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Liénard Equation
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SUMMARY

The quadratic Liénard equation, that is, the
Lienaré differential equation in which the coefficients
of X and x are polynomials of degree two in x is
studied with respect to its periodic solutions of small
amplitude. The equation can represent a hard or a soft
oscillation ’depending on 'parameter‘ values. The
existence of beriodic solutions is proved and a simple

formula for amplitude is given,
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1, Introduction

The periodic solutions of the Liénard equation

X 1—56}00 +20=0 d)’
or ‘
X +xfoo+x[Feo/x]=0 Q)

have been studied for a long time., In particular, the
van der Pol equation with
Fx)=p (X2~1) ,  (M>0)
g0/x= |

in (2) has been of wide interest. In a system

(3)

represented by this equation , a self-oscillation

develops without a trigger; in other words, the systém

exhibits a ‘soft! oscillation, Another system

represented by (2) with |
fx)=pm (Xt X?+) , (K20,%2>2)
g(x)/x = |

is known to exhibit a ‘hard' oscillation which needs a

“4)

trigger. As is seen in the above examples, it is
usually assumed that fix) = fé—X) and
}(X)=—}(—X) or, in particular,

F=X, | )



The form of ycx) seems to have attracted little
attention because ;(I) is considered to merely modify
(i

As a simple example in

which (X)X §6X)  and the form of () plays an

the 'period of oscillation,

important role, we will present in this paper the
equation (2) with
fo)=v+ax+bx’? )
goxk = |+ pxT X )
that is , the Liénard equation .
% 4% (Yrax+bx®)+ X (J+Px+§x*) =0 ,

where Y, &4 , b , P , and 9 are constants. We will

«)
7)

call (7) the gquadratic Liénard equation since the
coefficients of i and X are polynomials of degree
two in X , This simple equation seems worth notice as
a typical example that can represent both hard and soft
self-oscillations. In the following, we will show that

Y and AP-b are decisive on self-oscillation, and
give explicit formulas for the ampiitude of small

self-oscillation,
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2. Limit Cycles

To‘study the periodic solutions of (7), we assume,
as will be explained in the following, that

b0 3)

P4t | @
a>0 , ' : qo)-
p>0 | an

Inequality (8) is the condition for the dissipation to
i‘ncrease as |x|—> o® . Inequality (9) is the
condition for the stiffness }xxzéc to be positive for
-pxX{™ , For X<0, 4{(X) may become negative by
(18) and g(lx})/lxpym/x by (11). Hence
self-oscillation can be expected to exist even if
Y>(0 because the half period in which X<0 is longer
than that in which X>0 . 1Incidentally, it is clear
that (10) and (1ll) can be rewritten as
ap>0 | t2)
by considering the substitution of X with —X .,
Reﬁriting (2) with (6) as
x=Y
b=~gfx)—2(X) (13)
==X-Yg-(px*+axy)-(gx3+bx’} )

/7
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we will prove the existence of 1limit cycles. The
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singularity at the origin will first be examined. Note

that (13) has no finite singular point except at the
origin since ;(_X) has no real root except at X=0
by (9). It can be easily seen that for

0<1Y[<2 )

the origin is a focus, which is stable for . Y)>( and

%)

unstable for Y<(0 . The singularity of the origin for
Y=0 can be decided by constructing U] the following
polynomial in X and # :

Ve (X, )=Ve (X.3)+229X°43/3

t(203+423 /3)F S, )
where
Ve (0 )= (X4 )+2 (pxXP-2 3%) /3 |
Hgxt+a*y*) /2 ) | /4)

Let C be a positive constant. Then it is clear that if
C. is small enough,

V4 (X,4)=C . ‘ v?1)
represents a closed curve which is nearly a circle
centered at the origin and collapses into the origin as

C->0 . The same holds for Vs and V7 which follows.
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By differentiating V5 (x, }) with respect to t and

making use of (13), we have

AVs _ > Vs ;. Vs
T =X 5x T4 3y

=—2vy (I-Po (X J+2(aP-b) X'y (1-ag+a’y?)
+Xf P ), - as)

‘where the P(x,y)'s are polynomials in x and y which do
not have constant terms and are unrelated to r. If X
and } are small enough, the sign of the right-hand
side of (18) is the same as that of a.P—b for

Y=0 . Hence, if Y=0 , the origin is a stable

focus for AP-b<0 and an unstable focus for

a.p—b)o .
The case in which ;
Yy=0 , ap-b=0 i)

can be dealt with by considering
Vi (X, 3)= Vs L+ a2 e (@-53/3) $4/3]
—23=53/30X Y 20)
By differentiation as in (18), we have
:{_‘&Vz = v (1+Qo (X, ] +2(a p-b) Xy (I+Qu X, 1))
—2ap3 (Xt 1r6 oL {2+ 0 )] @)

where the Q(x,y)'s are polynomials in x and y which do



not have constant terms and are unrelated to r and b,

Since a]o‘po by (9)—— (11), the origin is a stable

focus. To sum up, the origin of the phase plane of (13)

is a focus which is

1)  stable for (0<Y<2 ,
unstable for —2<YL0 .,

) stable for Y=0 if ap-b<0,
unstable for Y=( if aY—b)O .

As described above, Vs  and V7 were
costructed primarily for the purpose of analyzing the

singularity t

at the origin, However, they can be
used as a kind of Liapounov function as will be séen in
the following. We will prove that a small limit cycle
exists around the origin, Since the origin is a focus,
the trajectory starting from a point (9 , Z’; ) near
the origin on the positive y-axis surrounds the origin
and again. arrives at a point on the positive y-axis. We
denote this point by (8, S( ;) ) and /‘will use the same
notation for different values of r and b. Assume first
Y=0 and ay-b(o . Then by (18) p

S (3‘1)<}l P, ' 22)

which remains true for Y %0 provided |Y| is small

103
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enough. Assume that Y<0 and W] is small enough as

mentioned above and consider, a point (8, 70) such that‘
40K '#) . Then by (18)
]

Hence, by the Poincaré—Bendixon theorem, there
exists a stable limit cycle passing between (9, do )
and (@, 4 ). The uniqueness of the limit cycle can be
proved by noting that the right-hand side of (18)
monotonically decreases by ¥ , while Vs and x in
(13) are independent of r. Howevér, | the detail of the
proof is omitted here. Similarly a unique unstable
limit cycle exists for aP-b>0 and Y20 because
S(4>F ana S(H)<fo . The above results can be
obtained also by the bifurcation theory.u] However,
as will be shown in the following, there exists anothe}:
kind of 1limit cycle for a4pP-b)0 which is of much
mathematical interest since it is not covered by the
bifurcation theory. Consider a point (@, 3’2. ) near the
origin on the positive y-axis. Then, assuming Y=0 and
b=ap , we have by (21)

S(4< ¢ , Q4)
which remains true for Y30 and b ¥ QP  provided



1o

‘Y] ~ and the change in b are small enough. Assume
next that Y=(0 and ApP-b is positive but small
enough as mentioned above. Then for a point( 0, ;)

such that #<«{#2 , we have by (18)
CsGoOSH o, ey

V4
which remains true for Y%( provided |Y| is small

enough, Hence there exists a stable limit cycle for
ap-b>0 provided &P—b and |Y| are small enough.
Note that a limit cycle exists even if Y=0 . The
above results are roughly illustrated in Fig. 1. With
Y as parameter, the line for ar—b<0 ‘corres_ponds to
normal-type bifurcation in the bifurcation theory' and
‘the dashed 1line to 'inverted-type bifurcation.
Concerning the inverted-type <case it was already
pointed out (2] that in some cases a stable 1limit
cycle exists and merges for some parameter value ‘into
the inner unstable one as shown in the figure. However,
as far as the authors are aware, ‘no mathematically
proven example has been reported. Therefore the
quadratic Liénard equation presented in this paper
seems to be a rare-case in which the existence,

uniqueness and merging of the stable limit cycle can be

proved. On account of space consideration, however, the

further proof is omitted.



- 3. Periodic Solutions by the Method of

Perturbat ion

It was shown in the preceding section that the
periodié solutions can exist for (13) or (7). Their
approximate amplitude will be obtained by the method of
perturbation bn the assumption that IYI is small. Let
Y= VtE vt - -

Q=R t€at: -

b=bet€ b2t - - . Ré)
P = Po _1_‘62 Pat v

?—o'f'ez?z*' T

o
]

where (— is a small positive parameter, and let X and
y' be expanded in a Fourier series as
X\ . /XN
=S eﬂwt

?
where W is the fundamental angular frequency of a
periodic solution., We will be concerned with describing

[X¥| » that is , one half the amplitude of the

fundamental by the time scale slower than 6-2 or €7%,



107

Assume (27) to be further expanded in powers of € as

follows:
XN o f X, )
m |TZ € ( mm) @8)

4 ol fo "/ , |

00
g e o

"=

T R

—z{— '3 € S y B39

Substituting the above in (13) and putting the terms
et together, we get the balance equation for
(n,¥) as follows.

The balance equation for (1,1) is

0 '&wo | Xf?
( 0) ) (“' ‘J”’°>( f“) ) o

for which the solvability condition is

Z
we" = | 32

Hence

X, | |
(?m)zwl<&"> ) 33

where W, is to be determined later. The balance

equation for (2,1) is



) O ' —J“ l lel) ‘ xu) , ’
) = 1 =) ) < ) )-d’wi ) ) (34-).
O ()’ Z’l 3! ]
for which the solvability condition is, by (33),
w,=0

Hence

x—z‘” | |
(ZZ“’>:W2<}> ) | 36)

where W, is generally an unknown. The solvability

. ' 35

conditions for the balance equations for (3,1), (4,1),
and (5,1) are obtained after a tedius and cumbersome

calculation as

oW, _ 37)
W2 AW, +BW 38)
3T =AW, I |

W aW3 zaw, 2 3Wv W
%—_—r::'l‘ (C' W, 3T, +C‘2|Wc '{"0( aTz)

=AW3+ BW1+(C+D)W: ., 39
where W3 1is generally an unknown which defines

(xgn’ggu)T + | denoting transposition, by

x}“) ‘ 0 a ( 0)
| W . (40)
( ?3‘") :W3(})+ W (}“’2 %" ,

Il



109

andv'* cied | : _— o
A==V2/2 e A - @)
- apd /\ and other parameters are as follows. Let
B =—(2Ps—bo)/2 +J(|o)oo‘+ao‘% 9%0) /4
€ ==Ya/7

U = (%Yt tape-ba)/ ~a<20rorz+2aoaz 110/, |
5 - 55020/37[ 185 P} fjog +4 bo' /513205 §o /34 )

—ar /a3 =140 b 24 42135 /18]
Then

Q=-P*8by6—jlawe ,

, : S 44)
Co==2p=libo 3=} (SR5/3+16p /) , } |
A= (d—jw;)-8 ]W;)‘z o |
B = =juy=p (W Ws*+ wi¥w; ) R
¢ = (B=juoa) P{ W= 51w ,

D ==B(IWs*+ wy wi¥+w ¥ w; ) .
Some other results obtained together with (37)-(39) are

, ‘(42)

as follows:
R T N o - i
}zm o ?zm 3\
' (46)

o)
(’;1(”):0 C23)

/<
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%3 2\ (%7 2peits) (!
- 1w X - °
( 13 (°)>“ (WI*WJ'*'Wth Yo ( 0 )} ( ;3(:))— Wi W2 3 (.Z}) ,

x;% | o I
< }jﬂ))z WI3 [(2?02/3—&:1-2_0)/8 +d' (5a°)°°/3*'b°)J (ZJ’)) (#7)
X o) )
( };ﬁ,) NG EX
We will determine |Wi| since the fundamental and the

constant components are approximately given by

Z}X.u)]f:zth“,’=2[€wl‘ ’ “48)

X = €2, =2 po €W @)
by (28), (33), and (46). We first put

oW _

i “0)

in (37), because we are concerned with X'’ varying by
the time scale slower than €7 or € *. Then we get

A=O 2 (5!)

of which the real and the imaginary parts respectively

give |
Y2/2+ Wi |*ReB = 0 , (52)
Wz + W2 InB =0 : $3)
Eq. (52) can be written by (42) as
-‘Yz-t'(a.oyo"’bo)l\MIZ:O . v (5%)

This determines |w,|¥( for

/3



Y2+ (ap-b)>0

Assume next

113

&5)

56)

ST

60)

Y;=0 .
Then, in order to have lV/d*o , it is necessary in (54)
that
aoro"bo=0 .
Hence further assume (57) and put
AW, _ oWs _
¢ - 5i=0 .
Then by (38)
B=0
and by (39)
M:(C"’D W!
214 ) .

Eq.(59) gives by (45)
W3+ (W) Wz*+W,*Wg) Ion/s =0
Eq.(60) determines |w,| by
Re (C+D)=0

or
because Re D=0 by (45), (42), and (57).

A J

rewritten by (43) as

(61)

42)

é3)
Eq. (63) is

—Ya /2 +(V2) (@0 P+ Q2 Po-b2)|wi| = (5/3)bo Fo IWi|*= 0 .  ws)
Egs.(54) and (64) can respectively be written by

/'t
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(26) and (48) as
Y= (14) (ap-b) P*= 0

for :
Y=€Y;
and
Y-(4) (ap-b) P+ (524) b3 f*= 0
for
y=€"Y4
where _f' is the approximate amplitude of

fundamental and
p=2l€w|
The constant component is expressed by (49) as

XP==Yo £’y .

Since (67) has one positive root for

Y<o
and two positive roots for

0<YL3 (ap-b)*/40b% , *P=-b>0 ,

é$)
c86)
7

®3)

the
&9)

(70)

(71)

(72)

it represents Fig ., 1 for small limit cycles. Note that

Eq.(67) covers the applicable range of (65), because if

(66) is assumed in (67), the term P% is smaller than

1yl by (69) and serves to improving (65). Eq.

(67)

must be checked numerically. Of particular interest are

/5



the cases where AP-bD>0 as can be seen by Fig. 1.
- Examples are given in Fig. 2.

As mentioned before, it is a very 1long and
tiresome way to arrive at (67) by the perturbation
method. However, if we are to be satisfied with a
somewhat rough estimation, (67) can be obtained in a
very much shorter way through V% in (28). Assuming |y|
‘and !a}o—b] to be nonzero but suitably small, we
rewrite (21) as

AVq

5 =22 (ap-b) x“y-2apg (xtyri2xipt/3)
T (smallen terma ) . 73
Let '
x=Rcea® , $=Rsinf . (74)
Then (73) becomes
L =2 Rsu8+2(aP-bIR"ces"d Sin’ g
_20_';3/26(@90“6 s,én‘€+2cwes,u‘n“¢9/3) . qs

The integral on the small circle of radius R is seen

to be
27

J A dg=-R (Y- U4 (- b)R¥ (S0 APERY] . g4)
0 : '

The quantity in the brackets above vyields (67) for

ap~>b, while (65) clearly results from (18) in a

/6
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similar way.

Yamafuji and others (3] applied a fifth-order
perturbation to the self-oscillations of the so-called
BVP equation, which can be shown to be expressible by

(7) with

$=(2/3)bP/a . ap
It is hard to make correspondence between their result
and ours, because theirs starts from - differen£
assumptions and contains complex expressions., However,
their result is distinguished by the composition of one
equation by adding the solvability conditions for the
third, fourth, and fifth balance equations which are
respectively multiplied by 63 , €* , and €. Taking
- the trouble to apply the similar addition to (37)-(39),

we have

2 4 :

%—: (Y-(Ew,+€3w;+ Etwg)=(B~€ ) [KI*-BIKITTK. 8

with higher powers eof & neglected, where
K=éwl+€2W2+63W3 a2

The real part of the quantity in the brackets in (78)

is equated with zero to yield

Y=('4)(aP-b)|2K[*+ (5424) bR l2kl*=0 (80)

This 1is essentially the same as (67). However, to

/7



discuss the applicable range of (80), we have to recall
the condition that each balance equation should hold.
It is questionable whether the expression (89) in K is

significant as it appears to be,

4 Conclusion

The small-amplitude periodic solutions of the
quadratic Liénard equation defined by (7) were studied.
" The existence of solutions is proved and a simple for-
mula for amplitude is given. The above equation seems
to be worth notice as a typical equation which can re-
present a hard or a soft self-oscillation depending on

parameter values,

The authors are grateful to Yoshimi Oka for pre-

paring computational programs.
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Fig. 1 Schematic illustration of bifurcation

with respect to Y . Solid and broken lines respective-
ly denote the square of the amplitudes of' stable .and

unstable periodic solutions.
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Fig. 2 The fundamentals obtained by (67)
(indicated by the dashed circles of radius f ) and the

limit cycles obtained by numerical integration for

Y=—0,|x 10" and cggx(07" , a=1
b=0%6 , y=| , §=1
(a) Stable limit cycle for
y=-0x10"", P=05
(b) Stable limit cycle for
vy=0.8Xx10%., p=0.2.
(c) Unstable limit cycle for

y=o08xi0"%, p=o1,

20
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