On automorphic cuspidal representations of U(2,2)

by Takao Watanabe 渡部隆夫 (東北大理)

Introduction

In this paper, we study the hypercuspidality of automorphic cuspidal representations of U(2,2).

The hypercuspidality in the case of the symplectic group was introduced by I. I. Piatetski-Shapiro [5]. When $G = GSp_4$, for a given cusp form f on G_A , f is called "hypercuspidal" if the Whittaker function corresponding to f vanishes. Let $L^2_0(G_A)$ be the space of cusp forms on G_A . We denote by $L^2_{0,1}(G_A)$ the orthogonal complement of the space of all hypercuspidal forms in $L^2_0(G_A)$. Then any irreducible cuspidal representation in $L^2_{0,1}$ has a unique non-trivial Whittaker model. Thus, the multiplicity one theorem holds for $L^2_{0,1}$.

Analogously, we define the hypercuspidality in the case of U(2,2) by vanishing of some Whittaker functions occurring in the Fourier expansion of a cusp form. More precisely, for a cusp form f on U(2,2), we consider a Fourier expansion of f with respect to the center of the maximal unipotent subgroup of the Borel subgroup. Then we obtain two Whittaker functions W_f and V_f occurring in the Fourier expansion, where W_f is an ordinary Whittaker function and V_f is defined in §1. We note that in the case of Sp_4 ,

the function V_f did not appear in the smilar Fourier expansion of a cusp form f. In terms of these functions, we say f is "U-cuspidal" (resp. "N-cuspidal") if W_f (resp. V_f) vanishes. Moreover, if both function W_f and function V_f vanish, f is called "hypercuspidal".

Next, using the dual reductive pair, we investigate cuspidal representations obtained from the Weil-lifting of those of U(1,1) or U(2,1). Roughly speaking, we have the following:

- (1) Cuspidal representations obtained from the Weil-lifting of those of U(1,1) are U-cuspidal.
- (2) Let τ be a cuspidal representation of U(2,1). Let $\theta(\tau,\psi)$ be a cuspidal representation obtained from the Weil-lifting of τ . Then,
 - (a) if τ is non-hypercuspidal in a sense of [1], then $\Theta(\tau,\psi)$ is N-cuspidal, and
 - (b) if τ is hypercuspidal in a sense of [1], then $\Theta(\tau,\psi)$ is hypercuspidal.

The details of proof will be given in my Master thesis at Tôhoku University.

Notation

Let F be a global field whose characteristic is different from 2 and let \mathbb{A}_F be the adele ring of F. Let E be a quadratic extension of F, and denote its Galois involution by $x \to \bar{x}$. We fix once and for all an element i in E such that $\bar{i} = -i$ and a non trivial character ψ of \mathbb{A}_F/F .

1. Fourier expansions and the hypercuspidality

In this section, we give a definition of the hypercuspidality for cusp forms on U(2,2).

Let V be a 4-dimensional vector space over E with basis $\{e_1,e_2,e_3,e_4\}$, and (,)_V the skew-hermitian form on V which is represented by the matrix $\begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}$ with respect to $\{e_1,e_2,e_3,e_4\}$. Let

$$G_{F} = \{ g \in GL_{4}(E) \mid g \begin{pmatrix} 0 & I_{2} \\ -I_{2} & 0 \end{pmatrix} ^{\dagger} \bar{g} = \begin{pmatrix} 0 & I_{2} \\ -I_{2} & 0 \end{pmatrix} \}$$

and

$$H_{F} = \left\{ h \in GL_{2}(E) \mid h \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{\dagger} h = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}.$$

Let $\mathbf{B}_{\mathbf{F}}$ be the Borel subgroup of $\mathbf{G}_{\mathbf{F}}$ such that its maximal torus is

$$T_{F} = \left\{ \begin{pmatrix} a & b & \\ & b & -1 \\ & & 5^{-1} \end{pmatrix} | a, b in E^* \right\},$$

and its unipotent radical is

$$U_{F} = \left\{ \begin{pmatrix} 1 & a & x-\bar{a}b & b \\ 0 & 1 & \bar{b}-\bar{a}y & y \\ 0 & 1 & 0 \\ -\bar{a} & 1 \end{pmatrix} \mid a,b \text{ in } E, x,y \text{ in } F \right\}.$$

Let $\mathbf{P_F}$ be the parabolic subgroup stabilizing the isotropic line Ee Then $\mathbf{P_F}$ is the product $\mathbf{L_FN_F}$ of the Levi subgroup

$$L_{F} = \left\{ \begin{pmatrix} a' & & \\ & a & \\ & c & d \end{pmatrix} \mid a' \text{ in } E^{*}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ in } H_{F} \right\},$$

and the unipotent radical

$$N_{F} = \left\{ \begin{pmatrix} 1 & a & x-\bar{a}b & b \\ 0 & 1 & \bar{b} & 0 \\ 0 & 1 & 0 \\ -\bar{a} & 1 \end{pmatrix} \mid a, b \text{ in } E, x \text{ in } F \right\}.$$

Let $\mathbf{Z}_{\mathbf{F}}$ be the center of $\mathbf{U}_{\mathbf{F}}$:

$$z_{F} = \left\{ \begin{pmatrix} I_{2} & x & 0 \\ 0 & 0 & 0 \\ 0 & I_{2} \end{pmatrix} | x \text{ in } F \right\}.$$

For each ξ , ζ in E and t in F, we define characters $\psi_{(\xi,t)}$, $\psi_{(\xi,\zeta)}$ and ψ_{t} of $U_{F}\setminus U_{A}$, $N_{F}\setminus N_{A}$ and $Z_{F}\setminus Z_{A}$, respectively, by

$$\psi_{(\xi,t)}\left(\begin{pmatrix} 1 & a & x-\bar{a}b & b \\ 0 & 1 & \bar{b}-\bar{a}y & y \\ 0 & 1 & 0 \\ -\bar{a} & 1 \end{pmatrix}\right) = \psi(\mathrm{Tr}_{E/F}(\xi a) + ty),$$

$$\psi_{(\xi,\zeta)} \begin{pmatrix} 1 & a & x-\bar{a}b & b \\ 0 & 1 & \bar{b} & 0 \\ 0 & 1 & 0 \\ -\bar{a} & 1 \end{pmatrix} = \psi(\text{Tr}_{E/F}(\xi a + \zeta b))$$

and

$$\psi_{\mathsf{t}}\left(\left(\begin{array}{ccc} \mathbf{I}_{2} & \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{2} \end{array}\right)\right) = \psi(\mathsf{t}\mathbf{x}).$$

Further we put $E^1 = \{ a \in E^* \mid a\bar{a} = 1 \}$ and $\mathbb{A}^1_E = \{ a \in \mathbb{A}^*_E \mid a\bar{a} = 1 \}$. Then the center $C(G_A)$ of G_A is isomorphic to \mathbb{A}^1_E . For a character χ of $E^1 \setminus \mathbb{A}^1_E$, let $\mathcal{A}_{\bullet}(G_A)_{\chi}$ denote the space consisting of cusp forms on G_A which transform according to χ under $C(G_A)$. For each cusp form f on G_A , we define three Whittaker functions corresponding to f by

$$W_f^{\psi(\xi,t)}(g) = \int_{U_F \setminus U_A} \overline{\psi(\xi,t)^{(u)}} f(ug) du,$$

$$V_f^{\psi(\xi,\zeta)}(g) = \int_{N_F \setminus N_A} \overline{\psi(\xi,\zeta)(n)} f(ng) dn$$

and

$$J_f^{\psi_t}(g) = \int_{Z_F \setminus Z_A} \overline{\psi_t(z)} f(zg) dz.$$

First, for a cusp form f on G_A , we consider a Fourier expansion of f along Z. Fix g in G_A . As a function on the compact abelian group $Z_F \setminus Z_A$, f(zg) has a Fourier expansion of the form

$$f(g) = \int_{Z_F \setminus Z_A} f(zg) dz + \sum_{t \in F^*} J_f^t(g).$$

Let [F*] (resp. [E*]) be a complete set of representatives of $N_{E/F}(E^*)$ (resp. E^1) in $F^*/N_{E/F}(E^*)$ (resp. E^*/E^1). Then by the analogy to [4] Lemma 6.2, we obtain the following:

Proposition 1. For each cusp form f on G_A , one has $f(g) = \sum_{t \in [F^*]} \begin{cases} \sum_{\gamma \in R_F \setminus L_F} \Psi_f^{(1,t)}(\gamma g) + \sum_{\gamma \in L(1,ti) \setminus L_F} V_f^{(1,ti)}(\gamma g) + \sum_{\gamma \in L(1,ti) \setminus L_F} V_f^{(1,ti)}(\gamma g) \end{cases}$

+
$$\sum_{a \in [E^*]} J_f^{\psi_t} \left(\begin{pmatrix} a \\ 1 \\ \bar{a} - 1 \end{pmatrix} g \right) \right\},$$

where

$$R_{F} = \left\{ \begin{pmatrix} a & ab \\ a & a \end{pmatrix} \mid a \text{ in } E^{1}, b \text{ in } F \right\}$$

and

$$L(1,ti) = \left\{ \begin{pmatrix} a' & & & \\ & a & & \\ & & \tilde{a},-1 & (a'-d)t^{-1}i^{-1} \\ & & (a'-d)ti & & d \end{pmatrix} \in L_{F} \right\}.$$

$$W(\psi) = \{ (W_f^{\psi(1,t)})_{t \in [F^*]} \mid f \in \mathcal{A}_{\bullet}(G_A)_{\chi} \}$$

and

$$V(\psi) = \{ (V_f^{\psi(1,ti)})_{t \in [F^*]} \mid f \in \mathcal{A}_{\sigma}(G_{A})_{\chi} \}.$$

We define a linear map D from $\mathcal{A}_{\bullet}(G_{\mathbb{A}})_{\chi}$ to $W(\psi) \oplus V(\psi)$ by

$$D(f) = ((W_f^{\psi(1,t)})_t, (V_f^{\psi(1,ti)})_t).$$

In terms of this linear map, we give the following

<u>Definition</u>. Let f be a cusp form on G_A . We say f is N-cuspidal (resp. U-cuspidal) if f is contained in $D^{-1}(W(\psi))$ (resp. $D^{-1}(V(\psi))$). Further we say f is hypercuspidal if f is contained in Ker(D).

We can show that these spaces are invariant by the action of the Hecke algebra of $G_{\!\!\!A}$ and independent of a choice of a character ψ and a representative set [F*].

2. Lifting from U(1,1) to U(2,2)

In this section, we consider the Weil-lifting $\Theta(\tau,\psi)$ of an irreducible automorphic cuspidal representation τ of H_A to G_A , and investigate the cuspidality of $\Theta(\tau,\psi)$.

Let W be a 2-dimensional vector space over E, (,) the skew-hermitian form on W which is represented by the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ with respect to a suitable basis. We consider the symplectic space $X_F = (V \otimes W)_F$ obtained by taking the imaginary part of the hermitian form (,) $_W \cdot$ (,) $_V \cdot$ Thus X_F is a 16-dimensional space over F, and we have a dual reductive pair (H,G) \subset Sp₁₆(F).

In the same manner as in [1], §6 and §8, we choose and fix one Weil-representation ω_{ψ} of G_AH_A . Let $X_F = X_1 \oplus X_2$ be a complete poralization of X_F and $S(X_{1,A})$ the Schwarz - Bruhat space on $X_{1,A}$.

Now suppose (τ,V_{τ}) is an automorphic cuspidal representation of H_{A} in the space of cusp forms on H_{A} . For each \emptyset in V_{τ} and Φ in $S(X_{1,A})$, we put

$$\Theta_{\psi}^{\Phi}(g,h) = \sum_{v \in X_{1,F}} \omega_{\psi}(gh)\Phi(v) \qquad (h \in H_{A}, g \in G_{A}),$$

$$f_{\emptyset}^{\Phi}(g) = \int_{H_{F} \setminus H_{A}} \Theta_{\psi}^{\Phi}(g,h) \emptyset(h) dh.$$

We call the representation of $\boldsymbol{G}_{\boldsymbol{A}}$ realized on

$$\Theta(\tau, \psi) = \{ f_{\emptyset}^{\Phi} \mid \emptyset \text{ in } V_{\tau}, \Phi \text{ in } S(X_{1,A}) \}$$

the "Weil-lifting" of τ .

We define an embedding $H_{\Lambda} \hookrightarrow \operatorname{Sp}_{8}(\Lambda_{F})$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} \alpha(a) & 0 & 0 & \beta(b) \\ 0 & \alpha(a) & -\beta(b) & 0 \\ 0 & \gamma(c) & \delta(d) & 0 \\ -\gamma(c) & 0 & 0 & \delta(d) \end{pmatrix}$$

where for any x in E

$$\alpha(x) = \left(\begin{array}{cc} \text{Re}(x) & \text{Im}(x) \\ -\text{N}_{\text{E}/\text{F}}(\text{i}) \text{Im}(x) & \text{Re}(x) \end{array}\right), \ \beta(x) = \left(\begin{array}{cc} \text{Im}(x) & -\text{Re}(x) \\ \text{Re}(x) & \text{N}_{\text{E}/\text{F}}(\text{i}) \text{Im}(x) \end{array}\right),$$

$$\gamma(x) = \begin{pmatrix} N_{E/F}(i)Im(x) & -Re(x) \\ Re(x) & Im(x) \end{pmatrix}, \quad \delta(x) = \begin{pmatrix} Re(x) & N_{E/F}(i)Im(x) \\ -Im(x) & Re(x) \end{pmatrix}.$$

According to this embedding, the Weil-representation ω_{ψ}° of $\operatorname{Sp}_{8}(\mathbb{A}_{F})$ can be restricted to $\operatorname{SU}(1,1)$. Furthermore, in the same manner as in [1], it can be extended to an ordinary representation ω_{ψ}° of $\operatorname{H}_{\mathbb{A}}$. This extension is determined only up to twisting by a character of \mathbb{A}_{E}^{1} composed with the determinant. Therefore we choose

one such extension ω_{ψ}° in accordance with the choice of the ordinary representation ω_{ψ} of $H_{A}G_{A}$. Then the Weil-representation ω_{ψ}° can be realized on the Schwarz - Bruhat space $S(W_{A})$ of W_{A} . Hence, for each $\Phi \in S(W_{A})$, we put

$$\Theta_{\Phi}(h) = \sum_{\mathbf{w} \in W_{\mathbf{F}}} \omega_{\psi}^{\circ}(h) \Phi(\mathbf{w})$$

and denote by $\theta(\psi,\chi^{-1})$ the space consisting of theta-series θ_{φ} which transform according to χ^{-1} under the center of H_{A} .

Theorem 2. Let (τ, V_{τ}) be an irreducible cuspidal representation of H_A in $\mathcal{A}_{\bullet}(H_A)_{\chi}$.

- (1) If τ is non-trivial, then $\Theta(\tau, \psi)$ is also non-trivial.
- (2) $\theta(\tau,\psi)$ is cuspidal if and only if τ is orthogonal to $\theta(\psi,\chi^{-1})$.
- (3) If $\theta(\tau, \psi)$ is cuspidal and non-trivial, then it is U-cuspidal, but not hypercuspidal.

3. Lifting from U(2,1) to U(2,2)

We use the similar argument as in §2.

Let W be a 3-dimensional vector space over E with a basis $\{w_{-1}, w_0, w_1\}$ and (,) w the hermitian form which is represented by the matrix $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

with respect to $\{w_{-1}, w_0, w_1\}$. Let G° be the corresponding unitary group, and N° the maximal unipotent subgroup of G° :

$$N_{F}^{\circ} = \left\{ \begin{pmatrix} 1 & a & z \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{pmatrix} \mid a, z \text{ in } E, z + \bar{z} = -a\bar{a} \right\}.$$

In the same manner as in §2, we have a dual reductive pair $(G,G^{\circ})\subset \operatorname{Sp}_{24}(F)$. Further, for an irreducible cuspidal representation (τ,V_{τ}) of G_{A}° , we denote by $\Theta(\tau,\psi)$ the Weil-lifting of it.

For the general theory of cusp forms on G_A° , we refer to [1]. We define a character ψ_O of $N_F^\circ\backslash N_A^\circ$ by

$$\psi_{O}\left(\left(\begin{array}{ccc} 1 & a & z \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{array}\right)\right) = \psi(\mathrm{Tr}_{E/F}(a)).$$

For $\emptyset \in L_0^2(G_F^{\circ}\backslash G_A^{\circ})$, we put

$$W_{\emptyset}^{\psi_{O}}(g) = \int_{N_{F}^{\circ} \setminus N_{A}^{\circ}} \overline{\psi_{O}(n)} \emptyset(ng) dn.$$

Also we put

$$L_{0,0}^{2}(G_{F}^{\circ}\backslash G_{A}^{\circ}) = \{ \emptyset \in L_{0}^{2}(G_{F}^{\circ}\backslash G_{A}^{\circ}) \mid W_{\emptyset}^{\downarrow \circ} \equiv 0 \},$$

$$L_{0,1}^2(G_F^{\circ}\backslash G_A^{\circ})$$
 = the orthocomplement of $L_{0,0}^2$ in L_0^2 .

These spaces are invariant under $G_{\!I\!\!A}^{\circ}$ and independent of $\psi.$ Clearly, we have an orthogonal decomposition

$$L_0^2(G_F^{\circ}\backslash G_A^{\circ}) = L_{0,0}^2(G_F^{\circ}\backslash G_A^{\circ}) \oplus L_{0,1}^2(G_F^{\circ}\backslash G_A^{\circ}).$$

We know from [1] that the multiplicity one theorem holds for $L_{0,1}^2$.

Now for each x in F*, we take a vector w_x in W such that $(w_x, w_x)_W = x$, and let $G_{x,F}^{\circ}$ be the stabilizer of w_x in G_F° . Then we obtain a following

Proposition 3. $\Theta(\tau, \psi)$ is cuspidal if and only if

$$\int_{G_{X,F}^{\circ}\backslash G_{X,A}^{\circ}} \emptyset(gh) dg = 0$$

for any x in F^* , \emptyset in V_{τ} and h in G_A° .

In paticular, if we take $w_x = \frac{1}{2}w_{-1} + xw_1$, then for any x in F* $G_{x,F}^{\circ} > \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a \text{ in } E^1 \right\}.$

Thus if \mathbf{V}_{τ} satisfies the condition

then $\theta(\tau, \psi)$ is cuspidal.

Theorem 4. (1) Suppose $(\tau, V_{\tau}) \in L_{0,1}^2(G_F^{\circ} \setminus G_A^{\circ})$. If τ is non-trivial, then $\theta(\tau, \psi)$ is also non-trivial. Moreover, if V_{τ} satisfies the condition (#), then $\theta(\tau, \psi)$ is N-cuspidal, but not hypercuspidal.

(2) Suppose $(\tau, V_{\tau}) \in L_{0,0}^2(G_F^{\circ} \setminus G_A^{\circ})$. If V_{τ} satisfies the condition (#), then $\theta(\tau, \psi)$ is hypercuspidal.

In the proof, we take a complete poralization of $X_F = (V \otimes W)_F$ by $X_F = X_1 \oplus X_2$, where $X_1 = e_1 \otimes W + e_2 \otimes W$ and $X_2 = e_3 \otimes W + e_4 \otimes W$. Under this decomposition of X_F , we can give explicitly the action of the Weil-representation ω_{ψ} of $G_A G_A^{\circ}$ to Schwarz -Bruhatspace $S(X_1,A) \cong S(W_A \oplus W_A)$. In the case (1), we put $f = f_{\phi}^{\Phi} \in \Theta(\tau,\psi)$, where $\Phi \in S(W_A \oplus W_A)$ and $\phi \in V_{\tau}$. Then by computing W_f^{ψ} directly, we have

$$\begin{split} & W_{f}^{\psi(1,\frac{1}{2}t)} \equiv 0 \quad \text{for } 1 \neq t \in [F^*] \\ & W_{f}^{\psi(1,\frac{1}{2})}(g) = \int_{Z_{A}^{\circ} \setminus G_{A}^{\circ}} \omega_{\psi}(gh) \Phi(w_{1},w_{0}) W_{\emptyset}^{\psi_{0}}(h) dh, \end{split}$$

where Z° is the center of N°. In paticular, the latter formula defines the "local Weil-lifting" of a non-degenerate admissible representation of $G_{F_{_{\rm U}}}^\circ$ to $G_{F_{_{_{\rm U}}}}$.

References

- [1] S. Gelbart and I. I. Piatetski-Shapiro, Automorphic forms and L-functions for the unitary group, Springer Lecture Notes in Math. No. 1041
- [2] R. Howe and I. I. Piatetski-Shapiro, Some example of automorphic forms on Sp_{4} , Duke Math. J. 50 (1983), 55-106
- [3] D. Kazhdan, Some applications of the Weil-representations,
 J. d'Analyse Math. 32 (1977), 235-248
- [4] I. I. Piatetski-Shapiro, On the Saito Kurokawa lifting, Invent. Math. 71 (1983), 309-338
- [5] I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Symp. in Pure Math. 33 part 1 (1979), 185-188
- [6] I. I. Piatetski-Shapiro and D. Soudry, Automorphic forms on the symplectic group of order four, preprint
- [7] F. Rodier, Modéls de Whittaker de representations admissibles des groupes réductifs p-adiques quasi-déployés, preprint
- [8] J. A. Shalika, The multiplicity one theorem for ${\rm GL}_{\rm n}$, Ann. Math. 100 (1974)
- [9] G. Shimura, Arithmetic of unitary groups, Ann. Math. 79 (1964) 369-409
- [10] A. Weil, Sur certains groupes d'opérateurs unitaires,
 Acta Math. 111 (1964) 143-211