CHARACTERIZATIONS OF NORMAL APPROXIMATE SPECTRA

M. FUJII and C.-S. LIN

1. Introduction. In [4], one of the authors introduced a normal spectrum of an operator in a C*-algebra A. An operator T is a normal topological divisor of zero if there is a sequence $\{A_n\}$ of operators in A such as $\|A_n\| = 1$,

$$\|TA_n\| \longrightarrow 0$$
 and $\|T^*A_n\| \longrightarrow 0$.

The set $\P(T)$ of all z's such that T-z is a normal topological divisor of zero is called here the normal spectrum of T.

Such a kind of normality of spectra of operators is introduced by several authors [2,3,5] independently about ten years ago, cf. also [1]. A scalar z is called a normal approximate propervalue of T if one of the following conditions is satisfied:

- (i) There is a sequence $\{x_n\}$ of unit vectors such as $\|(\mathtt{T}-\mathtt{z})x_n\|\longrightarrow 0 \quad \text{and} \quad \|(\mathtt{T}-\mathtt{z})^*x_n\|\longrightarrow 0.$
- (ii) There is no s > 0 such as

$$(T - z)*(T - z) + (T - z)(T - z)* \ge s.$$

(iii) There is a character φ of the C*-algebra C*(T) generated by T and the identity such as $z = \varphi(T)$.

All normal approximate propervalues of T form a compact set $\pi_n(T)$, which is called the normal approximate spectrum of T by [1]. By (ii) and (iii), it is clear that $\pi_n(T)$ is purely algebraic, which is determined within $C^*(T)$. So we have the following problems: (1) Is the normal

spectrum purely algebraic ? (2) Are there any relations between $\sigma_{\bf n}({\bf T})$ and $\sigma_{\bf n}({\bf T})$? (They are not discussed in [4].)

In this note, we shall give a solution to the above problems as follows: They are just the same (considering a C*-algebra acts faithfully on a Hilbert space). As an application, one can give a C*-algebraic proof to the reciprocity stated above in (iii).

2. Normal spectra. Now we shall give a C*-algebraic characterization of the normal approximate spectrum.

Theorem. The normal spectrum is nothing but the normal approximate spectrum: $\sigma_n(T) = \pi_n(T)$.

<u>Proof.</u> First note that $0 \in \mathcal{L}_n(\mathbb{T})$ if and only if there is a sequence $\{A_n\}$ of positive operators in A such that $\|A_n\| = 1$,

$$TA_n \longrightarrow 0$$
 and $T*A_n \longrightarrow 0$.

Suppose that $0 \in \pi_n(T)$. Since T*T + TT* is not invertible by (ii), there is a sequence $\{A_n\}$ of positive operators in A such that $\|A_n\| = 1$, $(T*T + TT*)A_n \longrightarrow 0$.

Since $A_n(T*T + TT*)A_n \longrightarrow 0$, we have

$$A_n T^*TA_n \longrightarrow 0$$
 and $A_n TT^*A_n \longrightarrow 0$,

or equivalently

$$TA_n \longrightarrow 0$$
 and $T*A_n \longrightarrow 0$.

Conversely, assume that $0 \notin \pi_n(T)$, i.e., $T*T + TT* \ge s$ for some s > 0. For any $B \ge 0$ with ||B|| = 1, since $BT*TB + BTT*B \ge sB^2,$

it follows that

$$||TB||^2 + ||T*B||^2 \ge s$$
,

which implies that $0 \notin \sigma_n(T)$.

3. Applications. In this section, we shall give another proofs to the following characterizations of normal approximate propervalues.

Corollary 1. For T in a unital C*-algebra A, a scalar z belongs to $\pi_n(T)$ if and only if the left ideal generated by T and T* is proper in A, i.e.,

$$A(T-z) + A(T-z)^* \neq A.$$

 $\frac{\text{Proof.}}{\text{n}}. \text{ Suppose that } 0 \in \pi_n(T) = \sigma_n(T). \text{ Then there is a sequence } \{B_n\}$ in A such $\|B_n\| = 1$, $TB_n \longrightarrow 0$ and $T^*B_n \longrightarrow 0$.

there exist A and B in A such that $AT + BT^* = 1$, then

$$1 = \|B_n\| = \|ATB_n + BT*B_n\| \le \|A\| \|TB_n\| + \|B\| \|T*B_n\| \longrightarrow 0.$$

This is a contradiction.

Conversely, if $0 \notin \pi_n(T)$, then T*T + TT* is invertible. Since (AT*)T + (AT)T* = 1 for some A in A, it follows that AT + AT* = A.

Finally we shall give a simple proof to the following reciprocity;

Corollary 2. For T in a unital C*-algebra, a scalar z belongs to $\pi_n(T) \quad \text{if and only if there is a character} \quad \phi \quad \text{on} \quad C^*(T) \quad \text{such as} \quad \phi(T) = z.$

$$\varphi(A) = \text{Lim } f_n(B_n^*AB_n)$$
 for $A \in C^*(T)$.

Since $\mathfrak{g}(p(T, T^*)) = p(0, 0)$ for any non-commutative polynomial p on T and T*, a state \mathfrak{g} is a character with $\mathfrak{g}(T) = 0$.

Conversely, if there is a character ϕ such that $\phi(T)=0$, then $\phi(C^*(T)T+C^*(T)T^*)=0.$ Therefore we have $C^*(T)T+C^*(T)T^*\neq C^*(T)$, which implies that $0\in\pi_n(T)$ by Corollary 1.

Remark. In the final part of the above, Corollary 1 is not necessary, cf. [1; I, Theorem 1]: If $\varphi(T) = 0$ for some character φ , then $\varphi(T*T + TT*) = 0.$

Since $\varphi(1) = 1$, it is impossible that there is s > 0 such as T*T + TT* \geq s.

Acknowledgement. The authors would like to express their hearty thanks to Prof. H. Takehana for his stimulating discussions.

References.

- [1] M. Fujii et al.: On normal approximate spectrum, I-V, Proc. Japan Acad., 48(1972), 211-215, 297-301, 389-393; 49(1973), 411-415, 416-419.
- [2] I. Kasahara and H. Takai: Approximate propervalues and characters of C*-algebras, Proc. Japan Acad., 48(1972), 91-93.
- [3] S. G. Lee: Abstract 691-47-21, Notice Amer. Math. Soc., 19(1972),
 A185-186; Ph.D. Thesis UCSB, 1973.
- [4] C.-S. Lin: On normalized topological divisors of zero, to appear in Math. Japon.
- [5] W.Szymanski: Characters of finitely generated C*-algebras, Ann. Polon. Math., 27(1972), 317-322.

Department of Mathematics, Osaka Kyoiku University, Tennoji, Osaka 543.

Department of Mathematics, Bishop's University, Québec, J1M1Z7, Canada.