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ABSTRACT

This paper first describes the predicate transition nets and Concurrent Prolog pro-
gramming language briefly. An application of Concurrent Prolog is then introduced as
simulation of predicate transition nets. Then the merits and demerits of concurrent pro-
log are discussed. Finally simulation results are introduced and discussed.

1. Introduction

The Predicate/transition net is an extension of Petri net introduced by (1], and it has the ability to model
various general properties of concurrent, distributed and asynchronous processes|2]. Each token in a predicate
node of a predicate/transition net has its type or label. A transition can be fired if all its input predicate
tokens are available. Arcs from predicate nodes to a transition have labels with polynomial equations of
variables appearing in the transition formula.

Concurrent or distributed processing system specifications can be described clearly by using predi-
cate/transition nets. These descriptions can be used for rapid prototyping of the target concurrent process-
ing system, and for system design verification. Therefore it is useful to construct a simulation system to
simulate a given predicate/transition net. This paper describes a simulation method for predicate/transition
nets.

Concurrent Prolog, a logic programming language with concurrency, has been recently introduced by
Shapiro [3]. This paper first briefly describes the predicate /transition net model and then the special charac-
teristics of Concurrent Prolog. The property identified between concurrent prolog and predicate/transition
net is then described and used to predicate/transition net simulation. The advantages and disadvantages
of using Concurrent Prolog as a simulation language for simulating the predicate transition net model are
discussed. A comparison of concurrent prolog to other languages in predicate/transition net simulating is
also given.

2. Predicate/Transition Net

Here we briefly discuss the basic properties of place/transition nets (Petri nets) [6][7], condition/event nets
(C/E nets)[8] and predicate/transition nets (Pr/T nets)|[8].



2.1. Place/Transition nets

The Petri net, a parallel flow graph, originated with [1]. It is a simple, natural and powerful method of
describing the information flow control of asynchronous parallel or distributed systems. This makes Petri
net an excellent working tool for such systems. A Petri net graph models the static properties of a system
and the dynamic properties result by executing the graph. It can be considered as a collection of transitions,
places and arcs. Arcs connect the transitions and places, and are used as paths to transfer information
between places and transitions. Places can be regarded as the temporary storages to store the tokens which
are processed by transitions.
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Fig. 2.1 Simple Petri Net

Fig. 2.1 illustrates a simple Petri net. Here a box represents the transition, a circle represents the
places, and dots within places are called tokens. When all the input tokens of a transition are available, the
transition is fired. Firable transitions are selected non-deterministically and are fired asynchronously. The
Petri net execution is controlled by token distribution (called marking). A fired transition generates new
output tokens and transfers them to the output places.

Petri nets are powered by handling constraints, exclusive OR transitions, switches, inhibitor arcs and
time. Petri nets have been extensively used because of their capability of clearly describing concurrency,
conflicts and synchronization of processes. Petri net is used to model various kinds of asynchronous parallel or
distributed system models such as concurrent computing systems. Original Petri nets were used to represent
the logical behaviour of systems and were often used to model von Neumann computing systems. One of
the major recent applications of Petri net concept is modeling new generation computing systems such as
dataflow and demandflow computers. '

2.2. Condition/Event Nets

The basic and most natural interpretation of Petri net is the condition/event system model. There are
many systems (called discrete event systems) where events occur in discrete periods of time, and the system
status varies according to the event occurences. The places in a Petri net represent the conditions, while the
transitions represent the events of the C/E net. A firing of a transition corresponds to the event occurence,
and the change of its marking corresponds to the system status transition. This is very naive interpretation,
but it is possible to model various discrete systems in the condition/event net.



2.3. Predicate/Transition Nets

The predicate/transition net is an extension of the Petri net and is used to model concurrent or distributed
systems. The role played by integers in ordinary Petri nets extends to integer polynomials in the predi-
cate/transition net. Predicate/transition nets are based on ordinary Petri net schemes. Places in the Petri
net are identified as predicates. A transition has a specified formula to determine its firing. All arcs are labled
with polynomials of variables in input predicates. This increases the descriptive power of predicate/transition
nets. A transition is fired when all respective tokens of input arcs are available. This is the only condition
necessary to satisfy the execution of a transition formula. The tokens generated by the transition execution
are transferred to the related arcs in the output.
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Fig. 2.2 Example - Transition Rule

In predicate/transition nets, a transition is a petri net transition schemes, a predicate is a petri net
place schemes and arcs are labelled. This reduces the net size of condition/event nets and Petri nets.
Predicate/transition nets are generalized Petri nets powered by both first order predicate logic and linear
algebra. In Fig. 2.2, Py, P, P3 and P, are predicates. ‘a’ tokens and ‘b6’ tokens have P, property and
‘b, c’ token and ‘b,8’ token have P, property. P; predicate has no predicates initially. P4 is a no argument
predicate. P; and P are variable properties and P; and P, are variable relation. T; is ‘Y<Z’ transition.
Input and output arcs are labled as shown in Fig. 2.2.

3. Concurrent Prolog

In this section the concepts of logic programming, Prolog and Concurrent Prolog are discussed briefly.

3.1. Logic Programming [9]

Lisp and Prolog are Al languages. Lisp is a functional or an object oriented language. Object oriented
languages make little distinction between data and program.

Logic programming is suitable for dealing with large data bases. A time independent fact collection can
be used to solve problems related to creating and/or recognizing patterns, that is, to solve problems whose
solution is a deductive logic function.

A definite clause in logic programming is written as

A - B]_, BQ, B3, ooy B,,, n 2 0 (1)

Two ways of reading (1), namely, declarative reading and procedural reading are described below.
Another way of reading of (1), namely, behavioural reading is described in section 3.3.



1) Declarative reading
A is true if By and By and ... and B,, are true.

2) Procedural reading
To execute procedure call A , perform procedure calls B, , B; ..., and By,. Or to solve problem A, solve sub
problems B; , B; ..., and B,,.

3.2. Sequential Prolog [10]
Prolog is a typical logic programming language, although it is still experimental. Prolog’s roots in predicate
logic give it a built-in relational data base. Programming in prolog can be viewed as programming by
assertion and query. The prolog programmer need not aware of the distinction between programming and
querying. The information stored in the internal relational database of prolog can be retrieved by using
powerful relational queries. Prolog’s implicit search strategy is good for symbolic processing. The name of
the prolog relationship is called predicate. Sequential prolog is designed to run efficiently in von Neumann
computing environment.

Lisp is a more fundamental language and gives better control over processes so the program won’t waste
time on useless searches. It is not clear whether the prolog can give enough control and the efficiency needed
for nontrivial problems. Prolog is not an efficient implementation language for many sequential algorithms.

3.3. Concurrent Prolog

Concurrent Prolog proposed by E. Shapiro[3] is a prolog variant and is closely related to relational lan-
guages|[11]. Concurrent Prolog is an efficient language for implementing many parallel algorithms, and
allows logic programs to be executed concurrently|4,5].

Object oriented programming concepts and techniques are realized naturally in Concurrent Prolog.
Basic operations of object oriented programming such as creating objects, sending and receiving messages,
modifying object state, and forming class- super class hierarchies are supported in Concurrent Prolog. Lisp
functions are easily implemented in Concurrent Prolog.

Read only variables and variables in a process, are introduced to support process synchronization.

Message passing in Concurrent Prolog adds the power of destructive assignment, which is not available
in Sequential Prolog. Message passing and structure copying capabilities make the language a powerful
concurrent programming language. Partially determined messages are very useful and powerful.

Guarded clauses with read only variables give wide range of indeterminate process behaviour.

A set of guarded clauses constructs a Concurrent Prolog program. All guards and all elements of a
conjunctive goal are executed concurrently. A guarded clause of concurrent prolog is as follows: ‘

H :— Gy, Gy ., G | By, By, .. By my, n > 0. (2)

where (’s and B’s are unit goals. B’s are executed when G’s succeeds.

H - head
G - guard
B - body

lower case - constants
upper case - variables

[X]Y] - list with head X and tail Y.
Concurrency supporters of Concurrent Prolog

| - commit operator — concurrency supporter for guards.
X7 - read only variables — concurrency supporter for process
communication and synchronization.

In Concurrent Prolog, all conjunctive goals are solved simultaneously.
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Table 3.1 shows the traversing orders of logic, sequential prolog and concurrent prolog interpreters.

Logic Sequential Prolog Concurrent Prolog

interpreter interpreter interpreter

Correct depth first, All guards

non-deterministic left to right and

choices at OR traversing order all elements

nodes and traverse conjunctive goals of a

AND nodes arbitrarily  reduced from left conjunctive

in a AND OR tree. to right. If there goals are executed
are many alternate simultaneously.

ways to reduce a unit
goal, they are fired
one by one using
backtracking.

Table 3.1 Traversing Orders

1) Behavioural reading
This is the logic program reading method in Concurrent Prolog. The logic program (1) is read as, a process
A can be replaced by a process system containing By and By and .... B,. The process replaced by empty
system causes the process to terminate.

The Concurrent Prolog clause (2) is read as, the process H can be replaced by a process system
containing G’s and B’s.

4. Pr/T net simulation using Concurrent Prolog

Parallel and/or distributed system modeled using Pr/T nets have been simulated so far using either sequential
or concurrent programming languages. In this section the relationship between Pr/T net and Concurrent
Prolog, the simulation method used to simulate Pr/T net using Concurrent Prolog and a simulation example
will be described.

4.1. Relation between Pr/T net and Concurrent Prolog

The parallel and/or distributed systems can be modeled using the net theory which represents the logical
behaviour of the system elements. The extension of Petri net, Pr/T net is a generalized Petri net powered
by predicate logic and linear algebra. Concurrent Prolog is a logic programming language with the ability
to express concurrent logical system actions and execute them concurrently. The behaviour of the Pr/T net
model is used as the concurrent system.

There is an intuitive similarity in Pr/T and Prolog. Fig 2.2 illustrates this fact. The transition with
first order predicate in Pr/T is directly described as a goal in a clause. It is firable if the unifications for
input arcs can satisfy the goal(the predicate). The places in Pr/T net can be described as facts in Prolog
database, and the state transition(marking transition) can be caught up by changing the database. Since
there are several numbers of transitions in Pr/T net, it is better to use Concurrent Prolog because it has a
scheduler for firable transitions (executable prolog goals). It is necessary to non-deterministically select one
of them, and Concurrent Prolog scheduler does it. Scheduling algorithm can be programmed in Concurrent
Prolog, and this flexibility will be very useful for Pr/T net simulation. Table 4.1 shows the relationships
bletween Pr/T net and Concurrent Prolog. The simulation example in this section illustrates the power of
this idea.



Pr/T net Concurrent Prolog
n-tuple tuple
predicate predicate
transition rule rule
marking fact
execution goal(solve)

Table 4.1 Similarity between Objects in Pr/T net and Concurrent Prolog

4.2. Simulation Method

Concurrent Prolog description of the Pr/T net model and how the simulation is performed are described in
this section. To simulate Pr/T net using Concurrent Prolog, it is necessary to represent each Pr/T net object
by Concurrent Prolog primitive. For example, a predicate of a Pr/T net can be represent as a predicate in
the internal database of Concurrent Prolog.

The simulation method is given as follows:

Step 1 Label each predicate and each transition in the directed net.

Step 2 Define the followings using Concurrent Prolog Predicates with the label given in step 1 as the
predicate name. 1. The n-tuple variable of each transition. 2. A quantifier-free logical formula
built from equality, operators and predicates. 3. Variables occurring at surrounding arcs.

Step 3 Add initial tokens to the prolog internal database.

Step 4 Interpret the predicates asserted in internal database in step 2 concurrently using concurrent
prolog.

Several new database manipulation tools are used as Concurrent Prolog predicates to simulate Pr/T
nets. The new predicates are named as enable, remove and deposit. The functions of these new predicates
are as follows:

enable(tuples, predicate) — check whether tuples are taken out from predicate specified by predicate.

remove(tuples, predicate) — take out tuples from predicate specified by predicate.

deposit(tuples, predicate) — put tuples into predicate specified by predicate.

Note: The internal prolog database will be changed after the evaluation of these predicates. Detailed
simulator program is in Appendix A.

4.3. Simulation

The simulation programs describing Pr/T nets are executed using the Concurrent Prolog interpreter which
runs under the C-Prolog interpreter. The example shown below gives the Pr/T net model used for simulation
and its corresponding Concurrent Prolog program. '



pi([.(@),.(a),.(b),.(b),.(M)]).
p2([.(b,c),.(b,b)]).

p3([1).

p4([0,0]).

consystem(f1) .
t1 :- f1, t1.

f1 :-

enable([.(X),.(X)1, p1),

enable([.(Y,Z)], p2),

1. aless(Y. Z)

->
write(t1), nl,
remove([. (X),.(X)], p1),
remove([.(Y,Z)], p2),
deposit ([. (X,Y),.(X,2)], p3),
‘deposit ([0], p4)

true.
fl :- true

7- execute(tl).
Program 4.1 Simulation program of Fig 2.2

1) Concurrent prolog can execute the Pr/ T net concurrently by using its concurrent property. B

2) Pr/T nets and Concurrent Prolog are based on first order logic. This makes the mapping
simple.

3) The unification is simple because the tokens in Pr/T net correspond to the tuples in Prolog.

Example 1.

The simulation program of Pr/T net, shown in Fig. 2.2, is described using Concurrent Prolog in program
4.1. .
0 denotes the zero tuple of Pr/T nets. Predicate consystem is for system predicate dealings, i.e., in
program 4.1 the predicate £f1 represents an indivisible part in Concurrent Prolog. Appendix B gives another
Pr/T net example and its Concurrent Prolog program used in this simulation study.

b. Discussion

In general, Pr/T-nets can be mapped naturally with Concurrent Prolog due to the combination of genuine
sequential prolog properties and Concurrent Prolog properties. The advantages and difficulties of using
concurrent prolog in this simulation study are discussed below.

5.1. Advantages of Using Concurrent Prolog

The advantages of simulating concurrent distributed systems such as Pr /T net using Concurrent Prolog are:
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5.2. Difficulties of using Concurrent Prolog

As we have described in section 4, inter-process communication mechanism in concurrent prolog is used for
marking tokens among predicates in the simulation. To use inter process communication, it is necessary to
denote both transitions and predicates as processes in Concurrent Prolog. Inter process communication in
Concwrrent Prolog only communicates between certain related processes. It is difficult to describe a general
cyclic graph using the inter process communication facilities of concurrent prolog.

5.3. Tuture Research

It is necessary to research further to identify the power and/or weaknesses of Concurrent Prolog language.
Our future research plans will be briefly described in the following sections.

1) Time dependency

Existing time dependency handling languages are not suitable for handling Artificial Intelligence applica-
tions. Formal mathematical logic has no consistent, rational means of handling the concept of time. It is
necessary to research designing time dependency handling logic programming languages for Artificial Intel-
ligence applications. We intend to continue our research on finding ways of handling time dependencies in
Concurrent Prolog and also to add the time constraint to predicate transition nets. This will help to simulate
timed predicate transition nets using timed Concurrent Prolog language.

2) Comparison Concurrent Prolog — other Languages

Research has been conducted on comparison of Concurrent Prolog with other programming languages such
as Ada, C and Concurrent Pascal for the concurrent and /or distributed system applications.

6. Conclusion

In this paper, Petri nets, C/E nets and Pr/T nets and the properties of logic programming were briefly
discused. Two logic programming methods in use are Sequential Prolog and Concurrent Prolog. The
properties of Concurrent Prolog logic programming language were also described.

The importance of simulating concurrent and/or distributed systems with concurrent logic programming
language was described and a Pr/T net model was simulated using Concurrent Prolog. The simulation
results, advantages and disadvantages of using Concurrent Prolog as a simulation language for concurrent
system simulation were discussed. It is observed that the Concurrent Prolog inter process communication
mechanism makes difficulties in simulation. Concurrent prolog can be used as a Petri net language. Future
research topics, time dependence of Al languages and comparison of Concurrent Prolog with other languages,
were discussed to over come the shortcomings of Concurrent Prolog. In many ways Concurrent Prolog is a
suitable programming language for simulating concurrent and/or distributed systems.
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Appendix A. Support Program for Simulation

enable(Tuples, Func) :-

Predl =.. [Func, Tokensi],
call(Predl), ’
enable2(Tuples, Tokensi),
retract (Predl),
shuffle(Tokens1l, Tokens2),
Pred2 =.. [Func, Tokens2],
assert (Pred2).

enable2([], Tokensl).

enable2([Tuple|Tuples], Tokensl) :-
match(Tuple, Tokensl, Tokens2),
enable2(Tuples, Tokens2).

shuffle(Tokens1, Tokens2)
:- % for non-deterministic execution

match(x, [1, [1) :- ', fail.
match(X, [X|T], T).
match(X, [Y|T], R) :- match(X, T, R).

remove (Tuples, Func) :-

Predl =.. [Func, Tokensi],
call(Predi),

remove2(Tuples, Tokensl, Tokens2),
retract (Predl),

Pred2 =.. [Func, Tokens2],

assert (Pred2),

write(Pred2), nl.

remove2([], Tokens, Tokens).

remove2([Tuple|Tuples], Tokensl, Tokens2) :-
subtract (Tuple, Tokensl, Tokens3), !,
remove2(Tuples, Tokens3, Tokens2).

subtract (X, [1, [1) :- % This goal must not be reached as usual.
write(’Fatal error’), !, fail.

subtract (X, [XIY], Y). '

subtract (X, [Y|Z], [YIW]) :- subtract(X, Z, W).

deposit (Tuples, Func) :-

Predl =.. [Func, Tokensi],
call(Predl),

append (Tokensl, Tuples, Tokens2),
retract (Predl),

Pred2 =.. [Func, Tokens2],

assert (Pred2),

write(Pred2), nl.

10



Appendix B. An Example for Simulation

true ¢ =q + 1 true

<l,i>

te true

pe([.(1),.(2),.(3),.(4),.(5)]).

pf([]).

consystem(fs).

consystem(fe).

consystem(fr) .

consystem(£fp) .

ts :- fs, ts.

te :- fe, te.

tr :- fr, tr.

tp :- fp, tp.

fs :-
enable([.(X)], pe),
1, X=1->
write(ts), nl,
remove([.(X)], pe),
deposit([.(1,1i)],pf);
true.

fs :- true.

11
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fe :

fe

fp :

fp

fr :

fr

enable([.(Q,K)1, pf),
1, true —>

write(te), nl,
remove([.(Q,K)], pf),
deposit([.(Q,e)], pf);
true.

.- true.

enable([.(R)],pe),
enable([.(Q,K)],pf),

!, Sis @ +1, R=8 ->
write(tp), nl,
remove([.(R)],pe),
remove([.(Q,K)],pf),
deposit([.(R,K)],pf),
deposit ([.(Q)],pe);
true.

.- true.

enable([.(N,J)], pf),
', N=56 ->
write(tr), nl,
remove([.(N,J)], pf),
deposit ([.(N)]I, pe);
true.

;= true.
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