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Abstract: Three types of learning control laws afe proposed
for mechanical or mechatronics systems with linear and non-
linear dynamics, which may be operated repeatedly at low cost.
Given a desired output yq over a finite time duration [0,T] and
an appropriate input U, these laws are formed by the following

simple iterative processes: 1) U, 1™ Wt ®(Yd'Yk), 2) U:1" Yk

+

+ Fé%(yd-yk)’ and 3) up, ;= ut (oF ré%)(yd-yk), where uy (up, ;)
denotes the kth(k+1th) input, Yk the measured output at the kth
operation corresponding to Uy s and ¢ and T positive definite
constant gain matrices. It is shown that the first law 1)
with an appropriate gain matrix ¢ is convergent in the sense
that yk(t) approaches yd(t) as k+» uniformly in te[O,T] if the
objective system is linear and strictly positive. The same
conclusion is also proved when the system is subject to a
linear mechanical system. In addition, a rough sketch of the
convergency proof of the second and third learning control laws
is presented for a class of linear and nonlinear dynamical

systems. Finally some discussions on potential applicabili-

ties of these learning methods for robot controls are given.
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.« INTRODUCTION

In the control engineering world little attention has been
raid to "leérning" since more than twenty years ago "pérceptron"
ras introduced by Rosenblatt [1] in the field of pattern recogni-
ion and subsequently '"learning systems' was discussed by Tsypkin
2]. This might be due to lack of dynamic structures in theif
athematical models, since a finite number of only cbefficient pa-
ameters are modified through a learning process. However, is the
oncept of '"learning" still wuseless and irrelevant to control engi-
eering in the present robotic age or the forthcoming VLSI era?

S a robot or any automatic machine unable to learn, without help of

uman operators, anything from previous operation data and improve

he performance of next operation, no matter how fortunate it is that
variety of mechanical systems like robots can be operated repeatedly

t low cost?

Taking these points into consideration, the authors [1]-[4]
ecently proposed a learning control method based on a simple itera-
ive algorithm of learning process for motion control of robots.
his algorithm was called the "betterment procéss", which updates
he control input based on the previous operation data and betters
he performance of next operation in a certain sense, provided a
esired motion trajectory is given. In the present paper we propose
hree types of learning control scheme including the previous one
or linear and nonlinear dynamical systems and brove their con-
ergency under certain assumptions of the objective system dynamics.
he potentialities of these proposed learning control methods in

pplications of robot controls are also discussed.



The argument of this paper is developed in agreement with the
principle that mathematical sophistication for the proof of effective-
ness of the learning control law may be pefmissive but sophistication
of control algorithms must not be permitted. The propsed methods
together with the proof of their effectiveness were found in line
-with the engineering rule of thumb that the simpler the control

algorithm, the more robust it is.
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II. PROPOSAL OF THREE TYPES OF LEARNING CONTROL SCHEME

Suppose that a finite-dimensional dynamical system is given,
which has control input vector u with dimension m and measurement
output vector y with the same dimension, m. Then, consider a
situation that given a desired output yd(t) over a finite-time
interval [0, T], we are requested to find a control input uU*(t),
which excites the system and eventually produces an output y*(t)
so that y*(t) must be coincident with yd(t) over t € [0, T].

If a full description of the system is available, it may be possi-
ble to construct such a control input on the basis of systém in-
version techniques or so., However, in practical situations it is
usual that only a rough sketch of the system is available or system
parameters have inaccﬁracies to some extent even if a description
of the system dynamics is known. In such a situation, it is al-
ready shown by the authors [1], [2], [3] that a learning control
scheme called "betterment process'" becomes quite effective.

This lea:ning control method can be described by a simple iterative

rule of input modification defined as
_ d |
uk+l (t) = uk(t) + F_d—t-{yd(t) = yk(t)} (1)

which is schematically shown in Fig.l. Here, T is an mxm
constant matrix called '"gain matrix". In other words, at the
k+1th run, the control input is updated in such a way that the
previous input at the kth run is modified by being added a deri-
vative of the error between the previous output yk(t) and the given
desired output yd(t). The modification rule may be technically

realized by a digital computation method illustrated in Fig.2.
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By use of present VLSI technology, it is possible to assume that
the continuous-time functions yd(t), yk(t), and uk(t) are sampled
sufficiently densely, converted from analogue to digital, and
stored in RAMs. Namely, it is assumed that those original time-
continuous signals can be promptly reproduced from the memory with
sufficiently’high accuracy.

In addition to the iterative rule defined by Eq.(l), we in-
troduce another simple iterative rule called and defined by

1) Co-type Betterment Process (see Fig.3):

uk+l(t) = uk(t) * @ek(t), (2)
where

e () = y4(t) - y () (3)
and ¢ is an mxm constant gain matrix. In relation to this, we

call the process of Eq. (1)

2) Cl-type Betterment Process:
L, (6) = uy (1) + T3 e (1) TS
k+1 k t "k :
In comparison with these we sometime discuss
3) Mixed-type Betterment Process (see Fig.4):

U, () = (1) + (0 + T=)ey (1), (5)
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III. CONVERGENCE OF C°-TYPE BETTERMENT PROCESS

FOR LINEAR TIME-INVARIANT SYSTEMS

In this section we will present a proof of convergence of a
Co-type betterment process provided the objective system is linear,
time-invariant, and strictly positive.

Suppose that the system is subject to

: t
y(t) = g(t) + _J H(t-t)u(t)dr, te[O0, T]. (6)
o

We assume that at every operation trial, g(t) and H(t) are the

same, namely,
N : .
Y (t) = g(t) + Jﬁ H(t-t)uy (t)dr, te[0, T] (7)
o

If the system has a state-space representation

X Ax + Bu,
y = Cx, (8)

the condition of Eq.(7) is fulfilled, provided every initial state
xk(O) is set at the same fixed state, xo, in every run. In fact,

it is evident that

ye () = ceft o) ¢ |

t
CeA(t_T)Buk(r)dT
o :

t
CeAtxo + .f CeA(t-T)Buk(T)dT
()

t
g(t) +~J— H(t-1)u, (1)dT, (9)
o]
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where

g(t) = CeAtxo,
A(t-r)B.

(10)
H(t-t) = Ce

Definition 1 (for example, see [7])

A linear time-invariant system described by Eq.(4) is said
to be strictly positive, if for any T > O and any input u(t),
te [0, T], the following inequality is satisfied with some constant
a > 0:

¢
aJﬂ uT(t)u(t)dre. (11)

(¢

v

t tT
j. j[ u (t)H(t-t)u(t)drdt
o Jo

In what follows, we denote the Lz-norm of vector-valued

functions u(t), te[0, T], by
T 1/2
full = [[ u (t)u(t)dt] . (12)
o ;

Now we are in a position to state:
Theorem 1 Suppose that the linear time-invariant system is
strictly positive and the gain matrix of Co-type betterment process
is set in the following way:

= vI (I: mxm identity matrix ) (13)
with a sufficiently small y > 0. Then, the Co-type betterment
process is convergent in the sense that there is a number 0 ¢ p < 1

such that

”ek"'l“ b p”ek 1 (14)



R9<
and hence
legll s o¥ llegll —> 0 as k > = (15)

Proof It follows from Eqgs.(2), (7), and (13) that

t
Yk+1(t) = g(t) + J; H(t-r){uk(T) + Yek(r)}dr

t
=yk(t) + Y‘L H(t—r)ek(r)dr. (16)

Hence, from Eq.(3) it follows that

(t) (t) thH( e, (t)d (17)
e t = e t - t-T)e T T
k+1 k Y A k

which implies

| T
legarl? = Negl® + y2lwyl? - vaf ep (D)w (0)dt  (18)
0

where
t , ¢
wk(t) = d[ H(t-r)ek(t)dr, : (19)
o}

Here it is necessary to note that according to Parseval's equality

in relation to the Fourier transform in function space LZ[O, T1,

we have

T
i ? = *{UE HT (0H(©dt e l? < A llell? (20)



oo
w
c.'\.

where A = A{X} denotes the spectre radius of matrix {X}. Then,
substituting Eq.(20) into Eq.(18) and noting the strict positivity

of the system (see Eq.(11)), we get

leraq I g @+ a2 - 20v)]el . (21)

A

Hence, choosing y > 0 sufficiently small so that

pf =1+ ay? - 20y <1, (22)

we get

< 1. (23)

A
A
©

leuql < 0 el 0

This completes the proof.
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IV. CONVERGENCE OF C°-TYPE BETTERMENT PROCESS FOR LINEAR

TIME-INVARIANT MECHANICAL SYSTEMS

In this section we will present a proof of convergence of a

Co-type betterment process for a class of linear time-invariant

mechanical systems.

Suppose that the objective system is subject to a system of

linear differential equations

RX + Qx + Px = u, (24)
where
u, x € R, R, Q, P g R*, (25)

It is assumed that all coefficient matrices R, Q, and P are
positive definite. In such a case, the system is often called

a linear mechanical system. Suppose that the velocity vector

X can be measured and set
Cy(t) = x(t) (26)

Given a desired output yd(t) over a finite time interval te [0,T],
a Co-type betterment process yields
}ka + ka + ka = Uy,

Yi = Xy» (27)

Upey = U * 2(rg-Yyd

o

We assume that at every operation trial initial values of Xy and

X, are set the same, namely,

x, (0) = x°, x, (0) = x° (28)
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In addition, we assume that each component of uo(t) is continuous
and each component of yd(t) is continuously differentiable,

namely,
u, (t) €C[0,T] and y4(t) ec'[0,T]. (29)
Then, it follows from Eq.(27) that

R(Xp,1~ Xp) *+ Q- X)) + Pl = xp)

= Uy W = dey (30)
where we put
€ = ¥Yq ~ Yk (31)
Now, define
d (32)

k - *k+1 T Xk

and note that Eq.(30) can be rewritten into
de + Qdk * Pdy = dep | (33)

and the following relation holds:

dk = ep - €p,q- (34)

From these equations it follows that

JAC: J
] ek+l(r)®ek+l(r)dr =

o]

t T ‘ J‘t.T .
ep(t)dey (t)dr + 5 di (t)edy (t)dr

t .
-zfo er (1) 0d; (1)dr
(35)
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where ¢ is assumed to be symmetric. In view of Eq.(33), dk is
regarded as the output when an input uk=<I>ek is given to the
system defined by Eqs.(24) and (26). Hence, if the system were
strictly positive, the Co-type betterment process defined by
Eq.(27) would be convergent. Unfortunately, the system defined
by Eqs.(24) and (26) is not so in general. Nevertheless, it is

possible to prove the following result:
Theorem 2 Assume that uo(t) and yd(t) satisfy Eq.(29)
together with
y4(0) = x,(0) = x°, k=0,1,2, ... (36)
and gain matrix ¢ is symmetric positive definite and satisfies
Q>d¢ >0 | (37)

(Q-¢ is positive definite). Then thevCO-type betterment process

is convergént in the sense that
e (t) » 0 as ko> | (38)

uniformly in t ¢ [0,T].

The proof of this theorem is given in Appendix, since it is
rather elaborative.

Finally we remark that Theorem 2 is valid even if P is
non-negative definite but the positive definiteness of R and Q
is cruciel. In practical situations, if the smallest efgenvalue
of Q is not large enough then construction of a negative velocity

feedback loop may be effective in accelerating the speed of con-

vergency for the betterment process.
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V. CONVERGENCY CONDITIONS ON Cl-TYPE and MIXED-TYPE

BETTERMENT PROCESSES

When the Cl-type betterment process is used, the iterative
learning process converges for a more general class of dynamical

systems. At first, suppose that the objective system is governed

by
x = £(t,x) + Bu , (39a)
y = Cx , (39b)
where
x,£eRY, u,y aRm; B eRP™, ¢ eR™M, (40)

We assume that f is Lipschitz continuous, namely,
JECt,x)-£0t,x) ], £ alt)]x;-x,], (41)

for any t a[O,Tj and any pair (xl,xz) in a certain domain

QXQE:RHXRH, where a(t) is a piecewise continuous function and

<], = ,mex x| o @)

Nzlyeee,m
By symbol [A[|_ we denote the norm of matrix A induced by vector
norm [x],. Also we define a function norm |e]|, for an n-vector-

valued function defined over t ¢ [0,T] as

lel, =  sup {e**e(n)].}, (43)

&

0gteT
where A>0 is an appropriately chosen fixed number.
Now, assume that at each operation the system is set at the

same initial condition, namely,

x (0) = x°, k=0,1, ... (44)

Then, the following theorem holds:
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Theorem 3 If the following three conditions are satisfied,
then the Cl-type betterment process is convergent in a sense that

Y (t) =+ yd(t) as k-~ uniformly in t €[0,T]:

1) T - cBrf_ <1, (45)
2)  uy(8),yy(t) e clio,1] (46)
3) yq(0) = cx° . (47)

The details of proof is given in our previous paper [3].

Here, we repeat only key points. Firstly we note that

S.p(t) = (I - CBI)ey (£) *+ CLE(E,x (£) - £(t,xp,, (£))],

(48)
which yields
Iéxerly € 1T = CBTllepl, + aplClolxxy 0, (49)
where o= tggiTla(t)'

It has been shown by applying Gronwall's lemma [8] that the second

term of the right hand side is bounded from above by ¢(A)uékﬂk’

where ¢ (A) is a function of order A"Y.  Thus we have

| egaqly s (II-CBTl, + 0™ He, . 1 (50)

Finally, if we take X large enough, then, according to condition

1) in Theorem 3, there is a constant p such that

"ék'*'l(t)u;\ b “ékﬂ)\, 0 2o < 1. (Sl)
This implies
ék(t) >0 as k -+ o | (52)

Uniformly in t €[0,T] and, owing to ek(0)=0 by condition 3,
integration of Eq.(52) implies

e (t) >0 as k>« (53)

/<
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Now, consider the mixed-type betterment process defined by

Eq. (5) under the same condition of Theorem 3. Then, similarly to
Eq. (48), we obtain
ek+1(t) = (I-CBF)ek(t) - CB@ek(t)

+ CLE(t,xy () -£(t, %y, (E))]. (54)

Since it follows that

t
sup [ eMET e ()] ax

| -
lererls IS
t
=x(t-1) .
= ) e dr}-fé.l
ot d,
-AT )
- 1‘-';"“ ey = ot l)'llékll- (55)

In applying Gronwall's lemma for evaluation of the magnitude of
the last term in Eq.(54), a term of ek(t) appears, too. Never-
theless, all these extra terms are bounded from above by
O(A'I)Hékﬂx. Hence, we eventually obtain the same expression as

Eq.(50) and conclude:

Theorem 4 Under the same conditions as in Theorem 3,'fhe
mixed-type betterment process is convergent in a sense that
yk(t) > yd(t) as k=~ wuniformly in t€[O,T].

The Cl-type betterment process betters the performance of
next operation in the meaning of performance criterion, ”ék”A'
However, if the Lz-norm on interval [0,T] is used alternatively,
it is not clear whether the Cl-type (or mixed-type) betterment
process improves the performance at every run or not.

As a matter of course, both Cl-type and mixed-type betterment

processes are convergent if the objective system is governed by a



(]
=)
[t

linear time-invariant dynamical system described by Eq.(8) and the

following condition is satisfied:
1 - cBrf_ < 1. (56)

In addition to this, if the Co-type betterment process 1s con-
vergent for the same linear time-invariant system then another

mixed-type betterment process defined by

- d ‘
Upep = Uy * (a@+(l-a)FaEJek (57)
is convergent. That is, the following relation holds:

YD = wy®) + (1-a)yp) (58)

vhere yﬁ), yi), yi) denote the output trajectory when the mixed-

type, Co-type, or Cl-type betterment process 1s respectively used
inder the same conditions on uo(t) and yd(t). Eqs.(57) and (58)
suggests us an idea that it may be possible to deduce a better

iterative learning process by choosing the parameter o appropriately

»n the basis of operation data at a few early trials.

/&
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VI. DISCUSSIONS ON APPLICABILITY OF LEARNING CONTROL METHODS

FOR ROBOT MANIPULATORS

There are two approaches for clarifying the potentialities of
proposed learning control methods in application to robot manipula-
tors. It is well known (for example, see [9], [10], [11]) that
the dynamics of serial-link manipulators with n degrees of freedom

is described by
(J,* H(a))q + £(q,4) + g(a) = Ku, (59)

where qeRn is the vector of joint coordinates, H is a positive
definite inertia matrix, Jo is a positive diagonal matrix represent-
ing inertial terms of internal load distribution of actuators, f(q,q)
is a vector-valued function of centrifugal, coriolis, and viscous
frictional forces, g(q) is a vector due to gravity force, u is a
vector of input voltages given to actuator servo-motors, and K is
a diagonal gain matrix. At first we treat directly this nonlinear
system representation, which may be rewritten into the state space
form

q =rp,

1 1 (60)
- (I * H(@)) T I£(a,p)*g ()] + (I *+ H(a))

Ku.

P
Here we assume that the velocity vector p=q can be measured and

thereby regarded as the output. Then, if we set

XT = [Q.T, PT] ’ (61)
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the robot system may be expressed as

{5: f(x) + B(x)u,
(62)

[0,I]x = Cx.

"

y

Comparing this with Eq. (39), we note that the coefficient métrix B (x)
in Eq.(62) is not constant but dependent on state X. However, i§
has been shown by the authors [2], [12] that for a desired velocity
profile yd=dd(t) given over te[0,T] the Cl-type betterment. process
converges if an initial input uo(t) is adequately chosen so that the
corresponding output yo(t) lies in a neighborhood of yd(t) and, in

addition, the following condition is satisfied:

1

IT - (3,+ H(@)) "KT], < 1 (63)

for all q. Fortunately, it is possible to expect reasonably, due
:0 the stable and robust structure of feedback laws [11l], that a
rontrol law defined by

u (t) = K'g(a) +K(ag - q) +B(ay - Q) (64)
rives rise to an output q(t) that remains in a neighborhood of
1d(t). Moreover, since in ordinary serial-link robots each entry
»f H(q) is a combination of trigonometric functions of onlyvrotation-
11 components of q, there are two positive definite diagonal matrices
iuch that |

@

A < H(q) <A (65)’

o 1°
'herefore, the key condition described by Eq.(63) is satisfied
rith a sufficient margin by choosing T so that it approximates

~1
. (J°+ Al)'

/Y
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In case that a desired path is given and described in terms
of task coordinates y=(y1, e ym), it is necessary to modify

the proposed learning scheme as follows:
up, (8) = u (t) + 37 (q(t)) e, (1) (66)
k+1 k 4 dt °k‘*’ -

The detailed proof for the convergency of this learning process
will be given in our subsequent paper [12].

The use of Cl-type betterment process for the system of
Eq.(62) means that the differentiation of the velocity vector
must be carried out. In practice, the velocity signal measured
through a tacho-generator is often contaminated by noise. Hence,
if the numerical differentiation does not work well in such a case,
the use of Co-type betterment process can be recommended by the
following argument. At first we note that given a desired trajec-
tory y =dqg on [0,T], Eq.(59) is rewritten into the following linear
differential equation in terms of deviation.vectors 2 7YY g and
"

(3 *+ H(t))Zy + B(t)zy *+ A(t)zy = h(t) + Kvy (t), (67)
where uy means a desired input that realizes the desired output
yd(t), H(t)=H(qd(t)), and B(t), A(t), and h(t) are appropriate
matrix-valued and vector-valued functions, respectively. Obviously
the inertia matrix JO+H(t) is positive definite by definition, but
other coefficient matrices are not necessarily positive definite.

However, if a linear position and velocity feedback loop of form

uy - (Bz, +Bz,) (68)
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Ls constructed locally as implicitly adopted in servo loops of

:onventional industrial robots, Eq.(67) is reduced to

(J* H(t))Z, + (B(t)+B)zy + (A(t)*A)zy = h(t) + Ku, ,

(69)
there B=KB and A=KA. Then both coefficient matrices of the
‘elocity term and position térm become positive definite by chqosing
. and B adequately. Differing from Eq.(24), Eq.(69) is time-
‘arying. However, it can be shown (see our separate paper [13])
hat the Co-type betterment process converges provided each diagonal
lement of A and B are sufficiently large and uo(t) and yd(t) are
ufficiently sﬁéoth. |

Finally we mention that experimental results demonstrate the
ffectiveness of both Co-type and Cl-type betterment processes in
ase of motion control of robot manipulators ([2},[4]) and further

n case of force or hybrid (positioﬁ and force) controls ([13],[14]).
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CONCLUSIONS

Three types of iterative learning control scheme for linear
and nonlinear dynamical systems have been proposed. It has been
shown that given a desired output over a finite timc-duration the
first learning control process is convergent if the objective system
is linear and strictly positive, or is a linear mechanical system.
It has also been shown that both the second and third learning
processes become convergent for a class of linear and nonlinear
dynamical systems. Applicabilities of these metnods for dynamic
controls of robot manipulators are also discussed. In parallel to
these, some of experimental results will be presented in our con-

current paper [13].
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APPENDIX

Proof of Theorem 2 It is evident from Eqgs.(33) and (28)

that

t T . t . . T:
J; ek(T)Qdk(T)dT =j; [de(T) + Qdk('r) + Pdk(‘l‘)] dk(‘r)d'l"

= L 1aTeyrd, (t)+ aT(e)pd, (£)] + J~téT(r)Qé (1)dt.  (A-1)
7 Ldy k K K , %k X 3

Substitution of this into Eq. (35) yields

[ [ omeon - [Fowo
g esp(T)oey 4 (0)dr = . ep(t)oey (vdr - ] dy (1) (Q-8)dy (T)drt
'»fé[ai(t)Rék(t) + di(t)Pdk(t)]. (A-2)

This holds for any t in [O,T]. It is now important to note that
Eq.(29) implies xOCt)E CZ[O,T], eo(t)s Cl[O,T], and hence do(§)
€ CS[O,T], for its second derivative is ih CI[O,T] according to
Eq.(33). Therefore we have

Rd_ + Qd, + Pd_ = o0&, (A-3)
with d_(0)=0, which is due to Eqs.(28), (38) and (33) for k=0.
Further note that xl(t)=do(t)+xo(t) and hence xl(t)s CZ[O,T],'
el(t)s Cl[O,T], and dl(t)e CS[O,T]. In such a manner, it is
obvious from mathematical induction that dk(t)e CS[O,T] and

Rd, + Qdy + Pd, = 0&, (A-4)
with Ek(0)=o. Then, the same reasoning as Eq.(A-2) is derived

induces the following:

t.r . _ J{t.T . jﬁ
}; ek+l(r)®ek+l(r)dr = A e (t)oe  (t)dt - .

- FLAL(ORA (1) + dL(t)Pdy(t)]. (A-S)

t..T .
d” (1) (Q-¢)dy (r)dt
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Let

t T .
ak(t) J{ ek(T)Qek(r)dT , (A-6)
o)

t, i
by (t) J; eE(r)@ek(r)dT X (A-7)

Since ¢, Q-%, and R are all positive definite, both ak(t) and
' bk(t) are monotonically non-increasing with increasing k and
bounded from below. Hence there exist two numbers a_ 20 and

bO;O such that

ak(t) > ag and bk(t) - bO as k »~ = (A-8)
uniformly in t ¢ {0,T]. This implies, in view of Egs.(A-2) and
(A-5), that

d (t) > 0 and 4, (t) ~0 as k=»>= (A-9)
uniformly in t e [0,T]. In addition, since dk(0)=0, Eq. (A-9)
implies

dk(t) -0 as Kk + o (A-10)

uniformly in te [0,T]. In view of Eq.(33), Egqs.(A-9) and (A-10)

give rise to the conclusion that
e (t) >0 as k> (A-11)

uniformly in te [0,T].

o
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