
18

COMPARISON AND IMPROVEMENT OF STRING MATCHING
ALGORITHMS FOR JAPANESE TEXTS

Jeehee YOON, Toshihisa TAKAGI, and Kazuo USHIJIMA
尹志熙 高木利久 牛島和夫

Department of Computer Science and Communication Engineering
Kyushu University, Fukuoka, 812, Japan

九州大学工学部

This paper considers the problem of string matching for Japanese

texts. We apply three string matching algorithms which are well

known in the Roman alphabetic world to the Japanese texts and

compare their performances experimentally. Because of a large

character set, Japanese characters are coded into two bytes, and this

feature has a great influence on the performance of the algorithms.

The Boyer-Moore algorithm which is extremely efficient on Roman

alphabetic texts shows the worst performance on the Japanese texts.
This is because the preprocessing time of the algorithm is proportional

to the size of the character set. We present an efficient method to

improve the preprocessing time. We also consider an implementation

method of the algorithms on the normalized Japanese texts. By

considering the Japanese texts as a series of one byte codes, we scan
the texts in one byte units as is done in the Roman alphabetic texts.
The performances of the algorithms which use this method are
evaluated and compared with the other ones.

1. Introduction

Unlike English and other European languages, Japanese has a
number of features[10] that give rise to problems concerning text

–1–

数理解析研究所講究録
第 586巻 1986年 18-34

19

processing. The most signiflcant feature lies in the number of

characters.
In this paper we study the problem of string matching for Japanese

text with a large character set. String matching is one of the basic

operations of text processing and several techniques have been

proposed. The most important techniques are the Knuth-Morris-Pratt
algorithm[l], the Boyer-Moore algorithm[2] and the Quadratic

algorithm[8]. We applied these three algorithms to Japanese texts and

compared their performances experimentally.

For the large number Japanese characters, we need at least two
bytes to encode them. The Japanese text is composed of a free mixture

of passages in two kinds of character sets : traditional alphabetic set

coded into one byte units and Japanese character set coded into two
byte units. In our case, shift codes are used to distinguish these two

character sets. On the Japanese texts that have the above features, it

is not so easy to implement the algorithms which are generally

developed for Roman alphabetic texts. In this experiment, for the
simple implementation of the algorithms, we adopted the

normalization method[9] which allows us to treat both character sets
uniformly without using shift codes. Only by scanning the texts in

Japanese character units (two byte units and not one byte units), we
can apply the algorithms to the normalized Japanese texts without
any modifications to the algorithms.

The performances of the algorithms implemented by this method

are evaluated and compared experimentally. This empirical study

shows several interesting results which are different from those

exhibited on the Roman alphabetic texts. For example, the Boyer-

Moore algorithm, commonly known as the most efficient algorithm on
Roman alphabetic texts, shows the worst performance on Japanese

–2–

2 \vee

texts. This is because the preprocessing time of the Boyer-Moore

algorithm is proportional to the size of character set. We present an

efficient method to improve the preprocessing time.

We also consider an implementation method on the normalized

Japanese texts. The method is: by considering the Japanese texts as
only a series of one byte codes, scanning is done in one byte units as is

done in the Roman alphabetic texts. We call this method one byte unit

scanning. In this case, the problem of mis-detection that occurs from

one byte unit scanning is considered and its setting methods are also

given. The performances of algorithms which use the one byte unit
scanning are also evaluated and compared. In comparison with the
others, the Boyer-Moore algorithm adopting the one byte unit

scanning method shows the best performance.

2. Algorithms

We start with a brief review of the three string matching

algorithms. We define the cost of the algorithm as the number of

references made to the text string [2] and represent the pattem and

text length by m and n.

This algorithm[8] is a simple one and is given as follows : the
pattem is placed on the top of the left-hand end of the text string so
that the first character of the pattem and that of the text string are
aligned. And then the pattem is scanned through the text string. If a
mismatch occurs, the pattem is shifted one position to the right and

the scan is restarted from the new position of the pattern’s first
character. The cost of this algorithm ranges from a minimum of n to a
maximum of $m^{*}(nrightarrow m+1)[8]$.

–3–

21

In the worst case, the cost of the Quadratic algorithm is of order of
$m^{*}n[8]$. Knuth, Morris and Pratt present an algorithm[l] proportional

to $m+n$. This algorithm can be described as follows: like Quadratic,

the pattem and the text string are aligned and the scanning is done to

the right. However, when a mismatch occurs, the pattem is shifted to

the right such that the scanning can be started at the point where

mismatch occurred in the text string.When using this algorithm, we
must preprocess the pattern to prepare a table that is called $\backslash next$

table”. This tells us how far to slide the pattem when we detect a
mismatch. This algorithm has a cost ranging from n to 2n-m and it

additionally needs $O(m)$ comparisons and $O(m)$ memory to implement

the next table.

In every case, Quadratic and KMP inspect each character of the text

string at least once. Boyer and Moore, on the other hand , present a
new string matching algorithm[2] where the number of the inspected

characters is approximately $c^{*}(n+m)$, where $c<1$.
Unlike Quadratic and KMP, BM compares the pattem with the text

from the right end of the pattern. If a mismatch should occur, the
pattern is shifted according to the value of the precomputed tables
(deltal and delta2). For example, if we find that the text character

positioned against the last character in the pattem does not appear in

the pattern at all, we immediately shift the pattern m places. Thus,

when the alphabet size is large, we needto inspect only about n/m

characters of the text, on average. Even in the worst case[3,4,5,6], the

cost is proportional to 4n-m comparisons. However, to prepare two

–4–

22

tables (deltal and delta2), the algorithm requires $0(m+the$ size of

the alphabet) comparisons and O ($m+$ the size of the alphabet)

memory in addition.

Smit [8] reports on the average performances of the three
algorithms on Roman alphabetic texts. The conclusions are:

BM is extremely efficient in most cases.
. Contrary to the impression one might get from the analytical

results, KMP is not significantly better on average than Quadratic.

As mentioned in Section 1, the large number Japanese characters
cannot be represented in one byte, and at least two bytes are needed to
encode them. For a Japanese text file, coding methods and file formats
differ from one computing system to another. Our experiment was
done on a FACOM M382 system. The operating system is FACOM OS
$IV/F4$ with JEF (Japanese Extended Features). In JEF environment,

we have to use two character sets. One is the set of traditional
alphabetic sets which are coded into one byte, which we call l-byte

character. The other one consists of Kanji, Hiragana, Katakana, and

other Japanese characters. These are coded into two bytes, which we
call 2-byte characters.

As a Japanese text is composed of a free mixture of passages in

these two character sets, we may need shift codes to distinguish them.
However these shift codes make it difficult to process Japanese
texts[9]. For the simple implementation of algorithms, we adopted the
normalization method[9]. This involves coding even the l-byte

characters into two bytes. That is, we normalized each l-byte

character into two bytes by appending a leading byte whose value is 0 .

–5–

23

This method allows us to treat both character sets uniformly. In

Figure 1 we show the representation of character codes in both the

JEF and the normalized texts.

Figure 1. Internal representation ofJapanese texts

For the simple implementation of algorithms, we used the Japanese

texts normalized by the method given in Section 3. That is, only by

scanning the texts in two byte units (Japanese character units), not in
one byte units, we could apply the algorithms to the Japanese texts
very simply. From the normalized Japanese text of length 50002-byte

characters, we randomly selected 20 patterns of length m, from 1 to 14.
For each pattem length, one pattem not occurring in the text string

was generated.

To determine the cost of each algorithm, we first count the number
of references made to text string to locate every occurrence of a
pattern. We will call this the scanning cost. Additionally, for the
algorithm which require preprocessing, we count the number of
comparisons between pattem characters (for KMP) and the number of

assignment and test times (for BM). By adding these preprocessing

costs to the scanning costs, we obtained the total cost that represent

–6–

24

the performances of the algorithms. This cost is divided by the number

of text length and a cost factor is obtained. We then average these cost

factors over the 20 patterns of each pattem length.

In Figure 2 the cost of the algorithm is plotted against pattern

length for each of the three algorithms, Quadratic, KMP and BM.The

costs of the Quadratic and KMP are each respectively, slightly more
than one, and almost independent of the pattern length. This reflects

the fact that Quadratic and KMP reference the text string almost once
per character. The most obvious feature to be noted in the figure is

that the cost ofBM is much higher than those of Quadratic and KMP.

In Figure 3, the costs of the algorithms without consideration for

preprocessing are plotted against the pattem length for KMP and BM.

Note that for the BM the number of references to text string per
character is less than 1. That is, the majority of the cost of the BM is in

the preprocessing , not in the scanning. However from Figures 2 and 3

we can say that the preprocessing cost of KMP is negligible in

comparison with the KMP scanning cost.

In Figure 4 the cost of the BM algorithm is plotted against the
pattern length for four different lengths of text strings : $A,$ $B,$ $C,$ D ,

constituted of 5000, 20000, 40000, 80000 2-byte characters
respectively. This figure exhibits the phenomenon that the cost of BM

decreases as the text length gets longer. For example, the cost is lower
than 1.0 for a pattern length 2 or more in a text of length C.

In BM, it is necessary to construct two tables, deltal and delta2,

during the preprocessing. However, the purpose of the delta2 table is
only to optimize the handling of repetitive patterns. As the repetitive
patterns seldom appear in English text, Horspool deletes delta2 table

–7–

25

Figure 2. Comparison of costs vs. the pattern length

Figure 3. Comparison of costs vs. the pattern length
without considering the preprocessing

in the BM algorithm[7]. The same thing can be said for Japanese texts

and we can also delete it. In the preprocessing we construct the deltal

–8–

26

Figure 4. Costs ofBM algorithm for different lengths of texts

Note: here the notation patlj) refers to the j-th character in the pattern
(counting from 1 on the left). The entry in the deltal table for some
character ch is denoted by deltal(ch).

Algorithm BM {computing deltal}

for every character ch in the input alphabet do
deltal(ch) $:=m$;

forj $:=m$ downto 1 do

if deltal(patQ))=m then deltal(patlj)) $:=m- j$;

As given above, we must flrst initialize all the entries of this table
and set up the values in a linear scan through the pattern. Thus this

preprocessing time for the deltal table is proportional to (the pattern
length $+$ the size of the character set). Here, for Japanese text
processing, we must execute a large number of assignment statements
to initialize all entries and this make the performance of the BM so
bad as that given in Section 4.

–9–

27

To improve the preprocessing time, we have reconstructed the

structure of the deltal table. We call the improved BM algorithm

using our deltal table the NEW-BM algorithm. In Figure 5-(A) we
show the conflguration of the deltal table implemented by the

conventional method. This table has $65,536(=2^{16})$ entries and among

them at most m entries have the value different from m for the pattern

length m. In the NEW-BM, we implement the deltal table in a double-

layered manner as sketched in Figure 5-(B). This table is composed of

the main table with 256 entries and several subtables with each 256

entries also. The main table corresponds to the upper half of 16-bit

characters, and the subtables corresponds to the lower half.
In table(B), the entry value of table(A) which is different from m is

represented as follows: we insert a pointer to a subtable in the entry

of the main table which corresponds to the upper half of that entry

character, and the value is inserted in the entry of the subtable which

corresponds to the lower half of that entry character. For example, the

value 1 of the character entry of rべ” (coded in $\propto A4D9’$) in the table(A)

corresponds to the value of the subtable’s entry of $|D9$’ pointed to by

the main table’s entry of $\propto A4’$.
We present the preprocessing of NEW-BM using our compressed

deltal table in the following way:

Note : here the notation $patQ_{1}$) refers to the upper half of the j-th

character in the pattern and $patQ_{2}$) refers to the lower half. The i-th

entry of main table of deltal is denoted by deltal(main,i) and that ofj-

th subtable is denoted by deltal$(main+j, i)$.

Algorithm NEW-BM {computing deltal}

for $i:=0$ to 255 do

–10–

28

deltal(main,i) $:=m$;

for j $:=m$ downto 1 do

if deltal(main, $patGl$)) $=m$ then
begin

deltal(main, $patQ_{1}$)) $:=main+j$;

for $i:=0$ to 255 do
begin

deltal(main+j , i) $:=m$;

deltal $(main+j , Pat\mathfrak{h}2))$ $:=m$ -j

end

end

else
if deltal(deltal(main,$patQ_{1}$)),$patQ_{2}$)) $=m$ then

deltal(deltal(main, $pat\mathfrak{h}_{1}$)),$patQ_{2}$)) $:=m$ -j ;

Now we show the performance of our NEW-BM algorithm from the
view-point of space and time. If a table entry is represented by 4 byte,

the size of table(A) is $256Kbytes$ and that of table(B) is at most $(m+1)$

Kbytes. Thus, the space to represent the deltal table is reduced by
$(m+1)/256$. In this case m is always much less than 256.

By representing the deltal table as above, the preprocessing cost
needed to initialize the table is reduced. In Figure 6, the cost of NEW-
BM is plotted against the pattem length and is compared with the
other algorithms. It is clear that the performance of the algorithm is
significantly improved in comparison with that of BM given in Figure
2.

However, by transforming the structure of the table, accessing the
table during the search itself requires more instructions than before.
Therefore, the speed of the search algorithm is impaired slightly. In

–11–

29

Table 1 the running times of the string matching algorithms are
compared. NEW-BM is superior to the other algorithms, especially as
the pattem length becomes longer.

pa t te rn : \mathfrak{X} $\backslash \vee$ る $m=3$
C B4 A4 9 A4 EB

(A)

0000 . . . $A4D9$. . . $A4EB$. . . $C4B4$ FFFF

3 3 . . . 3 I 3 . . .3 0 $3\ldots 3$ 2 3 3 3

(B)
MAIN $TA8LE$

Figure 5. Structure ofdeltal table

6. One byte unit scanning of the Ja anese texts

Until now, the scanning has been in Japanese character units (two

byte units). In this Section, we show some different implementation
method of the algorithms.

By considering the normalized Japanese texts as a series of one byte
codes, we can scan the texts in one byte units as is done in the Roman
alphabetic texts. But if we directly apply this method to the

–12–

30

Figure 6. Comparison of costs vs. the pattem length

implementation of these algorithms, Quadratic, KMP, and BM, we
will detect the patterns to which no original patterns corresponds. For

example, ifwe let the Japanese characters $A,$ $B,$ $C,$ D be represented as
follows: A $=aa$, $B=ab$, $C=ba$, $D=bb$. Then the algorithms will

detect a pattern abab $=BB$ in a given text ACD $=aababb$. To avoid

such a mis-detection, some modifications of the algorithms are
required. But when the pattern scanning is done on the normalized

Japanese texts, the modification is very simple. As the Japanese

characters are represented by uniform two byte codes, the point where

the pattem is detected must be at the odd-numbered position only. By

checking whether the point is odd-numbered or not, we can select the

real occurrences of a pattem which corresponds to the original one.
We applied this methods to the implementation of the three string

matching algorithms and compared their performances. In Table 1,

the running times of the algorithms are given. Here QUADRATIC’,

KMP’ and BM^{*} respectively represents the modified QUADRATIC,

KMP and BM in which the scanning is done in one byte units. The

–13–

31

most obvious feature in this table is that BM^{*} is extremely efficient in

most cases. The BM^{*} is more efficient than the NEW-BM algorithm.

This is because in the BM’ algorithm the preprocessing time to
construct the deltal table and access time of the deltal table are much

less in comparison with the NEW-BM algorithm, even though the

number of references made to the texts in BM^{*} is a little more than

that of the NEW-BM.

The number of times of mis-detection is counted for each of the

pattern length and the percents that it occupy in the total number of

times of detection are given in Table 2. As the pattem length becomes

longer, the possibility of making the mis-detection is almost 0 .

7. Conclusions

From the results of the comparisons of the string matching

algorithms, we can readily say that in processing Japanese texts,

except when the pattem length is 1, the best solution for a string

matching program is to use the BM^{*} algorithm which scans the text in

one byte units. For the pattern length 1, the QUADRATIC is more
efficient than the other algorithms.

We have observed the performance and improvement of string

matching algorithms on normalized Japanese texts[9]. As both of the

l-byte and 2-byte characters are coded into two bytes uniformly, we
can implement the algorithms for Japanese texts with a few

modifications. However, most of the Japanese computer

manufacturers use their own character sets and shift codes for their

Japanese text files. And there is no compatibility[9] among them. In

processing these text files which are $n\tilde{o}t$ normalized, considerable

modifications of string matching algorithms will be needed.

–14–

32

Table 1. Running times of the algorithms (CPU time: msec)

Most of the problems that occur in processing Japanese texts are
common to processing other languages that have large character sets
such as Chinese and Korean[10].

Acknowledgement

This work was partly supported by Grant-in-Aid for Scientific
Research, Ministry of Education, Science and Culture, No. 60460228.

We are very grateful to Mr. T. Shinohara of Kyushu University
Computer Center for his advice on this research.

–15–

33

Table 2. The percents ofmis-detection in one byte unit scanning

References

$[1]Knuth$, D. E., Morris, J. H. Jr., and Pratt, V. R., eFast pattern
matching in strings,” SIAM J. Comput., Vol. 6, No. 2, pp. 323-350,
1977.

[2] Boyer, R. S., and Moore, J. S., eeA fast string searching algorithm,”
Comm. ACM, Vol. 20, No. 10, pp. 762-772, 1977.

[3] Rivest, R. L., “On the worst case behavior of string-searching
algorithms,” SIAM J. Comput., Vol. 6, No. 4, pp. 669-674, 1977.

[4] Galil, Z., e On improving the worst-case running time of the Boyer-
Moore string matching algorithms,” CommACM, Vol. 22, No. 9,
pp. 505-508, 1979.

[5] Rytter, W., ecA correct preprocessing algorithm for Boyer-Moore
string-searching,” SIAM J. Comput., Vol. 9, No. 3, pp. 509-512,
1980.

[6] Guibas, L. J. and Odlyzko, A. R., $\propto A$ new proof of the linearity of
the Boyer-Moore string searching algorithm,” SIAM, J. Comput.,
Vol. 9, No. 4, pp. 672-682, 1980.

[7] Horspool, R. N., $\propto p_{ractica1}$ fast searching in strings ,” Softw. Pract.
Expr., Vol. 10, pp. 501-506, 1980.

–16–

3 (4

[8] Smit, G. $\propto A$ comparison of three string matching algorithms,”
Softw. Pract. Expr., Vol. 12, pp. 57-66, 1982.

[9] Ushijima, K., Kurosaka, T., and Yoshida, K., $\propto SNOBOL4$ with
Japanese text processing facility,” Proc. ICTP 83, pp. 235-240,
1983.

[10] Japanese, and Korean,”

–17–

