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}. Introduction and main results.

In the celebrated paper[l], Bers introduced Teichm&llér spaces
of Fuchsian groups and investigated them and their boundaries. Sice
his investigation, several authors have studied the Teichm&ller spaces
as well as their boundaries. In this article, we shall be concerned
in the relation between Teichm&ller spaces and the spaces of Schwarzian
derivatives of univalent functions.

Let [T be a finitely generated Euchsian groﬁp of the first kind-
acting on the upper half plane U and let T() be the Teichm&ller
space of [[. It is well known that T([) is identified with a bounded
domain ih ,BQ(I” ) by Bers' embedding, where B2(L, [[) is the

Banach spaCe of all holomorphic functions ¢ on the lower half plane

L with

(x(z))-¥v(z)% = gz) wvel, zer and

{80 = sup (Im,z)2|¢(z)l< + 9.
; z¢L

Namely, @ 1is in T(f) if there is a meromorphic function W¢ on
L such that the Schwarzian derivative {W¢, z3 of W¢ on L is
equal to g(z) and W¢ has a quasiconfomal extension (compatible

-~
with [) to the sphere <.
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We denote by S([) the set of all & in B2(L,[") such that

the above W¢ is univalent. It is khown that S(F) is closed and

|
{

contains T(P) = T(C)Y3T(C) (cf. Bers[l]). In the sequel, we denote

by W¢ for 4 in B2(Iu.r) a locally univalent meromorphic function

on L satisfying-
{w¢, z} = @g(z) and

W, (z) = (z + i)_1 + O(\z + i\) as vz - -i.

8

For every ¢ in B2(L, r), W¢ yields an isomorphism x¢ ‘of [ with

W¢or= %¢(a')ow¢ (Yéf’l) ,’ and if & ‘i's in S(["), then the group
r? - qﬁ(r) =,W¢]7(W¢)fl, is a Kleinian group. Furthermore, if &

is in T([), then [’¢ is a quasi-Fuchsian group, i. e., a Kleinian
group with two simply connected invariant components, and if g is
in 3T{), then ['¢ is a b-group, i.'e.; a Kleinian group with

only one simply connected invariant component.

First, we shall show

Theorem 1. Int S([), the interjor of s() on Bz(L,[’),,is

connected and is equal to T([).

In the proof of the theorem, the " A-lemma " (cf. Mane, Sad and

Sullivan[4]) will play an important role. From this theorem, we shall

show thw following;

Corollary. Let D be a simply connected invariant component>of

a finitely generated non-elementary Kleinian group G. Then D is



a quasi-disk (i. e., D 1is the image of the unit disk by a quasi-
conformal automorphism of @ and ¢ is a quasi-Fuchsian group) if
and only if there exists a constant C » 0 such that every meromorphic

function f on D 1is univalent whenever f satisfies the conditions

\{f, z3| < CPD(Z)2 and

{£, g(Z)}-g'(z)2 ={f, 2z} (Ygeo).

when G = {id.}. Ahlfors-Gehring showed the similar property of

quasi-disks called the Schwarzian derivative property in Gehrins|[2].

Next, we shall show a geometric property of T({I).

Theorem 2. Let [?, T(P) and B, (L, L) be as above, and let

H be a hyperplane in BZ(L,I’) with T{C)AH# #. Then H - HAT({)

A — N
is connected and 3(H - HNT@C)) = HNdT({"), where » is the boundary
operator considered in H. In particular, Ext T([), the exterior of

T({C) in B,(L, ), is connected and 3(Ext T()) = T{).

2

Theorem 2 is an extension of the following author's result.
Theorem 2' ([5] Theorem 2). Let I, T(), B,(L, ) and H be

as above, and let Vy, be the unique component of H - Hn T(C) which
is not relatively compact in H. Then every ¢ in S(Hr\T(P)) is

N\
contained in aqn.

Finally, we shall touch upon some results related to the above

considerations.
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2. Proof of Theorem 1 and Corollary.

Proof of Theorem l; Juravlev[7] has already shown that T ()
is equal to a éompoﬁent of Int s{([) containing thé origin. Hence
it suffices to show that Int S(f) has no other component other than

T('). Let S be such a component of Int S{7). Then for each g in
g _ o -1 . . . :

s, I'" = ﬁz(f) = W¢.P(W¢) is a Kleinian group with a simply

connected invariant component W¢(L). Indeed, let 11¢ be a component

of I’¢ containing W¢(L). Suppose that there exists a point p in

_Q.¢ -W¢(L). Then, for any € > 0, ‘Nz(p) ={zet : |z - p'\<£3 is

not contained in W¢(L)J{p§ because W¢(L) is simply connected.

This implies that Ni(p) contains infintely many points of 11¢ - W¢(L)

for any € > 0 and the Riemann surface £l¢/[’¢ contains infintely

many points that are not contained in W¢(L)/f’¢. However, L/P is

a Riemann surface of conformally finite type and, by Ahlfors' finite-

ness theorem so is ‘H¢/£'¢' This is absurd because the Riemann surface
W¢(L)/["¢ is conformally equivalent L/ . Thus,.ﬂa = W¢(L). Clearly,

W (L) is invariant under [’¢. Hence W¢(L) is a simply connected

]

invariant component of’[’¢.

Therefore, [’¢ has one or two simply connected invariant
components by a theorem of Accola (cf. [1]). Namely,_[’¢ is a quasi~-

Fuchsian group or b-group.
¢ . . . . . A f ¢
If [’ is a quasi-Fuchsian group, then the limit set ( )

of [’¢ is a quasi-circle. Therefore, W¢ has a guasiconformal
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extention by Ahlfors' theorem, and ¢ belongs to Tr\Bz(L,[’), where:

T 1is the universal Teichmuller space. On the other hand, Kral[3]
showed that T({) = Tr\BZ(L,[7) if [ 1is a finitely generated
Fuchsian group of the first kind. Thus, g is in T(). But this is
a contradiction. Hence, [’¢ is a b-group.

2
)

Since a function (trace lxﬁ(X) for a fixed Y €[ is analyti

on B, (L, ') and [ consists of countable elements, there exists

2

a ¢ in S such that (trace Q:¢(¥)) # 4 for every non-parabolic

element ¥ in [, namely, a b-group ["¢ is not a cusp. Therefore,
[’¢ is a totally degenerate group with Il(['¢) = W¢(L), where
fl([’¢) is the region of discontinuity of f’¢. From now on, we
shall consider such ¢ and I’¢.
Here, we note the following fact called the " A-lemma ".
Proposition (Mane, Sad and Sullivan(4]). Let A be a subset

of € and {i,} be a family of injections of A into €, where A
is in the unit disk D. Furthermore, let 1ix(z) be analytic with

respect to A €D for each 2z in A and iO(z) s z. Then, i for
each A € D 1is automatically a quasiconformal mapping on A, that is,

—_ ~ )
i) 1s a homeomorphism of A into € with

inf {d(ix(z), ix(z")) : d(z, 2') =r, z' €3’}

sup lim
z¢X ra0 sup fd(ix(z), iy(z")) : d(z, z') =, z' €}
<+ 00,



I where d(-+, *) 1is the spherical distance in C.

o~

We procéed to prové Theorem 1. Since g 1is in S, there exists
2 constant r > 0 such that {LPeB»z‘(L-, r' : \y - gli< r} is
contained in Int S(P). For each A€ D we set g& =g + 7\,((#0 - &)
._vl

and By = Wy o (W) on W (L), where ¢, is in B,(L,[) with

0(“ 4’0 - gIl<r. Then i» is conformal on » Wyj(L) = .Q.(f¢) and

satisfies the condition of the above proposition for A = ﬂ([’¢) .

Hence iy for each ¢ D can be extended to .Q.(P’é) = € quasi-

conformally. On the other hand, iy is a I?¢—compatible quasi-
o . R S L

conformal mapping, i. e., i°[’ °(iy) ia also a Kleinian group,

and [7¢ is finitely generated. Thus, the Beltrami differential of

i) vanishes almost everywhere on A([?¢) from Sullivan's ergodic,
theorem (Sullivan([6]). This implies that i) 1is conformal on ‘E;,v
for each A€ D, namely »i) is'a)Mbbius transformation. Hence, the

Schwarzian derivative {i,, z} = 0 on €. But this is absurd because
. _ e =1 -1,, 2 |

{iys 2t = APy =~ ) (W7 (2) e (W7 (2))7 # 0 for N# 0.
Therefore, we completes the proof of Theorem 1.

Proof of Corollary. We‘may assume that D contains the infinity.

Let h be a conformal mapping of L onto D satisfying

hiz) = (z + i)"Y + o(lz + il) as z = -i.
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Then [ = h—}GOh is a finitely generated Fuchsian group of the

first kind and {h, z3} is in B, (L, [) by Nehari's theorem (cf. [1])
So, if all f satisfying the codition of Corollary are schlicht on D,

then {feh, z} = {f, h(z)1+(h'(2)? + {h, 2} is in S(0), and {n, o

is in Int S([). Hence, {h, z} is in T([) from Theorem 1, that is,

h(L) = D is a quasi-disk.
Conversely, if D 1is a quasi-disk, then D has the Schwarzian
derivative property (cf. [2]). Hence, all f satisfying the

condition are schlicht on D.

3. Proof of Theorem 2.

Suppose that H - HaT([?) is not connected. Then there exists

a bounded component if H - HNT() in H, say V, because HAT(D)

A
ia bounded in H. Obviously, 3V<CS([) and therefore we can show that
V is contained in S([) by the same argument as in the proof of [4]

Theorem 2.

For a nono-parabolic element ¥el', (trace QB(?))Z - 4 is
analytic in BZ(I” ) and does not vanish identically on H, because
HNnT() # ¢g. Therefore, the set {;zsev : (trace ’,Z¢(T))2 - 4 = 0} is

a nowhere dense subset of V, and by the same argument as in the

proof of Theorem 1, we can take such a g in V that

(trace ‘X¢(Y))2 # 4 for every non-parabolic element YeI'. Since

g is in S(T) - T(D), [f¢ is a totally degenerate Kleinian group.

By using Proposition (the A -lemma) and Sullivan's ergodic theorem

again as in the proof of Theorem 1 for a small disk centered at g,
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~we have a contradiction. Since we have already shown that
(H-HNTE)) D HndT((D)
(Theorem 2'), we have

SH - HAT()) = H a¥T(D)

————

~

by a general relation QJ(H - HNT(D)) € HAJT(P). Thus, we complete

the proof of Theorem 2.

4. Remarks.

(1) Bers conjectured in [1] that every (finitely generated)
b-group is a boundary group of a finitely genrated Fuchsian group of
the first kind. As for regular b—groups,,Abikoff showéd*ﬁhat this
conjectur is affirmative. Noting that every b-group is in S([) for
a suitable [ by a conformal mapping of L onto the invafiéht compo-
nent, we verify that Theorem 1 implies that the set of b-groups which
are not boundary groups of Teichmallér spaces, even if it is not

empty, is not so large in a certain sense.

(2) By using the same argument as before, we have the following
which shows the complexity of boundaries of Teichmuller spaces.
Theorem 3. For each @ corresponding to a totally degenerate

group on JT([), there exists no complex manifold in T(ff) contain-

ing d.

Proof. If such a complex manifold M CT(l) exists, then there
is a holomorphic injection f of the unit disk in € into T(T) with

. -1 8 _
£(0) = 4. Set 17\(2) =Wf(,,\)°(W¢) "~ (z) on Q0P for A €D. By



he same argument as in the proof of Theorem 1, we have {ix, z\ =0

m € for all A€D and this yields a contradiction as before.
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