126

On Morin Singularities

by

Yoshifumi Ando (字 藤 良 文)

Introduction

In this paper we study the problem of finding a smooth map between smooth manifolds with nice Morin singularities in a given homotopy class. A geometric interpretation of Morin singularities of a smooth map $f: \mathbb{N} \to \mathbb{P}$ is as follows. Let $S^i(f)$ denote the set of all points x of N such that the kernel rank of df_x is i. For a certain map f, $S^i(f)$ becomes a submanifold of N and we may define $S^{i,j}(f)$ as the set $S^j(f|S^i(f))$ for $f|S^i(f):S^i(f) \to \mathbb{P}$ similarly. Let f_x be the r-sequence f_x (i.1,...,1). Then we may continue to define f_x (f) as f_x (f) as f_x (f) inductively. A point of f_x (f) or f_x (f) is called a Morin singularity of symbol (i,0) or f_x respectively. However this approach does not make it clear for what part of smooth maps f, f_x (f) can be defined. For this we review the following important observation due to Boardman[2].

There exist a submanifold $\Sigma^{i,0}(N,P)$ and a series of submanifolds; $\Sigma^{I1}(N,P)\supset \Sigma^{I2}(N,P)\supset \ldots \supset \Sigma^{Ir}(N,P)\supset \ldots$ in the infinite jet space $J^{\infty}(N,P)$. The codimension of $\Sigma^{i,0}(N,P)$ is i(p-n+i) and that of $\Sigma^{Ir}(N,P)$ is n-p+r for $n\geq p$ and

r(p-n+1) for n < p. He has shown that if a jet map $j^{\infty}f:N \to J^{\infty}(N,P)$ of f is transverse to all submanifolds $\Sigma^{i,0}(N,P)$ and $\Sigma^{r}(N,P)$, then $S^{i,0}(f)$ and $S^{r}(f)$ coincide with $(j^{\infty}f)^{-1}(\Sigma^{i,0}(N,P))$ and $(j^{\omega}f)^{-1}(\Sigma^{r}(N,P))$ respectively. Therefore for generic maps f we may consider $S^{i,0}(f)$ and $S^{r}(f)$.

For any integer $r \ge 1$ we define a subset $\Omega_r(N,P)$ of $J^\infty(N,P)$ as the set of all jets z such that either z is of maximal rank or a point of $\Sigma^{i,0}(N,P)$ or $\Sigma^{i,0}(N,P) \setminus \Sigma^{i+1}(N,P)$. Then $\Omega_r(N,P)$ becomes an open subbundle of the fibre bundle $J^\infty(N,P)$ over N. The first result of this paper is the following

Theorem 1. Let p \geq 2. Then for any section s of N into $\Omega_{\mathbf{r}}(N,P)$, there exists a smooth map $g:N\to P$ such that $j^\infty g$ becomes a section of N into $\Omega_{\mathbf{r}}(N,P)$ homotopic to s in $\Omega_{\mathbf{r}}(N,P)$.

Next we will study the problem of eliminating the Morin Ir singularities $S^{T}(f)$ with codim $S^{T}(f)=n$ from f admitting only Morin singularities. Theorem 1 reduces it to a problem of finding a section of N into $\Omega_{r-1}(N,P)$ homotopic to $j^{\infty}f$. We will show that if $j^{\infty}f$ is transverse to $\Sigma^{T}(N,P)$ for a connected and closed manifold N, then the number of points of $S^{T}(f)$ modulo 2 is the unique obstruction of finding the above section. We should note that this number is just the Thom polynomial of the topological closure $\Sigma^{T}(N,P)$ for f (see the definition of [9]).

Theorem 2. Let $r \ge 2$, $p \ge 2$ and codim $\Sigma^{-r}(N,P) = n$. Let N and P be orientable manifolds. Then

(1) A smooth map f with $j^{\infty}f(N) \subset \Omega_{r}(N,P)$ is homotopic to

a smooth map g such that $j^{\infty}g(N)\subset\Omega_{r-1}(N,P)$ and $j^{\infty}f$ and $j^{\infty}g$ are homotopic as sections of N into $\Omega_{r}(N,P)$ if and only if the Thom polynomial of $\Sigma^{r}(N,P)$ for f vanishes.

- (2) In particular f is homotopic to such a smooth map g in the following cases;
 - i) n > p and $r \equiv 1 \pmod{4}$
 - ii) n > p, $r \equiv 2,3$ or 4 (mod 4) and $n-p \equiv 1$ (mod 2) and iii) $n \leq p$ and $n+p+r+\frac{1}{2}r(r+1) \equiv 0$ (mod 2).

It will be shown by the Morse inequalities that the similar statement of Theorem 1 for p=1 is not true. If N is an open manifold, then Theorem 1 is a direct consequence of Gromov[7, Theorem 4.1.1] and if n < p, it is also a special case of [4, Theorem B]. So the rest cases will be treated in this paper. The case r=2 of Theorem 1 should be compared with [6, Theorem 1.3] which will play an important role in a proof of Theorem 1 (Sections 2 and 3).

The case $n \ge p$ and p = 2 of Theorem 2 has been proved by Levine[11, Theorems 1 and 2] for n > 2 and by Eliasberg[5, Corollary of Theorem 4.9] for n = 2.

References

- [1] Y. Ando, On the elimenation of certain Thom-Boardman singularities of order two, J. Math. Soc. Japan, 34(1982), 241-268.
- [2] J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math., 33(1967), 21-57.
- [3] J. Damon, Thom polynomials for contact class singularities, thesis, Harvard Univ., 1972.
- [4] A. A. du Plessis, Maps without certain singularities, Comment. Math. Helv., 50(1975), 363-382.
- [5] J. M. Eliasberg, On singularities of folding types, Math. USSR Izv., 4(1970), 1119-1134.
- [6] J. M. Eliasberg, Surgery of singularities of smooth mappings, Math. USSR Izv., 6(1972), 1302-1326.
- [7] M. L. Gromov, Stable mappings of foliations into manifolds, Math. USSR Izv., 3(1969), 671-694.
- [8] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93(1959), 242-276.
- [9] A. Haefliger and A. Kosinski, Un théorème de Thom sur les singularités des applications différentiables, Séminaire H. Cartan E.N.S., 1956/57, Exposé N°8.
- [10] A. Lascoux, Calcul de certains polynômes de Thom, C.R. Acad. Sc.Paris, 278(1974), 889-891.
- [11] H. I. Levin, Elimination of cusps, Topology 3(1965), 263-296.
- [12] S. Łojasiewicz, Triangulation of semianalytic sets
 Ann. Scuola. Norm. Sup. Pisa. Sci. Fis. Mat., 18(1959), 87-136.

- [13] B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Acad. Sc. Paris, 260(1965), 5662-5665, 6503-6506.
- [14] F. Ronga, Le calcul des classes duales singularités de Boardman d'ordre deux, Comment. Math. Helv., 47(1972), 15-35.
- [15] F. Ronga, Le calcul de la classe de cohomologie entiere duale a $\Sigma^{\bf k}$, Springer Lecture Notes, 192(1971), 313-315.
- [16] F. Sergeraert, Expression explicite de certains polynômes de Thom, C. R. Acad. Sc. Paris, 276(1973), 1661-1663.
- [17] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951.
- [18] R. Thom, Les singularités des applications differentiables, Ann. Inst. Fourier, 6(1955-56), 43-87.