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Ecotons of a Nonlinear Diffusion Equation
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Abstract

The present note is devoted to a short introduction of
"ecoton" (ecological soliton). The ecoton which we will show
is a sort of localized solitary wave produced by the interpiay
of two forces, diffusion processes and aggregation ones.
The equation governing such solutions is a nonlinear degenerate
diffusion equation including an aggregative advection of long
range interaction. We give an analytical explanation of
ecotons and then show some numerical simulations of initial

value problems for the equation.
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§1 Introduction
In this note, we study solutions of the following
nonlinear diffusion equation including an aggregative

advection of long range interaction;

™ - [R(x-y)u(y)dy-u(x) 1, (1)
where u is the population density, m is a real number and
K(x) is a certain integral kernel. This type of equations

1)

has been proposed by Nagai and Mimura to describe spatially
aggregating pattern of biological individuals.

The first term on the right-hand side of (1) is a very
simple density dependent diffusion process if m > 1. The
diffusion rate is given by mum_l. Ifm=1 (linear diffusion),
an initial distribution of populations in a bounded region
spreads out at an infinite speed. However, in the case of
m > 1, the situation is quite different. It is known that
the initial distribution in a bounded region spreads out at
a finite speed, since the diffusion rate degenerates at the
point where u(x) = Ol).

The second term of (1) exhibits an aggregation effect.

As an oversimple example, we may consider

1 for x < 0
Kl(x) = 0 for x = 0 (2)
-1 for x > 0

For this kernel, the integral term is expressed as



186

20 (U2 uly,0dy - [ X uly,tdy Julx) 1, (3)

which provides the mechanism that u(x,t) moves in the right

direction if
X 00
[_S uly,p)dy < [ uly,t)dy, (4)

and in the left direction when the inequality is reversed.
Hence it is phenomenologically understood to be a kind of
agg;egation process of populations.

In the case of linear diffusion (m = 1 ), there are
several examples where (1) can be solved explicitly. When
K(x) is specified as k2), (1) becomes equivalent to Burgers'
equation, and therefore is exactly linearized by using Hopf-
Cole transformation. Another example is the equation with

the integral kernel,

. )
Kz(x) = 67(—§g)coth %% , (5)

where 07 means the principal value with a positive parameter
§. By introducing a splitting of real functions and using a
dependent variable transformation, the equation can also be
exactly linearized.z)'B)
In the case of density dependent diffusion (m > 1 ),
any exact result has not been reported to our knowledge.

4)

Recently, however, Ikeda has shown an explicit equilibrium

solution with m = 2 when K(x) is chosen as
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-1 for 0 < x < r
K3(x;r) = +1 for -r < x < 0 , (6)

0 otherwise

where r is a positive parameter denoting the parceptible
distance. Of course K3(x;w) = Kl(x). According to his
result, stationary localized solitary pulse solutions with
compact support can be explicitly written down if r > w.
His result can be easily extended to the equation with an

unsymmetric kernel,

- (1+8) for 0 < x < x
K4(x;r) = 1 for -r < x < 0 , (7)
0 otherwise

where 6 is a positive parameter. The addition of 6 in the
kernel implies that a kind of flow is introduced intod the
system. Hence one can expect that the(solitary pulse moves
at a certain constant speed. In the following section, we
show an explicit form of travelling wave solutions. The
solutions play an important role in the development of the
initial distribution. >In §3, we show several numerical
simulations which give time-dependent behavior of interaction

between travelling waves.
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§2 Travelling wave solutions

The equation we are now conserned is

Ju d 3 2 xX+r X
3 - 3% [3;(11 ) - {(l+6)fx u(y)dy - fx_ru(y)dy}u(X) 1.
(8)
It is easy to see that the total population density
I =] " uxdx (9)

is a conserved quantity of (8). 1In the following, we assume

I < », Let us introduce a "potential" function w(x) by

w(x) = [ % u(y)ay. (10)

(o]

Substituting (10) into (8), we have a differential-difference

equation,

ow _ 9 ,dw, 2 ow
'5? = é‘;(g;{- - {W(X"I') - (2+6)W(X) + (l+6)w(x+r)} E .
(11)

The boundary conditiors on (11) are

w(-®) =0 (12)
and

w(») = I. (13)

Let us take a limit of r » o in (11). Then it is
reduced to a differential equation,

ow _ 0 ow, 2 ow

TE —B—X- (—8—;(- + {(2+6)W - (l+6)I}8X . (].4)
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Introducing & = x--ct—x0 ( ¢ and X are constant ), and
noticing (12) and (13), we obtain the equation governing a

travelling wave solution,
ow, 2 1 2 _
(§E) + (1 + 56)(w - Iw) = 0. , (15)

The speed of the travelling wave is determined from the

boundary condition as
_ 1
Cc = '2— 6I. (16)

Applying an undetermined coefficients method, we find that

Ww(E) = I sin? %« J1+ %-e £ (17)

is a formal solution of (15). The boundary conditions (12)
and (13) also demand that w(¢) in (17) should be between nm
and %ﬁ + nm where n is an integer. Without loss of
generality, we may choose n = 0. Then from (10) we have an
explicit form of travelling wave solution,

1 V1+ % I sin/1+ % (x - %elt - xo)

2

for 0 < x - Eelt - X, < —_—
V1+6/2

0 otherwise.

This solution describes a localized solitary travelling wave
with the speed %GI, the amplitude % v1+6/2 I and the width
n/ V1+6/2. Of course if 6 = 0 is taken, this agrees with the

Ikeda's equilibrium solution. We would like to emphasize that
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the speed and the amplitude of travelling wave (18) depend on
the total density I but the width is independent of it.

We have obtained the travelling wave solution from the
differential equation (14). However, it can be the solution
of (8) for r > m/Y/1+6/2, since the support of the wave is

compact.

§3 Numerical results

The travelling wave solution obtained in the previous
section is a special solution of (8). It is an interesting
problem to see the role of the travelling waves in the
initial value problem of (8). We have done several numerical
computations for the purpose. Figs. 1 and 2 show the time
development of initial distributions with rectangular shape.
The total aensities fRu(x,O)dx of both examples are the
same but the hight and width are different.

Fig. 1.1 shows the initial stage of the time development.
One can see that the rectangular pulse is deformed to make
three solitary waves. The first travelling wave with
compact support is observed in Fig. 1.2. The second pulse
appears in Fig. 1.3 and the third in Fig. 1l.4. Finally in
Fig. 1.5, we see that theée three pulses move to the right at
their corresponding constant speeds. We find that each pulse
has the form of the wave analytically obtained in §2. Since

the speed ( %GI ) of the waves is proportional to the

1l

Il

amplitude ( %¢l+61/2 ), these pulses are separated each

other in the course of time. This kind of behavior is
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similar to that of solitons in nonlinear dispersive systems.
For this reason, we may call these pulses "ecotons", i.e.,

ecological solitons. It is noted, however, that the ripple-
like waves do not appear in this nonlinear diffusive system.

In Fig. 2.1-2.4 we again observe the appearance of three
ecotons. In this case the second ecoton is larger than the
first, and the third is much smaller than the other two.
Since the second ecoton moves to the right faster than the
first, one can expect that the second overtakes the first
subsequently. Figs.3.1-3.3 are a numerical simulation of
such an overtaking. One large ecoton is placed on the left-
hand side of a small one. Both approach each other and
merge to make a single larger ecoton. Thé coordinate moving
at the speed the smaller ecoton initially has is taken in
Fig.3.1-3.3. Fig.4 showé the trajectory of peaks of two
ecotons which eventually become a single ecoton.

We have only shown analytically the explicit form of
one ecoton. The numerical simulations suggest that there
may be a way to treat the collision of ecotons or the initial
value problem of (8) analytically. It is worth while
investigating the qualitative properties from various point
of view. Unfortunately, we have not been able to discuss

these properties, which will be a future problem for us.
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Fig.l.1 1Initial value problem of (8).

Rectangular pulse 1.1.

the first ecoton starts
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Fig.1l.2 1Initial value problem of (8).

Rectangular pulse 1.2.
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the second ecoton starts

_Af

Fig. 1. Initial value problem of (8).

Rectangular pulse 1.3.

the third ecoton starts
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Fig. 1.4. Initial value problem of (8).

Rectangular pulse 1l.4.
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Fig. 1.5. Initial value problem of (8).

Rectangular pulse 1.5.
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Fig. 2.1. Initial value problem of (8).

Rectangular pulse 2.1.
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Fig. 2.2. Initial value problem of (8).

Rectangular pulse 2.2.
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Fig. 2.3. Initial value problem of (8).

Rectangular pulse 2.3.
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Fig. 2.4. Initial value problem of (8).

Rectangular pulse 2.4.
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Fig. 3.1. Collision of two ecotons 1.

Fig. 3.2. Collision of two ecotons 2.
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Fig. 3.3. Collision of two ecotons 3.

Fig. 4. Trajectory of peaks of ecotons

in Fig.3.
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