goooboooogn
O 5860 1986 0 1-17 i

Representation Theorems and Primitive Predicates

for Logic Programs
by

Takashi YOKOMORI
%5 &

International Institute for Advanced Study of Social
Information Science(IIAS-SIS), Fujitsu Limited
140 Miyamoto, Numazu, Shizuoka 410-03 JAPAN

ABSTRACT

This paper concerns the representation theorem for
logic programs in terms of formal grammatical formula-
tion. First, for a given logic program P the notion of
the success language of P is introduced. Then, based
on this language theoretic characterization of a logic
program two representation theorems for logic programs
are provided. We show that there effectively exists a
fixed logic program with the property that for any
ldgic program one can find an equivalent logic program
such that it can be expressed as a conjunctive formula
of a simple program and the fixed program. Further, by
introducing the concept of an extended reverse
predicate, it is shown that for any logic program there
effectively exists an equivalent logic program which
can be expressed as a conjunctive formula consisting of

only extended reverse programs and append programs.
1. Introduction

Since, needless to say the original work of Colmerauer and

Kowalski([{1] and [7]), a recent world-wide trend on FGCS concep-

oo

tion has been one of the primary subjects, there are numerous
work on logic programming languages and the theory of logic
programs. It is well accepted that, among others, the research on
a subset of first-order predicate logic called Horn clause logic
has taken the central position in this area because of its
importance of providing an interesting formal computation model
for a programming language PROLOG. As is well-known, PROLOG, based
on the procedural interpretation to Horn clause logic, has an
operational semantics determined by the resolution principle. In
the context of the semantics of predicate logic as a programming
language van Emden and Kowalski ([31) have studied on model-
theoretic, operational and fixedpoint semantics of logic programs,
while using a Turing machine formulation Shapiro ([9]) has
defined and argued a kind of model-theoretic semantics of logic
programs. _

In this paper we are concerned with establishing two
representation theorems for "logic programs(Horn clause
programs)" in terms of formal language theoretic formulation. In
course of the formal grammatical treatment of logic programs we
introduce the notion of the success language of a logic program
over a finite alphabet, which turns out to be another way of
providing a model-theoretic semantics for logic programs. Here,
by formal grammars we mean generative grammars of Chomsky, and it
should be remarked that theitheory of formal languages{(l[e.g.,[5],
[6]1,[8]) has been well-developed enough in itself to make a lot of
contributions to other research areas such as the theory of logic
programming.‘This view may be supported, for example, when we
think of the similarity'between the refutation process in logic
programs and the dériVation steps in context-free grammars, and
note that logic programs can be regarded as a kind of an extention
of context-free grammars. In fact, Shapiro investigates the
computational complexity of logic programs using the similarity of
their operational behaviors to those of alternating Turing
machines.([9]) o v

With the help of an encoding technique it is shown that one

can assoclate a logic program with a formal language (the success
language mentioned above) over a finite alphabet. This leads to a
semantic characterization of logic programs as previously
mentioned, although that is not our primary concern in the
current paper. This kind of semantic approach to logic programs
has been already preceeded by the paper [11]. It has been shown
tha§ any recursively enumerable language can be specified as a
conjunctive formula of two deterministic logic programs and one
simple logic program that serves as a mapping on the set of words.
The work in this paper is motivated by the result above and
extends it to examine what operations are primitive in represent-
ing logic programs.

In this paper we present two representation theorems for
logic progams. We show that there effectively exists a fixed
logic program with the property that for any logic program one can
find an equivalent logic program such that it can be expressed as
a conjunctive formula of a simple program and the fixed program.

Further, by analysing components in the representation

"extended reverse'", it is

result and introducing the concept of
also shown that for any logic program one can find an equivalent
logic program expressed as a conjunctive formula consisting of
only "extended reverse'" programs and "append" programs.

This paper is organized as follows. Section 2 is concerned
with terminology, basic notions and results needed through the
paper. In Section 3 a representation theorem for logic programs is
established. Section 4 deals with the problem of what operations
(predicates) are primitive for the representation formula
obtained in Section 3. Concluding remarks and the future reseach

direction are briefly given in Section 5.

2. Preliminaries

2.1 Formal Grammars and Their Languages

We now introduce a generative device which plays the main

role in all of subsequent sections in this paper.

Definition.
A generative grammar is an ordered quadruple G = (N, T, P,

Sg) where N and T are disjoint finite alphabets, Sp is in N, and P
is a finite set of production rules of the form Q1 -> QZ such
that Q, is a word over the alphabet V = NVYT and Qq is a word
over V contalnlng at least one symbol of N. The elements of N are
called nonterminals and those of T terminals; S; is called the
initial symbol.

A word u generates directly a word v, in symbols, u=>v, if

and only if there are words u', u", Q1, Q5 such that u=u Q1u '
v=u Q2u ’ and Q1 -> Qy belongs to P. Thus, => is a binary relation

on the set V (the set of all words over V including empty word e),.

We denotes v¥_{e} by V*. Let =>" be the reflexive, transitive
closure of =>. The language L(G) generated by G is defined by
L(G) = { winT" | 55 =>" w }.

L(G) is called a language over T (or on T*).

Grammars are, in general, <classified by the form of produc-
tion rules, which yields a hierafchy of corresponding language

families.

Definition.

(1) A generative grammar is also called phrase structure grammar.

Let G = (N,T,P,So) be a phrase structure grammar. Then, G is
called ' "

(i) context-free if each production rule is of the form X -> Q,

where X in N, and Q in V*

(ii) regular if each production rule is of one of the two form
X->a or X-»>a¥y, where a in T and X,Y in N, with the possible
exception on the production rule Sy -> e whose occurrence in P
implies that S, does not occur on the right hand side of any rule
in P.

(2) Let G = (N,T,P,SO) be a context-free grammar with the
property that (i) every rule in P isjof the form A -> ax, where A

, . . * AN , : . :
in N, a in T, x in N ,and (ii)for all A in N, a in T, A->ax and

A->ay in P implies x=y. Then, G is called simple deterministic.

Definition.
Let L be a subset of T* for some alphabet T, and let X be in
{phrase structure, context-free, simple deterministc, regularj}.

Then, L is called an X language if L=L(G) for some X grammar G.

Further, a language generated by a phrase structure grammar is

also called recursively enumerable.

Definition.

Let T be an alphabet. For each a in T, let f(a) be a word

(possibly over a different alphabet from T). Then, let f(e) = e,
f(xy) = £(x)f(y) (x,y in T*). The mapping f is extended to the
pcwer set of T* as follows: for each L over T, £(L) = {f(w)| w

in L}. The mapping f is called a homomorphism on T*.

A homomorphism f on T* is called a weak identity if for each

a in T, f(a) is either the symbol a itself or the empty word e.

Definition.

A deterministic generalized sequential machine(dgsm) with

accepting states is a 6-tuple A = (Q,T,D,d,qO,F), where

Q : a finite set of states, T : a finite set of input symbols,
D : a finite set of output symbols, d : transition function
from Q x T to Q x D*, dg the initial state in Q, and

F : a subset of Q (a set of final states).

The function d is extended to Q x T* as follows: for g in Q, x in

* .
T , a in T,

d(q,e) = (qg,e),
d(g,ax) = (r,y)
where
Yy = wWqWy
d(q,a):(p,w1), d(p,x) = (r,w2) for some p in Q, Wqr Wy in D*.

Let f, be a mapping defined by

falx) = y iff d(gg,x) = (p,y) for some p in F.
The mapping £, so defined is called a dgsm mapping of A,

Notation.
Let T be a finite alphabet. For a word w = a;...a, (n>0) in
T*, the (7)-version w denotes aq---ap. Further, wR denotes the

reverse apj--.aj.
2.2 Logic Programs and Their Languages

This subsection introduces the concepts of a logic program
and its associated language we shall deal with in the subsequent
sections. We assume the reader to be familiar with the rudiments

of mathematical logic.

Definition

A logic program is a finite set of Horn clauses, which are

universally quantified logical sentences of the form
A <= Bq,...,By (n>0) (C)
where the A and the B's are atomic formulae. In the above clause
(C) A is called the clause's head, while B's are called the
clause's body. If n = 0, then we simply donote it by A instead of
A <-, '
Atomic formulae occurring in a logic program are called

goals. A program is said to be dominated by a goal if the

predicate name of the goal occurs only once as the head of a

clause in the program.

[Notational Convention]

(i) We use upper-case letters such as X, Y, Z for wvariable
symbols and lower-case letters such as x, y, z for ground terms.
For terms, letters t, s, r are often used. The boldface versions
like P, Q are used for logic programs, while normal upper-case
letters like P,.Q are used for goals, and lower-case letters P:g

for goal names.

(ii) For a logic program dominated by a goal, we sometimes refer
to the program in terms of the name of the goal. In such a case it

is assumed that the program name is the capital letter P of the

goal name "p'".

Definition.
Let P be a logic program and Q a goal. If there is a refuta-

tion of a goal Q from P, then we say P succeeds on Q, or Q

succeeds (in P).

In this paper we are concerned with logic programs whose data

domains are finitely generated by a fixed set of symbols.

Definition.

Let P be a logic program. The Herbrand universe of P is the
set of all ground terms constructable from the set of constants C
and the set of function symbols F occuring in P, and we denote it

by D(F,C). Then, a logic program P is called a logic program over

C 1if F comprises only one function symbol, and its Herbrand

universe is denoted by D(C).

As shown below, any Herbrand universe for a logic program can
be coded in an appropriate manner into the domain D(T) constructed
from some fixed finite set of symbols T. In other words, any
ground term which possibly appears in a program can be taken as a

word over some finite alphabet T.

Lemma 2.1

There exist a fixed finite set of symbols T and a one-to-one
mapping £ such that for any logic program P with the domain D(F,C)
and for any goal p(X1,.u,Xn) there exist a logic program P' with
the domain D(T) and a goal p'(X) with the property that P succeeds
on p(xq,eee,x,) iff P' succeeds on p'(x), where x=f(xy,...,x,).
Proof.

Let g94,95,... be an enumeration of all function symols

occurring in D(F,C) of P. (Note that a constant k can be taken as
a 0-ary function symbol as in k().) k

Introduce a mapping c¢ from the set D(F,C) to the set of lists
as follows :

for a term F = gi(s1,“.,sm)(m > 0),

c(t) = [%,@%,%,c(sq),...,clsy),$1.

where "[" and "]" are the list notation ,$,%,@,% are

new symbols, and @i denotes a sequence @,...,@ of i @s.
Further, for an n-tuple of terms (t1,".,tn), let £ be defined by

f(tq,...,ty) = flatten(lc(tq),#,...,#,c(t)]),

where '"flatten" is a mapping of flattening lists,

is a new symbol(argument separator).
Define p'(X) as follows :

p'(X) <= flat(Xq,eeesXpy,X), P(Xq,.00,Xy) --= (Cp)

where flat(Xy,...,X,,X) succeeds iff X = f(X1,u.,Xn).
Further, let P' be P {Cgy}. Then, it is easily seen that P'
succeeds on p'(f(xT,".,xn)) iff P succeeds on p(x1,".,xn) for xy
in D(F,C). Let T = {#,%$,%,@,%,NIL}, where NIL denotes empty list,
then D(T) is the set of lists constructed from T and the unique
function symbol of the list constructor. Obviously, this

satisfies the desired conditions. O

Thus, it is sufficient for general discussion to deal with only

logic programs over some fixed finite set.

[Conventions]
(1) In what follows, it may be assumed that (i)a logic program

over T has the domain of all lists constructed from a finite set

of constants T, and (ii) otherwise spécified, a goal is assumed

to be a 1-ary predicate.

(2) As a notation, given finite set of symbols T and a wofd w =
aj;---a, on T*, the boldface w denotes the list version

[a1,...,an].

Logic programs together with goals are classified by the

types of their associated languages.

Definition.

Let P be a logic program over a finite set of symbols T and
Q (=q(X)) be a goal in P.
(i) A language over T defined by

L(P,Q,T) = { w in T" | P succeeds on g(w) }

is called the success language of Q in P. In this case L(P,Q,T)

is often denoted by L(P,q,T). If P is dominated by p(X) or a
program "P" is named after the goal name "p", then we simply write

L(P,T) and call it the success language of P.

(ii) A logic program P is called X if L(P,Q,T) is an X language
for all goal Q in P.

(iii) Let p(X,Y) be a goal dominating P, and for x in T*, let
fP(x) = {y in T* | P succeeds on p(x,y) }. Then, a logic progam P

is called

(1) homomorphism if fP is a homomorphism,

(2) weak identity if fP is a weak identity,

on T*.

Finally,

(iv) Let P and P' be two logic programs over T, and let p(X) and
p'(X) be goals in P, P', respectively. Then P with p(X) and P’
with p'(X) are equivalent if L(P,p,T) = L(P',p',T).

We end this section with presenting a result showing the
expressive capability of logic programs we are dealing with in

this paper.

It has been shown in literature ([10],[11]) that for any recur-
sively enumerable language L over T, there exist a logic program P
over T and a goal Q such that L is the success language of Q in P.
Conversely, it is shown that for any logic program P over T and a
goal Q, the success language L(P,Q,T) is a recursively enumerable
language, which is proved by constructing a Turing machine

simulating the resolution process for Q from P and accepting the

10

success language of Q in P ([9]).v (Note that a language is recur-
sively enumerable if and only if it is accepted by a Turing
machine.)

Hence, we have the following :

Theorem 2.1
The class of success languages of logic programs is equal to

the class of recursively enumerable languages.

It may be possible to state that the success language of a
logic program provides us & kind of model-theoretic semantics (or

derniotational semantics) for logic programs.
3. A Representation Theorem

In thié section a representation theorem for logic programs is
presented. |

We shall show that there exists a fixed simple program

which plays a role of generator for the class of logic programs.

Such a program can be obtained by making a slight modification to

"reverse'" program.

Lemma 3.1

For any recursively enumerable language L over an alphabet T
there exist a simple deterministic language Sp on K*R* (for some
alphabet K including T), and a weak identity h such that L =
h({wwR|w in XK*}n Sp), where Sp = {x¢FyR| f(x)=y}, £ is a dgsm
mapping of A = (Q,K,D,d,qO,F) depending on L, h preserves the
alphabet of L and erases other symbols, ¢ is a new symbol.
(See Theorem 11 in [4])

Theorem 3.1(Representation Theorem 1)

Let T be a fixed alphabet. Thén, there exists a fixed logié
program Ry with the property that for any logic program P over T
with a goal p(X) one can find an equivalent logic program P' with

10

11

a goal p'(X) such that it can be expressed by

p'(X) <- ry(X,Y), sp(Y) (3-1)
for some simple deterministic program Sp.
‘Proof.

From Theorem 2.1 and Lemma 3.1, for any logic program P over
T with a goal p(X) there is a simple deterministic language Sp on
K*&* and a weak identity h such that L(P,p,T) = h({ww® | w in
K*} ~Sp), where Sp = {x¢FyR|f(x)=y}, f is a dgsm mapping of A =
(Q,K,D,d,qO,F) depending on L(P,p,T), and h(a) = a (for all a in
T), h(a) = e (otherwise).

Construct three logic programs so that Mg, Igp, and Sp may
determine the language MO(={WGR] w in X*}), h, and Sp,
respectively.

(1) Mqp is defined as follows :

mp(X) <= m1(s1,x,[])

mi(sq,[alX],Y) <- mi(sq,X,[a]¥Y]) (for all a in K)

m1(sq,[a|X],Y) <- mi(sy,[a|X],¥) (for all a in K)

mi(s,,01,01)

mi(s,,[a|X],[a]¥]) <- mi(s,y,X,¥) (for all a in K)

Clearly M, determines the mirror image language, i.e.,
L(Mqp,KVE) = { ww® | w in K* }.
(2) Ip is defined as follows :

ig(11,01)

ip(lalX1,la|Y]) <- ip(X,Y) (for all a in T)

ip(X,lalY]) <- igp(X,Y) (for all a not in T)

Ip is a simple projection mapping which preserves symbols from T

and erases others.

(3) Sp is defined as follows :
sp(X) <- s1(qq,X,[1)
s1(qq,[a]X]1,Y) <- sil(qq,X,[a]Y]) (for all a in Kv{¢})
s1(q1,[$|X],[¢|Y]) <- s1(qg,X,Y) (for all g¢ in F)
s1(qq,[1,01)
s1(q,[ﬁR|X],[a|Y])<—s1(p,X,Y) (for all d(p,a) = (q,w))
where A==(Q,K,D,d,qo,Fﬂ is a dgsm A given in Lemma 3.1.

11

12

Then, L(Sp, KVRV {¢,§}) = (x¢FFR| £(x)=y, x in K" }
Let P' be a logic program defined by p(X)<—1T(X Y), mT(Y),
sP(Y) It is easily seen that for x in T
X is in L(P,p,T) iff there exists y such that x = h(y) and
y is in My ~ Sp
iff there exists y such that
Ip succeeds on iT(x,y),
Sp succeeds on sP(y), and
Mgy succeeds on mqp(y)
iff P' succeeds on p'(x).
Let Ry be defined by rO(X,Y) < - iT(X,Y), mT(Y).
(Since T is fixed, Ry is a fixed program.) Thus, p'(X) can be

expressed as the desired form (3-1).0
4, What are primitives ?

We have seen in Section 3 that a specific type of logic
program can play a significant role as a generator in expressing
logic programs. In this section we shall examine what progrmas in

the representation are primitive in more detail.

Getting back to the representation theorem, a generator
program Ry in (3-1) of Theorem 3.1 was constructed from a weak
identity program Ig and a logic program Meq, i.e.,

ro(X) <- igp(X,Y), mp(Y)
where
(01 iqp(l1,01)

ip(la|Xx],la|Y]) <- ip(X,¥) (for all a in T)

ip(X,[alY]) <~ iqp(X,Y) (for all a not in T), and
we observe that mqp(X) can be re-defined as follows :

(1] mp(X) <- append(Y,Z,X), copy(Y,Y'), reverse(Y',6Z)

copy([]1,[1)

copy(la|X1,[a]|Y]) <- copy(X,¥) (for all a in K)

reverse([],[1) |

reverse([X]|Y],2) <- reverse(Y,T), append(T,[X],Z).

12

13

These observation leads us to the following introduction of a
specific type of logic programs which can take the place of

various basic programs appearing in the representation result.

Let £ be a mapping from * to K*. Then, consider a logic
program dominated by a predicate "(f)-reverse(X,Y)", which is
defined by

(f)-reverse(x,y) succeeds iff so does reverse(f(x),y).

We call this extended reverse program. (Notice that if f is an

identity, then (f)-reverse(X,Y) is an ordinary "reverse"

predicate.)

Example 1.

Let f be defined by f(a)=a, f(b)=b, f(c)=c. Then, (f)-reverse
(X,Y) may be, for example, defined as follows:

(f)-reverse(X,Y) <- rev(X,[],Y)

rev([],X,X)

rev(la|X]1,Y,2) <- rev(X,[a|Y]1,2)

rev([b|X],Y,2) <- rev(X,[B]|Y],2)

rev([c|X1,Y,2) <- rev(X,[c|Y],2).
Let p(X) <- append(Y¥,Z,X), (f)-reverse(¥Y,Z2), then the success

language of this program {wwX|w in {a,b,c}*} is context-free.
Now, let us see the next one.

Example 2.
Let f be a mapping defined by f(x) = ER, for all x in T .
Then, it is seen that
(f)-reverse(x,y) succeeds iff reverse(f(x),y) succeeds
iff reverse(%R,y) succeeds
iff x = y.
Let P be a program dominated by p(X) <- append(Y,Z,X), (£f)-
reverse(Y,Z). Then, the success language L(P,Tv T) is ({ww| w in

* ,) e
T } which is context-sensitive,

13

14

Thus, (f)-reverse can define a number of different classes of

logic programs by varing a mapping f.

Now we wish to call back one's atténtion to the representa-
tion theorem. In the representation formula (3-1) of Theorem 3.1 a
logic program can be expressed by
p(X) <- rO(X,Y), sP(Y), where
(0) rg(X,Y) <~ iqp(X,Y),mqp(Y)
(1) sp(X) <= sT(aq,X,[])
s1(gq,[a]|X],¥) <= sl(qqy,X,[a]¥]) (for all a in K V{¢})
s1(qq,LEIX1,1¢]Y]) <~ s1(qg,X,¥) (for all g¢ in F)
st(gqg,[1,01)
s1(q,[wR|x1,lalY]) <- s1(p,X,Y) (for all d(p,a)=(q,w))
where A=(Q,K,D,d,q0,F) is a dgém.
Let fq be defined by fT(a)=5(for all a in T). Then, it is easily
seen that

mp(X)<- append(Y,Z,X), (fg)-reverse(Y,Z) --= (Fq).

Further, letting fp be a mapping defined by fp(x)= f(x), where £
is a dgsm mapping induced by A, then we have
sP(X) <- append(Y,z,X), (fP)—reverse(Y,Z) -——— (F2).

It should be noted that for a homdmorphism h, if one define a
mapping £y by f,(x) = h(x)R, then (fy)-reverse(x,y) succeeds iff
h(x)=y. Hence, a weak identity program I, dominated by iT(X,Y)

and involved in all the representation results is expressed by
ip(X,Y) <- (fy)-reverse(Y,X) --= (F3)
Summarizing our argument on the use of extended reverse
programs for expressing various types of basic elements in the

representation result, from (F1),(F2),(F3) and (3-1) we obtain

another representation theorem for logic programs.

14

Theorem 4.1(Representation Theorem 2)

Let T be a fixed alphabet. Then, there exist mappings fh, fT
with the property that for any logic program P over T with a goal
p(X) one can find an equivalent logic program P' with a goal p'(X)
such that it is expressed by

p'(X)<—(fh)—reverse(Y,X),append(21,ZZ,Y),(fT)—reverse(Z1,Z2),
append(w1,W2,YL (fP)—reverse(W1,W2),

for some mapping fp.
5. Concluding Remarks

Through the formal language theoretic formulation, we have
shown two representation theorems for logic programs. First, we
introduced the concept of the success language of a logic program,
and associating a logic program with its success language we gave
a formal language theoretic semantics of logic programs.

Further, using the language theoretic semantics a representa-
tion theorem for logic programs was provided in which some type of
fixed logic programs play the role of a generator in the represen-
tation. ‘

Then, it has been considered the problem of what operation is
primitive for the representation of logic programs. By introducing
the concept of an extended reverse predicate, it has been proved
that one need only "append" and "extended reverse" functions in
representing logic programs.

For the future research in this direction, using a model-
theoretic semantics in terms of the success language one may
discuss many issues on the properties of a logic program such as
program transformation, program classification, program synthesis,
and so forth, some of those which we are going to work on.

For example, in the context of program synthesis, we now have
an effective (automatic) procedure for obtaining a logic program
from a program specification given in formal grammatical
formulation which is one of the direct applicatons of the

representation result.

15

ACKNOWLEDGEMENTS

The author is indebted to Dr.Tosio Kitagawa, the president

of IIAS-SIS, Dr.Hajime Enomoto, the director of IIAS-SIS, for

their useful suggestion and warm encouragement.

He is also grateful to his colleagues, Toshiro Minami,Taishin

Nishida who worked through an earlier draft of the paper and

suggested the present improved formulation.

(11

[2]

(3]

[4]

(5]
[6]
(71

[81]

REFERENCES

Colmeraurer, A,, Les systemes-Q ou un formalisme pour
analyser et synthetiser des phrases sur ordinateur, Internal
publication no.43, Dept. d'Informatique, Universite de
Montreal, Canada, September, 1970.

Chomsky,N.and Schutzenberger,M.P., The algebraic Theory of
context-free languages,in"Computer Programming and Formal
Systems (Braffort and Hirschberg, eds.), North-Holland,
Amsterdam, 118-161, 1962.
van Emden,M.H. and Kowalski,R.A., The Semantics of Predi-
cate Logicaé a Programming Language, JACM 23 : 733-742
(1976). "
Engelfriet,J. and Rozenberg,G., Fixed Point Languages,

Equality Languages, and Representation of Recursively

Enumerable Languages, JACM 27: 499-518 (1980).

Harrison,M.A., Introduction to Formal Language Theory,
Addison-Wesley, 1978. , _ |
Hopcroft,J.E. and ‘Ullman,J.D., Introduction to Automata
Theory, Languages, and’Computation, Addison—Wesléy, 1979.
Kowalski,R., Predicate logic as a_prbgramming language,in
"Proc. of IFIP-74", 569-574. |

Salomaa, A., Formal Languages, Academic Press, 1973.

16

[9] Shapiro,E.Y., Alternation and the Computational Complexity of
Logic Programs, J. of Logic Programming 1: 19-33 (1984).

{10] Tarnlund, S.A., Horn Clause Computability, BIT 17: 215-226
(1977).

{11] Yokomori, T., A Logic Program Schema and Its Applications,
in "Proc. of 9th IJCAI", UCLA, CA, Aug., 723-725, 1985.

17

