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1. Introduction.

Let A be the unit disc and let D (#C) be a plane domain con-
taining the origin., Set Dp = D\{p} for peD\{0}. Then there
exists unique holomorphic universal covering Ep:Aeop satisfying

f = ’
p(O) g, fp gy > 0.

Our aim is to derive the variation of the covering Ep bf moving
the puncture p in the domain D. Such a variation is called a
puncture variation. Theorem 4,2. is the main result of this
paper which gives explicitly the variation of fp. As a corollary
we have a puncture variation of the Poincare metric., To obtain
the formula we use quasiconformal mappings and apply a‘ well-known
representation theorem for quasiconformal maps with small dilata-

tion,



2. Construction of fp+€ from fp_

For sufficiently small peR let N = {z|0<|z-p|<e®} be a punc-
tured disc contained in fp(A) with 0¢N. Let A, be a fixed com-
ponent of £7'(N)., Note that A, does not contain the origin. Let

' be the covering group of fp. The following Lemma is well

known.

LEMMA 2.1. There exist a parabolic element Bel' and a Mobius
transformation A with the following properties,

(1) A maps the upper half-plane onto A,

(2) A(=)edd is the fixed point of § and A ' +8-Az = z+1,

3 A, is simply connected and contains a disc A(Uc) with

Uc = {zeC|Imz>c} (c>0), and

(4) two points z, and z, of A, are equivalent under I' if and
only if z, = Bn(zl) for some integer n,
PROOF. See Kra [3, p.52] or Ahlfors [1, Lemma 1] where more

general Kleinian case is considered. gq.e.d
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Let T be the cyclic subgroup of T generated by Bel.

Expressing f;’(N) as a disjoint union of the components, we have

£ETN = U ra, S
p rer /T,

where I‘/l"0 denotes thevset of left cosets. Let N:L>N be a

universal covering given by

2+p

’

n(z) = p + e

where L is the left half-plane {z|Re z<0}. By the theory of cov-

ering surface we can find a conformal map piA oL such that

B = e+2r1i (2.2)



and

f =T ond, . (2.3

LEMMA 2.2, For ¢eC small, there exists a quasiconformal map

¥, :L>C such that
¥ (z+2ni) = p_(2)+2ri on L (2.4)
and
e+H°§€ =1 .on 3L ‘ | (2.5)

"with complex dilatation

—ce?P 4+ 0(e?) (2.6)

for zeL; The eétimate is uniform fpr zel.

PROOF. Taking a branch of the logarithm, we set

we(z) = z + In (1-¢e?™P),
It is easy to see that this is a desired quasiconformal map,

g.e.d.

Define a map T:a5D by

pte

. |
fp(z) . ,Vzefp (N)

f
o |
£(z) = { ,
{e+n.¢€.¢.r-l(z) , zerd,  (r€r/T ),
It is seen from (2.1)-(2.5) thét f is a well-defined (topologi-
cal) covering of Dﬁ+€,
phism of A with complex dilatation g which is holomorphic near

Let g“vdenote the quasiconformal automor-

the origin and satisfies g#(O) = 0, g“'(O)‘> 0.
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LEMMA 2.3. We have the identity

- z - ‘ .
fp+e = f°geu on A

where the complex dilatation u is given by

[ .
| -1
. |0 ‘ , , zefp (N)
(z) = | (2.7)
#' . 1e"i('qoor-l)*u (2) ZEeTA (rel’/T )
' : ¢€ ’ ] ‘ 0
L

Here, ¢*u denotes as usual the pull-back u'w-%; of the Beltrami
coefficient u.

PROOF. Computing the éomplex dilatation we have

~

#? -y = 0 a.e. on A, Hence f°g;L is a holomorphic covering .of
°g£ﬂ
Dp+€ such that

-1 - f\'° -1 ,
?.g€ﬂ<0) =0, (feg.,0’(0)>0,

Since these conditions determine a holomorphic covering uniquely,

-1

we conclude that f = Fe '
p £ Ieu- g.e.d.

+e

3. Integral representation of the variation.

Let f” be the quasiconformal automorphism of A with complex
dilatation g which leaves 0 and 1 fixed. The following perturba-

tion formula is well known [2, p.10S1.

en is given by

LEMMA 3.1. For eceC small and ZeA, f
. _ . 2
fen(t) = g+£CE) + 0Ce”)

where

gCg) = - %ff ulz)R(z,t)dxdy + Ejf u(z2)t*RCz,1/T)dxdy
Jp RJJdp : k

- 4 -
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and

_ o tE-1)
R(2,8) = S0 o5(z-8)

The estimate is uniform for compact subsets of A.

It is convenient for our purpose to have a lemma with dif-
ferent normalization. "The next lemma is a useful perturbation
formula for:gu. Récall that u vanishes near the origin and that

9#(0)=0 and gn (05>0.
LEMMA 3.2. For ceC small and Zea, geﬁ is given by
- . 2
Feu ) = EFgCLI+0Ce™)

‘where

gy = - —5”

1(2)0Cz &) dxdy + 55[[ 1(2)0Cz, 1/€)dxdy
Jp JA

and
Qz,g) = —2H&
z (z-¢)

The estimate is uniform for compact subsets of A.

PROOF. Observe that

geg) = £¢&) +'%¢(£'(0)-f'<0)).

" LEMMA 3.1. yields

o
£y = ” ._u_<_z_>_dxdy-£” Ines i
A z (z-1) A Z(z-1)

Combining these identities, we ébtain the Lemma. g.e.d,

From Lemmas 2.3 and 3.2 we have, for CEf;i(N)

’



pte

where

1
1¢g) = 7;{! u(z)QCz,t)dxdy

-1
fp (N)

and

Jg) = -1¢1/8).

£ = £(8) + LE T(E)(eI(EI+ET(L)) + 0Ce)
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(3.1)

(3.2)

Since (2.1) is a disjoint union, I({) is expressed as a series;df

the form

I = s 1.
' rel /T, T

where

R I 1 Ny
Ir(§)'- zxjjern(z)Q(z,C)dxdy.

4, Evaluation of Ir(t).

By (2.6) and (2.7) we have

~r

Ir(c) A r*u(z)r*Q(z,C)dxdy
0

S

-1 %, % ,
L e iy ()7 Q(z,C)dxdy
v 1 €

A

~

- - *
¢ uy (2)(rep” ) 00z, E)dxdy
uuL € B '

1

dr

where r*Q(z,g) = Q(r(z),C)(aE)z is the pull-back of Q

) 7?[[ e® Py a0z, E0dxdy + OCe),
x20 .

(3.3

considered
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as a quadratic differential of z,. iThereforé,
1) = 1 + 0Ce) (4.1)

"where

' 1 r[ ,';-p -1 %
I = - 5= (r- ) Q(z,%)dxdy.

Our task is to evaluate the,dduble integrél I by using the cal-
culus of residues. For convenience we introduce the functions u.
and w with the following properties,

(1) ¢ = uew,

(2) wiA>L is a Mobius transformation onto L such that
WweB = w+2ri, and B

(3) wuiw(a )L is a conformal surjection such  that
u(z+2ri) = ul(z)+2ri,
Obviously, such u and w exist but not uniquely. We fix once and

for all a choice of w,

LEMMA 4.1, For fixed Zéf;i(N),

4

\(Y°¢f1)*Q(z,§) = 0(z ) as z»», zel,

, - -1
PROOF., Setting T, = rew ! and u =u , we have

where r :L>A is a Mobius tranSformatioh’ and ;ui:LeL is holo-

morphic., Clearly,
Ty, '(2) = 0€zTh) (zew), (4,2)

On the other hand, by expanding the function u1(2)42, which is
periodic with period 2ri, in a Fourier séries, it is not hard to

see that
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u, (z) = 2+0(1) and u, "(2) =0(1) (z¥=), ‘ (4.3)

since u (z) is analytic on 3L and u, maps L into itself. (4,2)
and (4.3) show that (r°¢-1)'(z) = 0(2_2) (z»»), This immediately

gives the Lemma., g.e.d.

Cauchy’s integral theorem and - Lemma 4.1, imply that the

integral

00

f e 2P (rep " r¥a(z,2)dy
-0

is independent of x=Re z; Thus

un 0o
— 1 2x I -2-p -1 %
1 = - e“"dx e (ree ") Qdy
) . —» )
&
= 1 -iy-p, -1 *_ .
= =~ e (re¢ ") QGiy,E)dy
i) _
[ - - | - * .
= -yl e “Pree T a0z, 04z
CTYL ‘
o1 (rew %0z 8 4,
41 u(z)+p

J0 u’'(z)e

where f is a vertical line contained in w(An). Since the func-
tion Ep‘w°!(z) is periodic with period 2ri on L, it is of the
form fpow"(z) = F(e?) where F(z) is regulér in A with F(0)=p.

Differentiating both sides of the identity F(e?) = p + eU¢Z’*P

.

we have
uf(z)eU(Z)+p = F'(ez)ez.
Hence
[ = - 1"‘[ (T‘-;:z—l )*Q dz
4r1 ¢ F'(eZ)e? )
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By noting the estimates

(rew ' r*y = 0cz™Y, (z9w)

and

1. 1 = 0(1), (z3®)

'Cez F'(ez)ez

with C=F’(0), a standard application of Cauchy’s integral theorém

yields

- _ 1 [ -z, -1 ¥
I.- ZETEJQe (r.w ) Q(z,t)dz.

Although this integral can be evaluated by computing the residues
in the right half-plane determined by 0, it is easier to evaluate

the integral by changing the variable z to w°r-1(z). Thus

1 f' e-wor—l(z)
AiCly (hy Cwer ™ty (2)

(]
{

Q(z,¢)dz

where h is a circle in A which is tangent to 3aaA at the fixed
point of 8. Denoting the residue of the integrand at z by

Res(z), we have

I = é%[Res(;)+Res(0)4Res(w)3.

Observe that w-r_?(z) is of the form

tattz 411, Re t<o.

-1
wey (2) = =7 |l

After elementary calculations, we obtain

T T cwer T O, B _.simh t
'e + (wery (C)—lur)———f——-
L

r

I =

;
1l e
Ct{(w")’—l )'(C)
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hot ] “iuw, - 1 . '
cos r] e sin Tj | (4.4}

. -1 _ , -
with wer (0) = tr+1ur (tr, ureR). Since

wer 1 (1/8) = - wer '(), tea,

identities (3.1)-¢(3.3), (4.,1) and (4.4) give us ' the following

final form of the variation of fp.

THEOREM 4.2. For sufficiently small eeC, the universal cov-

ering fp+e of Dp+€ is given by
. o _ 2
£ ..(2) = £ (2) + £_'(2)[&1, - £1| + oCe” >, zeA
pre p b \LC ! c 2 v
where
f -iu [ -t i
| g "1 mwer (2)+lu -1 sinh t
Ix - 5 i - |e + (wey (z)—iur) y
reF/Fn{(wor )’(z)L r
-1 ]
- 1 - Uy
cosh trl ze 31nh/tr},
and
f iu, r -1 . .
| e T | Wy (z)-iu - sinh t
I, = > | - Ie - (wey (2)-iu)) T
el /T Caer ™ )7 (2] A
L .
iu 1
- | T i
- cosh tTJ ze sinh tr}

J

with wer ' (0) = tr+iu (tr’ ureR). The constant C_ denotes the

y
derivative F’(0) of the function F satisfying the identity

fp°w-1(z) = F(e?), The estimate is uniform as long as z stays in

compact subsets of A.

- 10..



Let Xp(z)]d2| be the Poincar€ metric of the domain Dp. By

definition xp(z) satisfies

| - e
A_CE (20| f_’(2)| = ———, zeA,.
PP P 1-1z|°

In particular, we have Ap(O) = 1/fp'(0). Theorem 4.2. easily

gives the following

COROLLARY. For sufficiently small ¢eC, Ap+€(0) is given by

[ 1
: 'e -iur sinh t_ |
In Ap+€(0) = 1n2,(0) + 2Re |z § e T(cosh t - ——D}
: | “rer/r, Y |
L J
+ 0Ce?).
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