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Hypergeometric solutions of Toda equation

@f‘(’% 7:, L /"%/ E) 7173?,7% {Yoshinori Kametaka)

§1l. Introduction
Hypergeometric solutions of Toda eguation can be obtained by

Badcklund transformation from separated solutions. We have three
kinds of separated solutions. So totality of hypergeometric
solutions forms three kinds of linear spaces Ty, T, and T3. We
~found the structure of these linear spaces of solutions. Ve
found several types of linear transformations which carry a
hypergeometric solution of Toda equation to a new one.
Operations of these linear transformations are compatible with
operations of some group or algebra. More accurately Lie groups
sL(2,t)=G(1,1), G(0,1), G(0,0) and corresponding Lie algebra

sl(2,C)=g(1,1), g(0,1), g(0,0) act at the same time on T T

17 =2
and T, respectively.
Let us solve Toda equation
(1.1) (109 T )" = Tpp1Tuo/Tn> (T, =T (B), ' = =2
- 7 +n n+lTh—l Tn Ty n ! 2t
using Gauss hypergeometric functions
. {(a) . (b)
(1.2) F(a,b,c;z) = 2 :c.(a,b,c)z] cj(a,b,c) =
j=0 J (c) . J!
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where usual convention (a)j = rﬁj+a)/r3a) is used. Put
(1.3) f_(z) = F(n+a,b,c;2)

n

then we have relations

(1.4)

fn+l/fn (zfn'/fn +n+a) /(n+a),

- —Z)E - - -
fn_l/fn ( z(1 z)fn /fn (n+a-c+bz) )/ (n+a-c),
z(1-z)£ " +{c-(ntat+b+l)z}£ ' - (n+a)bf = 0.
Using (1.4) it is easy to show that

14

(1.5)  t_(2) = A(n) ((1-z)/z%) (M+a) (nFaze)/2

where A(n) is determined by A(n+l)A(n-l)/A(n)2 = (n+a) (n+a-c)

with suitable initial conditions 2(0) and A (1),
(1.6) ‘tn(z) = tn(z)fn(z)

satisfy Toda equation

(1.7 ((1-2) gz )210g'[n ='Tn+1Th-1/Th2
(1.8)  ((l-z) gz )%1og £ = 2 - (n+a) (n+a-c) (1-z) /z°.

tn+ltn—l/tn
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Confluent hypergeometric function

(1.9) F(a,c;z) = Z : c.(a,c)zJ c.(a,c) = SRS A
j=0 J J :

is obtained as a limit of Gauss hypergeometric function.

(1.10) F(a,c;z) = lim F(a,b,c;2z/b).
b= w '

Putting b tendsto infinity after replacing z by z/b in (1.7)

and(1.8) we can show that

(1.11) zn(z) - 1im b—(n+a)(n+a—cltn(z/b) - A(n)dzv—(n+a)(n+a—c)'
b-w
(1.12) T_(2z) = lim pT(pFa) (nta=clr )y = ¥ (2)F(nta,c;z)
n n
b

satisfy also Toda eguation

(1.13) ( gz )2109 %n = :En+l:EnT'l‘/%n2’

~ ~ ~ 2 -2

(1.14) (22109 % ¥ ? = (n+a) (n+a-c)z

dz 3 th T tn+ltn—l/

Thus we obtainediconfluent hypergeometric solution of Toda
equation.

Another hypergeometric solution is also possible. Put

(1.15y) fn(z) = F(a,b,n+c;z).
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We have relations

n+c

(1.16) fn+1/fn = (n+c-a) (n+c-b)

((l—z)fn'/fn + n+c-a-b),

1

— t -
fn—l/fn = —H:E:I—(zfn /fn + n+c-1),

z(l-z)f " + {n+c-(at+b+l)zJf ' - abf = 0.
Define A(n) and B(n) by the following relations.

(1.17)  A(n+1)A(n-1)/A(n)2 = b(n+c-a-1) - (n+c-1) (n+c-a),

A(0) = b(c—l)(c—a)/2 _ bc(l+c—a)/2,

, A(1)
(1.18)  B(n+1)B(n-1)/B(n)* = 2Bresal.c (peerlniena)

B(0) = 1,- B(l) = c-a.

By direct calculation using (1.16) it is easy to show that

—b(n+c—a—l)(z(l_z))(n+c-l)(n+c—a)/2’

(1.19) tn(z) A(n) (1-2)

I

£ (z)-2{0)

(1.20) 7 (2) N o
n

fn(Z)

satisfy Toda equation

d

2 _ 2
(1.21)  (z(1-2)=55=)“log T, = Ty, Ty-1/Ty -
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d

(1.22) (2 (1-2) =

2 _ 2
) 7log ty =ttty

= {b(n+c-a-1) - (n+c-1) (n+c-a)}z(1-2).

Since we have

b—(n+c—l)(n+c—a)/2,

(1.23)  1lim A(n) = A(n),

b—w
where A(n) is given by E(n+l)3(n—l)/§(n)2 = n+c-a-1, A(0) =

A1) =1,

(1.24) lim B(n) = (c-a)_.
b—oo n

then it follows that

(1.25) T (z) = Lin  t_(z/b) = K(n)e(nterasl)z, (ntel) (ntc-a)/2

b=

~ -~ (c-a)

(1.26) In(z) = lim '[n(z/b) = tn(z)——+-——-—F(a,n+c;z)

b—y 00 (c) . -

n

satisfy Toda equation
(1.27) (z—g—;)zlog %n = :En+li1.—l/fn2’
(1.28)  (z-3—)"log T = €£+iEn_l/¥n2 = (n+c-a-1)z.

Thus we obtained another confluent hypergeometric solution

Qa .
Now we introduceAnew independent variable x by
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(1.29) z = -x°/4, Z- =

After slight modification we can show that

it

2 2
-(n+c-a-1)x /4(_X2/4)n /2,

(1.30) tn(x) 2(n)e

(c-a)

(1.31) T, (x) F(a,nt+c;-x2/4)

I
rt.
3

satisfy Toda equation

X d 2 _ 2
(1.32) (- ) loa T, = Tp1Th-1/Ty

X d 2 _ 2 _ o 2
(1.33) (—5- = ) “log tn = tn+1tn-l/tn = - (n+c-a-1)x"/4.
Here A(n) is defined by A(n+l)A(n—l)/A(n)2 = n+c-a-1l, A(0) = 1,
2

A(l) = -a. Since (-a) " /ZA(n) —> 1 as a —) o then we have

S X2/4 n2
(1.34) tn(x) = 1lim tn(x/JE) = e (x/2)" ,

a—y 00

(1.35) T (x) = lim (c-a) "t (x/ya) = %n(x)J (x) .

a—y00 n+c-1

J, (x) is Bessel function. These functions satisfy also Toda

equation

X d 2 ~ ~ ~ 2
(1.36) (—7- dax ) log'tn - €n+ltn-l/tn ’

X d 2 _ 2 _ 2
(1.37) ( 2 dx ) ~log tn n+1 n—l/tn x"/4
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As we observed above we can easily construct various types of
hypergeometric solutions of Toda equation by direct calculation.
As a conclusion we see that hyperceometric solutions have always
the structure Th(t) = tn(t)un(t) where tn(t) is a "simple"
solution of Toda equation and un(t) is given by hypergeometric
function. "Simple" means that (log tn)" = f(n)g(t) is a
product of two functions:the one is a function of only n and
the other is a function of only t. That is t_ is a "separated"

n

solution of Toda equation.

?2. Backlund transformation of separated solutions.
Hereafter we consider Toda equation with two time variables

sé@alled 2-dimensinal Toda equation.

2

(2.1) XY log t =t .t ./t (X 2/2%, Y /3Y) .

Introducing new dependent variables T, and Sy by

(2.2) r, = XY log tn’ S, = Y log tn_l/tn

(2.1) is equivalent to the following
(2.3) Yr o =r, (s, - Sht1) 7 X' s, =T, 1~ Th-

Eliminating Sh (2.3) is equivalent to

(2.4) XY loa r, =r - 2rn + r
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Todé equation (1.1) was discovered by Toda in 1966 [1]. But,
to our great surprise, Toda equation (2.4) can be seen in the
famous book of G.Darboux [2]. If tn(t) is a solution df 1-
dimensional Toda equation (1.1) then tn(x+y) is a solution of
2-dimensional Toda equation (2.1).

Observation in paragraph 1 indicates that once we have a
solution tn of Toda equation then we can findﬁsuitable multiplier
u, so that‘tn = tnun is a new solution of the same Toda equation.
That is to say Toda equation, even though it is a nonlinear
equation, can be sol#ed by d'Alembert's method of reduction of
order. But this method is nothina but the Backlund transformation.
Suppose that tn is a solution of Toda equation (2.1). r, and S,

are associated by the relation (2.2). We consider a triple of

partial differential operators

(2.5) M = XY + St

- -1 -
Xn = -r, X, Y =Y + s
Using these operators we introduce a linear space T of infinit-

dimensional column vectors t(...,un,...) (n-th component un(x,y)

is a function of x and vy).

(2.6) T =-Eun; Mouo =0, u

I
|.<
o
5
\Y2
(@]
c
1l
4
o
5
N
(@]
-

n+l nn

We can show the following theorem.
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Theorem 2.1 If‘un ¢ T then we have Mnun = 0, Upel = ann,
u 1 = Xnun for n é 0,+1,+2,.... ‘cn = tnun is a solution of
Toda equation (2.1).
In this sense we regard T as a linear space of solutions of Toda
equation.

Next let us determine separated solution®of Toda equation.
Assume r = f(n)g(x,y) then we can derive Liouville equation

satisfied by g(x,y) from Toda equation (2.3) and also some

difference equation satisfied by f(n). Solving these equations
we have
Theorem 2.2 Separated solution r, = f(n)o(x,y) of Toda

equation has one of the following form

1. r = (n-a) (n-b)h' (x)k' (y) (h(x)+k(y))F2r
2 r = (n-a)h(x)k(y),
3. r, = h&xky),

where a and b are arbitrary constants, h(x) and k(y) are arbitrary
functions.

Following theorems show properties of Toda equation under the
change of independeht variables.
Theorem 2.3 If tn(x,y) is a solution of Toda eqguation then

n0r1)/2(m (0)ky () %h, (x)k, (y) s also

tn(h(x),k(y))(h‘(x)k'(y))
a solution of Toda equation for any functions h(x), hl(x), hz(x),

k(y), k() and k,(y).



Theorem 2.4 If tn(x,y) is a solution of Toda equation and

u_(x,y) € T[tn(x,y)] then

ot

n(xy) = tn(h(X),k(y))(h'(x)k'(y))n(n+l)/2

is also a solution

of Toda equation and
n+l

=h

(X y) = u (h(x),k(y))k'(y)

h(x) and k(y).

€ T[E£(x,y)] for any functions

Since we have above theorems when we treat Backlund transfor-
mations of separated solutions we can assume with no loss of
generality the following simple form for separated solutions.

Fundamental separated solutions

1.t = A (x-y) "M O) o nea) (neb) (x-y) 72,
-1
S, = (a+b+1-2n) (x-y) =,
where A(n) is defined by A(n+l)A(n—l)/A(n)2 = -(n-a) (n-b),
A(0) = A(l) = 1. This most important separated solution was
found by G.Darboux.
2. t, = A(n)exp((a-n)xy), r, = -(n-a), s = x,

where A(n) is defined by A(n+l)A(n—l)/A.(n)2 = ~(n-a),

A(0) = A(1) = 1.

[
—
0]

Il
o

3. t = exp(xy), r

a and b are arbitrary constants.

- 10 -
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83. Structure of linear space Tg
As starting solution t we choose the first fundamental
separated solution t = A(n)(x—y)—(n_a)(n—b>. The triple of

differential operators given by (2.5) takes the form of

(3.1) M = XY + (a+b-1-2n) (x-y) "TX - (n-a) (n-b) (x-y) 2,

>
I

((n-a) (n-b)) L (x-y)°X, ¥ =Y+ (at+b-1-2n) (x-y) "+

Mn is a Euler-Poisson-Darboux operator. The linear space given
by (2.6) using this triple of operators is denoted by T,. The
structure of the linear space T, is clarified if we know linear
operators which keep T, invariant. Linear partial differential
operators which keep Ty invariant form 3-dimensional vector space.

As standard bases we can choose the following three operators.

(3.2) B =-X-Y, F = «2% + y2Y + (2n+l-a-b)y,

s
1l

- (2xX + 2yY + 2n + 1 - a - b) .
We have the following csﬁutation relations.

(3.3) [En’Fn] = H n°

L HED = 2 , [H ,F 1 = -2F

Casimir operator

_ 2
(3.4) L, = Hy /8 + (B F, + FnEn)/4

- 11 -
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= (a-b)? - 1)/8 - (x-y)M_/2
commutes with En’ Fn and Hn' So En’ Fn and Hn commute with Mn
modulo M . One-parameter groups En(A), ?n(ﬁ) and ﬁn(v) of linear

transformations with generators En' Fn and Hn are given by

(3.5 E_(Mu,(x,y)

un (X‘—)\(Y‘—)\) ’

a+b-1-2n

Fo(Wu_(x,y) = (1-py) u (x/ (1=px) v/ (1=py)) ,

=2V =2y

e(a+b'1_2n)vu (e “"x,e “Tv).

H Ou (x,y) o

We have the following intertwining properties.

(AE_q + pPF,_q +VH )X

(3.6) X (AE, + pF_ + VH)) n—

nl

Yn(/\En + pF+ ))Hn) (AE

n+1l +'/"'Fn+l + UHn+l)Yn’

YnLn = Ln+lYn’

s

X E (MNF_ (WH (v) = E _(NF__j(WH _{ (X,

Y E (NF (WE ) = E ., WF_ . WH ., )Y,

for any A, ﬂ—and V.

As a conclusion we have
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Theorem 3.1 If u, € Tl then

(AE, + pF, +VH)u , E NF (PME 0)u, €Ty

for any A, féand V.

Theorem 3.2 If un € Tl then

a+b-1-2n ( Jx- B Sy- P
n'-yx+ & '-yy+ &

Po(@u (x,y) = @-¥y) ) €T

1

for any g = (‘; E\’)G SL(2,f). Moreover we have

£rlaq) Fla,) =P (9;9,) for any g;, 9, € SL(2,0).

4. Structure of linear space T2
In this paragraph tn = A(n)exp((a-n)xy) is the second

fundamental separated solution. By (2.5) we have

(4.1) M= XY + xX + a - n, Xn = (n—a)-lX, Y =Y + x.

The linear space given by (2.6) using this triple of operators
is denoted by T,. Linear partial differential operators which
keep T, invariant form 4-dimensional Lie algebra, Its standard

bases are
(4.2) K =1, E =X+vy, F_ =Y, H_ =yY - xX + n.
Commutation relations are

(4.3) [Eann] = —Knl [Hann] = E [HntFn] = ~F

nl

- 13 -



39

H 1 =0.

[k ,E] = [K,F ] = [K H

Mn = En - H, t+a commutes with Kn’ En’ Fn and Hn' One-parameter
~J N A o~
groups Kn(K), En(h), Fn(rw and Hn(V) of linear transformations

with generators Kn’ En’ F and Hn are given by

n _ K ~ . _ ,\y .
(4.4) Kn(fc)un(x,y) = e’un(‘x,y), En(/\)un(x,y) = e un(x+/l,y),

~ ~o . _V
Fn(r)un(x,y) = un(x,y+#), Hn(V)un(x,y) = eunun(e x,evy).
We have necessary intertwining properties which are similar to
(3.6). Conclusion is
Theorem 4.1 If u, é T2 then
(kK + AE + pF_ + VH Ju , K (KE (AMF (WH (Vo €T,
for any K, /\, /w‘and V.

Theorem 4.2 If u, € T, then
?n(g)un(x,y) = exp(K+Ay+Vn)un(e—y(x+A),ev(y+r0) €T,

for any g = g(K,A,ﬂqU) = 71 rev k y\€G(0,1). Moreover
e’ A
1

$alaPrlay) =P (979,  for any gy, a, € G(0,1).

Group operation in G(0,1) is given by

(4.5)  g(kys Ay ) IRy i Ay, g V)

- 14 -
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iy a1 - .
g (K +&+ A e 7o M +tAe Pptfae TV b)) .

Corresponding Lie algebra g(O,l)=={KkﬁAe+rf+Vh;K;A,ﬂ,V € m_}

has the standard bases

(4.6) k=/0 0 1 0\, e=/0 0 0 0},
0 0 1 0

£f=4,0 1 0 0\, h=/70 0 0 1).
0 1 0 O

Commutation relations among these bases

(4.7) [e,f] = -k, [h,e] = e, [h,f] = -£,

[k,e]

[k,£] = [k,h]

Il
(o]

agree with (4.3). By theorem 4.2 we have

(4.8)  E_(A) = £ (g(0,4,0,0)), F_(

p o= £ (g(0,0,p4,0)),
Hn(v) = _?n(g(olororv))o
Moreover we have

(4.9) E_=aPf (e), F =dP (£), H =df, (h)

- 15 -
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where df is a differential representation of £ .

¢ 5. Structure of linear space T
Here tn = exp(xy) is the third fundamental separated solution.

By (2.5) we have

(5.1) Mn = XY + 1 (telegraph operator), Xn = =X, Yn =Y.
The linear space given by (2.6) using this triple is deneted by
T,. Linear partial differential operators which keep T,

invariant form 3-dimensional Lie algebra. Its bases are

(5.2) E =X, F_=Y, H = yY - xX + n.

Commutation relations are

(5.3)  [E,,F ] =0, [H,E]=E (H ,F ] = -F_.

n’ n

M =EF +1=2XY + 1 commutes with E_, F_ and H_.
n n n n n n

One-parameter groups En(ﬂ),lgn(ﬁd and ﬁ;(v) of linear trans-
formations with generators E» Fo and H are given by
(5.4)  E (Mu,(x,y)

= u, (x+A,y), Fn(yv)un(x,y) = u (x,y+}),

I
o
[«
D)
X
o
<

H (V) (x,7)

We have also necessary intertwining properties which are similar

- 16 -
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to (3.6). Conclusion is
Theorem 5.1 If u, € T3 then

(AE, + pF  +VH )u , - 'Evn(/'\)'ﬁn(/u)f{'n(wun € Ty

for any A, ftand V.

Theorem 5.2 If u, = T3 then

P @ (x,y) = e™u_ (e (x+A) & (y+p) € T,

for any g = g(A,ﬂ,V) =/1 y VY \€G(0,0). Moreover
e’ M
& A
1

£.(g) P (g,) = £,(gq9,)  for any gy, g, € G(0,0).

Group operation in G(0,0) is given by

% Y ,
(5.5)  g(Aps g ) g Ay o, My = a(hre Ay, e ey, Vi+0y)

Corresponding Lie algebra g(0,0) = {Ae + pP£ o+ yh;),leie E_}

has the standard bases

(5.6) e , f = 0 0\, h=/0 0

Commutation relations among these bases
(5.7) [e,f] = 0, [h,e]l] = e, [h,f] = -£f

agree with (5.3). By theorem 5.2 we have

- 17 -
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Il
I

(5.8)  E (N = £(a(,0,0), F (P =P (a(0,,0),

i

H) (V) = £(g(0,0,V)).

Moreover we have

(5.9) E =4 (e), F, =df (f), H = df_ (h)

where dPn is a differential representation of Pn'

§ 6. Eigenfunction expansion and hypergedmetric functions with
two variables
When we have a linear space and a linear operator which keep
the linear space invariant the structure of the linear space
is completely described if we can choose special bases which
are all eigenvectors of the linear operator.
Theorem 6.1 Dimension of the vector space Tlfﬁhn € ker(Hn

+a+b+1—2c)}is 2. 1Its bases are given by

(6.1) £ _(a,b,cix,y) = (1=¢)_(y=x)""y? °F (c-a,b-n,c-n;x/y)

(1-a), (1-b) |

(a,b,c;x,y) = ( _x)b’nxn+l—c a-l-n
gn r~err Iy - .(2—C)n y . y

F(n+l-a,b+l-c,n+2~-c;x/y) .

Further we have

- 18 -
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k (c—b)k(c_a)k
(6.2) E "f (a,b,cix,y) = ) f,(a,b,ctkix,y),
r Xf (a,b,c;x,y) = (1-c).f_(a,b,c-k;x,v)
n n 7 4 I Iy k n r 7 ! r Y 14
k

E 9,(@/b,cix,y) = (c-1),9, (a,b,ctkix,y),

(a+l—c)k(b+l—c)k

k
Fn gn(albIC;XIY) =

gn(a,brc“kier) .

By theorem 3.1 each Enkfn(a,b,c;x,y) belongs to T, - Since T,
is a linear space linear combination of these functions with
suitable coefficients also belongs to T, if it converges.

As a special case we can show that

(6.3) F(b',c—b;En)fn(a,b,c;X,y) =

(1-¢) _ (y=x)°""¥?"°F  (c-a,b-n,b',c-nix/y,1/y)

belongs to Tq- Here F(a,c;z) is a confluent hypergeometric

function and

() (b"), .
1k Ik

(6.4) TFy(a,b,b',cix,y) = 21 ‘aigj% 5
i,k 20 J+k

is the first one of Apell's hyperceometric functions with two

variables. Thus we can also construct solutions of Toda equation

by F, and Fa the second and the third one of 2pell's hyper-

geometric functions. But it seems difficult to construct

a solution of Toda equation by the fourth one F4. That is to

- 19 -
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say among the Apell's hypergeometric functions with two variables
the first three Fl(a,b,b',c;x,y),,F2(a,b,b',c,c';x,y) and
F3(a,a',b,b',c;x,y) belong to "Toda family" but the last one

F4( a,b,c,c';x,y) does not. According to Horn's list [3] we

have 34 hypergeometric functions with two variables "of order 2".
We confirmed that 21 functions among those belonag to "Toda
family". We only show a list of "Toda family" without further

explanation.

L. Fy ‘*’,:'jl — o H —_?I!{il’ r, =%
| |
Fy '—9@1 6, —I

2. W =8 @, H —H, -, %, H
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