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On Certain Nonlinear Differentﬁ/i\l

Equations of Second Order in Time

Himeji Institute of Technology

ZED gg.: ( Kenji Maruo )

0. Introduction and Theorem.
Let H be a real Hilbert space with inner product (-,°)
and norm ]-|H, and V a real reflexive Banach space with

norm such that V("H, V 1is dense in H, and the

[ ly
inclusion mapping of V into H is continuous.
The dual space of H is dentifed with itself. The dual
*
space of V is written as V . We use the same symbol (e,+)
as the inner product of H to denote the pairing between V
*
and V .
Let ¢ be a proper, convex and lower semicontinuous

function from V to (-wo,o] and let 3¢ be its

subdifferential operator defined by
*
px = {£ €V ; wly) - ¥(x) > (f, y-x) for any y € V}.

We assume that 3¢ 1is a single valued, everywhere defined
.
and bounded operator from V. to V , and that ¢(+) satisfies
the following coersiveness condition
(0.0) lim v(u)/ fuly = =

'UIV—)- ©
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Let ¢ be a lower semicontinuous proper convex function
from H to (=00, 0] and d¢ be the subdifferential of ¢.
Then we shall consider the following equation

2

Q—Eu + 3yu + 3ou. D f(.,u)
(0.1) dat
u(0) = a, '%Eu(O) = b on [0,T]

where T is any positive number.

In [1] we showed the existence of solutions of (0.1) in
the case of Jy = positivelself-adjoint operator A. In this
paper we purpose to prove the existence of a solution of the
problem (0.1).

By 8¢A and ¢A we denote»the Yosida approximations

of 3¢ and ¢ respectively (i.e 8¢AX = A_1(1—Jk)fi and

1

6,00) = (207" |x-0, x| % + 6(3,x)  where I, = (1+236)7').

A

Next we shall introduce the assumptions.

Let X1 and X2 be real Banach spaces.
Assumption 1. The following inclusion relasions hold:
vV(C X1C: HC X, and X, (C {the dual space of X2}

where each inclusion mapping is continuous. Moreover X1

is separable and the inclusion mapping from V to X1 is

compact. H is dense in X2.
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Assumption 2. There exists =z &€ V such that
(30,%, x-2z) 2 c1l3¢kx|X2 - c,

for x €V ,|x|y, £ R and [é¢(x)] £ R where c; and c, are
constants depending only on R.
Assumption 3. The continuous function f from

[0,TIxH to H satisfies for any t € [0,T] and x,y € H
|£0t,x)-£(t,y) |y £ h(t) [x-y]|y »
1S-£(t,x) |, < h(E)(1 + |x|,)
dt ’ H = H

where h 1is a function belonging to L1(0,T).

Assumption 4. The closure of D(¢)f)v in H 1is equal

to the closure of D(¢) in H.

Assumption 5.  For any sequence of functions {u } in

Wl(O,T;H)(]Lw(O,T;V) such that {un} is bounded in
L_(0,T;V) and converges to some u in the strong topology of

L2(O,T;H) as n + «, a subsequence {un } can be extracted

J
so that
*
8¢un. + 9du in the weak star topology of Lw(O,T;V ).
]
Clearly V and X1 are dense in H. By assumption H
is dense in X2. We use the same notation (+,*) as the

inner product of H to denote the pairing between V, X1, X2



29

and their carresponding duals.
Now we define the solution of (0.1).

Definition. We say that a function u & C([O,T];X1)[]

Wl(O,T}H) is a solution of the equation (0.1) when it

satisfies the following requirements;

1) For any t € [0,T] u(t) & D(¢)f]V.

2) There exist weak right and left derivatives %%u(t) €
H for any t ¢ [0,T]. Moreover for any t € [0,T]

1Scu(e) 12+ 20(u(t)) + 20(u(t))

< b2+ 20(a) + 26(a)

T d
+ 2 J (f(s,u(s)), agu(s))ds
0

(with necessary modifications at 0 and T).

3) There exists a linear functional F on C([O,T];X1)
such that
T T
F(v-u) < I d(v(s))ds - [ d(u(s))ds
0 70

for any v & C([O,T];X1) and
T

T
fo(ggu(s), %gv(s))ds + IO (f(s,u(s)) - 9Yu(s), v(s))ds

+ (b, v(0)) - (Sgu(T), v(T)) = F(v)
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for any ve€cC([0,T1;%,) ()L, (0,1;v) [Twl(0,T;0).
4) The initial conditions are satisfied in the followi&g
sense

d
u(0) = a, b - aEu(O) = BIK a

0
where KO is the closure of the domain of ¢, IK is the
0 .
indicator function of K0 and SIK is the subdifferential
0
of I, .
Xo

We introduce the theorem.
Theorem, Let a and b be given elements satisfying
a e vlilp(¢), b €H.

Then under the assumptions 1, 2, 3, 4 and 5 we have at least

one solution of (0.1).

Now let (e+) satisfy the coersiveness condition (0.0).
Then if ¥ is the convex function from H to (-w,«]
defined by

Y(v) if v & V
¥(v) = o
™ if v €& H-V = {geH; g§:v},
Y is lower semicontinuous on H by the coersive condition
and the subdifferential operator 23¥ is defined. Then

3¥Y(v) = JY(v) &€ H for v V. For any u > 0 we dehdte

the Yosida approximation of ¢ and that of 3y respectively
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by
v (x) = (207" |x - Tx[.2 + v(T x)
u po 'H u
and
3y (x) = BW(EUX).

whete Eu = (I + ua\y)—1 and I is the identity operator on

He. Then awu is the subdifferential operator of Wu.

To prove the above theorem we consider the following

approximate equations for ) > O and uy > 0

-2
d v
(0.2) dtzuklu v Uy o 30y = By )
: 3
d
LuA'u(O) = a , aEuA'u(O) = b.

If y tend to zero we shall get solutions of the following

equation.

a2t dpuy + 3d,uy

)

f(e,u
(0.3)

d
k uA(O) =a, EEUA(O) = b.

Next we shall investigate the convergence of the solutions of

the approximate equations (0.3) and prove the theorem.

1. Convergence of approximate solutions

In this section we study the convergence of the solutions
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of (0.2) and (0.3). First we show some properties of the

approximate solutions.

Lemma 1. For any A, 4 > 0 we have solution of the

problem (0.2) such that € wl(o,T;H).

u
Ay u

Proof. DNoting that BYu and 8¢A hold the Lipschitz

continuity and using the assumption 3 we can prove this lemma.

Lemma 2. For the solutions of (0.2) we hold the

following equality and inequality

d 2
1) 'aEuA,u(t)'H + ZWu(uA’u(t)) + 2¢A(uk,u(t))

t

= |b|§ + ZTu(a) + 20,(a) + 2 J (f(s,uA,u(s)), ggukiu(s))ds

0

d 2
2) gesy, (B g+ 29 (uy | (6)) + 20, (uy | (E))

< citlbli s lalh + ¥ (a) + 63(a) + 1)

Proof. Taking the inner produét of.both sides of (0.2)
with %EUA and integrating the resultant equality over [0,t],
we have 1) of this lemma. Combining 1) of this lemma and
the assumption 3 and using'Gronwéll's lemma we have 2) of the

lemma.

2) of Lemma 1 and the assumption 2 imply that IuA uIV is
’
uniformly bounded. Combining that the inclusion mapping
from V to H is compact and the above mention resultant,

and using the assumption 5 and 2) of Lemma 1 we now that there
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exists a subsequence {uA y } such that
T
J

~

u > u in C([0,T];H) (uniformly)
>\1Uj A A
\ gfux,u. > gEuA in weak LZ(O,T;H)

Y. | )~ aw(ul) in weak star Lm(O,T;V*).

u
LMy A

Then we have a following lemma.

Lemma 3. There exist solutions of (0.3) uA'E

C({0,T];H) such that the following conditions are satisfied:

1) u, € W' (0,T;H) [|weak-C([0,T1;V).

A

+
2) The right derivative gfux(t) and the left

derivative %Euk(t) exist on [0,T] both in the weak

*
topology of H and in the strong topology of V (with

necessary modifications at 0 and T).

3) We have

+
-1

= 2 -1
270 |gEn, (B T+ ¥lu,(t)) ¢ 2

2

Ibl,,

+ Y(a)

t a )
] GEuates fsiuy (o0 -a0,u(s1)as

for any t & [0,T}(with necessary modifications at 0 and T).

4) For any v e-w}([o,T];H)[]C([o,T];V) we hold

T
0 = Io (%gux(s), %Ev(s))ds -



T .
IO(BWuA(s)—f(s,uA(S))+8¢AuA(S), v(s))ds + (b, v(0)) -

(Gru, (1), v(T)).

5) The initial condition is satisfied :
at
uA(O) = a and HEUA(O) = b.

Next to study the convergence of the solutions of‘(0.3)
we shall use the methoeds and results of [1].
Combining the 3) of Lemma 3 and the method of 2) of
. d d
lemma 1 and noting that 5E¢A(uk(t)) = (9¢,u,(t), dtuk(t))

we have the following lemma.
Lemma 4. We hold the following inequality

1) ]%Euk(t)lé + 2¥(u,(£)) + 20, (u,(t))
2 t g
< lb{H + 2¥(a) + 2¢,(a) + 2 f (f(s,uy(s)), ggu,(s))ds
0 .

d
2)  IGgua B g+ 2¥(u,(6)) + 20,(u,(t))

L C1(|blH + lal,; + ¥(a) + oy (a) + 1).

H

Lemma 5. There exists a constant independent of A

such that
T
JOIB¢AUA(S)|X2dS < Constant.

Proof. In the inequality of assumption 2 we put x =

uA(t). From Lemma 4 the constants c1 and c are

2



independent of A. In 3) of Lemma 3 we replace v by
(uA - z) and wuse the assumption 2. Combining Lemma 4 and

the above mention-resultant we get this lemma.

Lemma 6. We have a continuous function u from [0,T]

to H such that a subsequence {u, } of the sequence {u,}
j

converges uniformly to u in H as Aj + 0.

Proof. See Lemma 4 in [1].
For simplicity we denote this subsequence by {ul}.'

Lemma 7. The sequence {BWuA} converges to 29yu in

*
the weak star topology of L _(0,T;V ).
Proof. Using the same method as Lemma 3 we can prove the

lemna.

3. Proof of Thoerem.
Replacing A by 293¢, using the same method as them of
Lemma 5,6,7,8,9,10 and 11 in [1] and combining Lemma 6 and 7

"in this paper we can prove this theorem.

4. Example.

We consider the following equation

2 2
( a—zu - &~2u + |u|p+1u J(u - r) =0,
ot 9x : '

10
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2 2
4 u- 9y [u|p+1u >0
2 2 =
ot ox
in the sence of distributions in [0,1]1x[0,T],
(4.1) X
u(x,t) 2 r(x), u(x,0) = uo(x), for x € [0,11],
gfu(x,t) = u, (x), a.e in [0,1]
ku(O,t) = u(l,t) =0 for t ¢ [(0,T]

where r is continuous given function such that «r(0) < 0,

r(1) < 0.

Set K = {fE:L2(0,1); f(x) > r(x)}. The equation (4.1) is

rewritten as the following equation in L2(0,1)

2

g—zu + oyu + aIKu 2 0
(4.2) dt
u(0) = u & u(0) = u
0’ at 1°
L 2 -1, i
where plu) = J (27 |grad u|® + (p+1)”  |u] )dx for
0

any u 6‘312(0,1) = { u(-W;(O,H; u(0) = u(1) = 0 }.

We can apply our main theorem to this equation if only «r
is a continuous function satisfying =r(0) < 0, r(0) < 0 to

deduce the existence of a soluton of (4.2).
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