1), in other words, the solutions are tend to flow
into the part of Q where V is smaller. For the gradient systems

and the Hamiltonian systems, we can immadiately find the Liapunov



functiqn, These systems are, however, fairly thin subsets of smooth
vector fields on §, and for other éystems, no general theory for the
construction»of Liapunov functions has presented. We must find a -
Liapunov function case by case with the concrete form of the équation.
One of our abmsisbringipg some improvement in such a weak point in the
theory of Liapunov function: to find a class of equations and to give
the procedure for constructing the;Liapunov function of the class. The

main results for this purpose is given in §2.

§2. Main Results and Some Application.
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Let § be a convex domain in R . We are concerned with

KR
[}

F(x,y) , ,
in Q (2.1)

G(x,y)

g e
1]

where F and G are sufficiently smooth on Q;‘
Further, we assume that (2.1) has al least one equiblium point in Q.

Proposition. If we assume

.a_ga_a.g >0 on Q’ . (2-2)
dy 9x

then the maps (x,F(x,y)) and (G(x,y),y) are diffeomorphic from Q
to the images respectively. And there are unique implicit functions
p(x) of F=0 and q(y) of G = 0. Here, "unique" means that

y = p(x) for all (x,y) satisfying F(x,y) = 0 and x = q(y) foi all
(x,y) satisfying G(x,y) = O.

Proof. We will discuss only about (x,F(x,y)), for similar arguement

can be applied to (G(x,y),y). By the convexity of §, we have

% oF
oy

F(x,a) - F(x,b) =J (x,s)ds,

b



Here, by (2.2), %5 >0on or %g <0 on R, therefore (x,F(x,y))

is an injective map. Also, for all (x,y), the Jacobian of (x,F(x,y))
1 o)

is  det oF ,§§<i = %g # 0. Thus (x,F(x,y)) is the diffeomorphism
ox dy

from §} to the image. Using the implicit function theorem, there
exists p(x) such that F(x,p(x)) = 0. Since (x,F(x,y)) is injective,

we have the uniqueness of the implicit function p(x). /e

For a while, we assume that
Q= (a,b) X (c,d), the domain of p(x) is (a,b) and

(2.3).
the domain of qfy) is (c,d).

This is the simplest but most essential case of our study. In this case,

by the proposition, p and q are unique. Hence

F(x,y) = (v - p(x))-F(x,y)
G(x,y) = (x - Q(Y))'G(x,Y):
. r1 :
where (x,y) =J gz(x,ty+(l—t)p(x))dt
0 Y

SR 18G(
8x,y) = | 3p0exH(1-t)a(y),y)at,
. 0 X v
Here let L(x,y) = xy - I p(s)ds - J qa(t)dt, then we have
_ oL
F(x,y) = Ix i)
_ JL
where ¥8 >0 on Q by (2.2). Thus we get a global Liapunov function
L(x,y) of (2.%).
Mere generally, let M(x,y) be a positive function on - , then

y
Ml(x,y) = | _ M(x,s)ds
Jolx



Mz(x,y)j= fz(y)M(t,Y)dt

can be defined on  and
Ml(,x,y) = (y-p(x))i (x,¥)
M, (x,7) = (x-a(y))M,(x,y)

. > R 1 = =
where Ml M2 > 0 on Q. Thevefore, let f F/M1 and“‘g G/Mz, then

we have F = fM. and G = Now by definiti L M:
1 gM2. ow by definition, vﬁy 3. - M. on
2, hence there exists I(x,y) on § such that EE = Mi and EE»= M.
5%, 7. 9x oy 2
Hence F(x,y) = fe and G(x,y) = g*=,
: ‘ ax oy

where f+*g > O on‘ Q. Thus we obtain a global Liapunov»function L of
(2.1). 1In such way, we can construct many global Liapunov function of
(2.1) under the assumption of (2.3).

Now we return to the general cases where  is merely a convex
domain iniB2. If we take 2°C Q satisfying‘(2.3), the diécussidns
above is still available and we obtain the Liapunov functions on Q7.
And then, after some technical arguements, the Liapunov function on Q7
can be extended to all compact subsets of é. And so, we obtain the
foliowing: |

Theoren. If (2.2) is satisfied, then for all compact set K< Q,
there exisﬁ Liapunov functions of (2.1) on K given by

| F= f*%% and G = .%%7 o

where f°g >0 on K and L 1is the Liapunov function.

on K (2.4)

Especially, the simplest form of L is

< «
L(x,y) = xy - I p(s)ds - Fq(t‘)dt.

The essential part of the proof has given above. We would like to

omit the details of technical arguements, which is not difficult but
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somewhat complicated.

Corollary. Let Q < ]R2 be a convex domain. If %—5--33 >0 on Q,
then £ = F(x,y)
. on
y = 6(x,y)

have no closed orbits in Q except the equiblium points.
Proof. If this equation has a closed‘orbit in ), then there is a
compact set K< 0 containing the closed orbit. By the theorem, we

obtain a Liapunov function L on K given by (2.4). Now, at c¢ & the

. 4aL oL; 2 L 42
am— = —— m—— = 1 ° >
closed Orblf, dtlc flc(ax c) + glc(By‘c) 0. Since f‘c g!c 0,
we have -EEI =-§EI = 0. Therefore c has turned out to be a equiblium
ax'c ay'c
point. /
’ oF . oG y s
Remark 1. If 3 <0 and =—=<0 on 0, then (2.1) is the model of

the competition by two species in theoretical biology. By the corollary,
we can say,"the population of the species competiting another speciés is
° never periodic for time." Furthermore, by the Poincaré-Bendixson's
theorem, we obtain "if a orbit is bounded on the pbsitive direction of
time, then the orbit will converge to one of the equiblium points as

t > ©." This result is inclﬁding that of Ch.l2§6:of Hirsh—Smale[l];
They have proved‘the result only in the géneric case without using

Liapunov function.

Now, following the theorem, let us construct a Liapunov function of

the equations known as the competition model of two species.
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Example. We consider
(al 1% - cly)x

(a, - e x - b y)y

x - b

on [0,%®) X [0,+=),

y
where a5, bi and ci are positive constants . for i = 1,2.
In the equation, x and y are the population of the species
respectively. Let Q = (0,+») X (0,+w), then %§-= -e % < 0 and
%% =-c,y <0 in Q. Here (2.2) is satisfied. Next, we caluclate
p(x) (resp. a(y) ) by F(x,p(x)) = 0 (resp. G(a(y),y) = 0 ).
Immadiately we obtain p(x) = (blx - al)/cl apd:vg(y) = (b2y —aa)/cz,

Therefore the simplest form of the Liapunov function in @ is

2 2
L(x,y) = xy - (brg - a1x)/c1 - (bz%'- azy)/ca

. oL

and x = ~c1x(y - (b1x - a1)/e1) = -c1xe—
. oL’
y —4

-c2y(x = (bay - az)/c2) = -Caygps -

In the previous discussions of this section, we have not only

constructed the Liapunov function but also reduced the system to the form

» oL
alx| [T Oll»|
dt I oL |
v L0 &g Y Can be

V-

where feg > 0 on . Such systems'called 'quasi-gradient" systems.

Furthermofe, if A differential equation on CIR2 is given by

X f h 9L

d _ 9x

A 3L (2.5)
¥ -h g 3y

where f,g >0 in {, then L is a Liapunov function of (2.5). ©Now,

let £ =g 1 and h =0 on 2, then (2.5) is the gradient system,

And so, let £ = g=0 and h=1 on §, then (2.5) is the Hamiltonian

system. Thus, such a class of the equations as (2.5) is the natural
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extension including both systems and having a special Liapunov function.
If we consider more general theorey about Liapunov functions, it must
be important to ask that what kind of the differential equations can

be reduced to the form (2.5).
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