
112

Implementation of the High-level Parallel
Programming Language Nano-2

Masaki HIRABARU\dagger (平原正樹)

Keijiro ARAKI\dagger (荒木啓二郎)

Toshinori SUEYOSHI\dagger (末吉敏則)

Itsujiro ARITA\dagger \dagger (有田五次郎)

\dagger Kyushu University (九州大学)

\dagger \dagger Kyushu Institute ofTechnology (九州工業大学)

Abstract

The high-level parallel programning language Nano-2[3] was
designed for shared memory multiprocessors and supports several
features to write reliable parallel programs. The language Nano-2 was
implemented on a prototype of highly parallel processing system[10],
HYPHEN $C- 16[15]$. This paper describes the language Nano-2 and
shows that the parallel features provided by this language can be
efficiently implemented on the shared memory multiprocessor. The
merits of the programming system of Nano-2 is also discussed.

1. Introduction
The evolution of hardware technology has made it feasible to built

multiprocessor systems with a large number of processors. HYPHEN
$C- 16[15]$, a prototype of such multiprocessor systems, was constructed
in 1982 and consists of sixteen microprocessor modules with its own
shared memory. On this multiprocessor system, we had implemented
the following programming systems:
(l)the programming system for performance evaluation[16] which

consists of compilers of Fortran and Pascal, an assembler, etc., and
(2)the programming system of the parallel programming language P-

$Pascal[9]$ which is based on Pascal.

1

数理解析研究所講究録
第 586巻 1986年 112-133

113

In the flrst system, the run-time efficiency of programs took
precedence over easiness of programming since the performance
evaluation of its hardware was the main purpose then. Therefore it
was needed to closely know HYPHEN C-16 and compelling to adapt
the sequential language to parallel programming. In the second
system, we designed a parallel programming language based on the
sequential Pascal and implemented it. It surely provides high-level
features in sequential programming but it is still insufficient in
parallel programming.

It is said to be hard to write parallel programs and to confirm their
behavior, which have really known from our experience. In contrast to
most of parallel systems (including our two systems above) which
intend to speed up only execution of programs, this research intends to
decrease total cost of programming as well as execution. Without
programming environment, it is difficult to attain the maximum
performance of high-speed parallel computers.

In order to utilize multiprocessor systems and improve software
reliability, a high-level parallel programming language is
indispensable. Most of existing concurrent programming languages,
however, have designed to provide simulated parallelism on a single
processor. There is no guarantee that such a language can be
efficiently implemented on a multiprocessor. We have designed the
high-level parallel programming language Nano-2 and implemented it
on HYPHEN C-16. The implementation and programming experience
in the real parallel environment has led to the revision of Nano-2. We
have implemented the revised version of Nano-2.

In this paper, we describe the revised version of the language Nano-
2 and the implementation of its processing system and distributed run-
time routines. In section 2 we discuss the design principles of Nano-2.
In section 3 we briefly describe the parallel futures of Nano-2 with
simple examples. In section 4 we describe an overview of HYPHEN C-
16 and the implementation of Nano-2 on it. Concluding remarks are
given in section 5.

2. Design Principles of Nano-2
Nano-2 was designed to facilitate the construction of parallel

programs which run on the HYPHEN system. We did not intend

2

114

processor memory processor memory processor memory

Access Mechanism

Fig.1 Model of target parallel computers

merely to add mechanisms for inter-process communication and
synchronization to an existing language such as Pascal or C , but
decided to design a new parallel programming language to support
structured programming, information hiding, readability, etc. We
took the following considerations into account in designing Nano-2.

(l)Nano-2 is a high-level parallel programming language for writing
programs which run on a shared nemory multiprocessor such as
the HYPHEN system. Fig.1 shows a model of target parallel
computers. Each Memory is accessed from the directly connected
processor as a local memory, and also accessed from the others
through the access mechanism. That is, each memory plays both
roles of a local memory and a global one. Languages and systems
for the model must provide facilities of partitioning and allocation
as well as interaction between partitions.

(2)$Nano- 2$ supports high modularity. In Nano-2, a module serves an
abstract construct which is invoked and runs in parallel with the
invoker. A module itself is also a parallel construct consisting of
some other modules. Thus a Nano-2 program is hierarchically
structured, but does not have Pascal-like nested block structures.
The hierarchical structure with the module constructs supports
abstraction of processing and isolation of nachine dependencies.
Nano-2 belongs to the group exemplified by Concurrent $Pascal[7]$

and Modula[17]. Languages of this group provide parallel constructs
as passive entities and also provide a parallel invocation
mechanism for them. Languages of another group, exemplified by
Concurrent $Euclid[12]$ and $Ada[1]\ovalbox{\tt\small REJECT}$, provide parallel constructs

\dagger Ada is a registered trademark of the U.S. Government-Ada Joint Program Office.

3

115

called process or task as active entities. Parallel constructs of Nano-2
called task are invoked by a mechanism of parallel invocation, called
parallel procedure call with reply.

(3)$A11$ constructs in Nano-2 have closed scope. Explicit control over
name visibility via import and export declarations is inherited from
the programming language $Euclid[13]$. Names must be explicitly
imported (or exported) via these declarations. This kind of
information expressed explicitly in the program text is valuable for
understanding and maintenance of the program. Accessibility is
also controlled in the same declarations. Thus Nano-2 helps reliable
programming. For example, Nano-2 provides shared variables, and
it is important to control visibility and accessibility of them. By
extracting many information from a source text such as type,
import or export declarations, the compiler will do very strict
checks of type, visibility and accessibility. Of course Nano-2
provides a facility of separate compilation to inprove software
productivity.

Although Nano-2 draws much on Euclid, we did not take account of
verification of Nano-2. Reliability of programs on multiprocessor
systems, such as fault tolerance, is also not included.

3. Language Features of Nano-2
Experience with the previous version of Nano-2 have brought to

revise it. The following outlines language features of the revised
version with example programs which really ran on HYPHEN C-16.

3.1 Simple Example

First we explain some of the language features in a simple example
shown in Fig.2. The summation of 1 through 4 is divided into two
parts: a subtotal of 1 and 2, and the other subtotal of 3 and 4, which are
calculated on different processors in parallel. The node with two
branching arrows corresponds to a parallel invocation, while the
confluence corresponds to a synchronization. Fig.3 shows this program
written in Nano-2, and the following gives an outline of it.
(l)The program begins with invoking task T1234 of module Add1234.

4

116

Fig.2 Simple example of summation

(2)Successively the task T1234 executes the paracall statement which
invokes task T12 of module M12 and task T34 of module M34 at the
same time, and waits for replies from both the tasks.

(3)$Each$ invoked task executes the adding operation in parallel with
the other and reaches the reply statement represented by !!. The
statement returns a reply as an acknowledgment that the subtotal
has already assigned to the shared variable.

(4)Receiving both of the acknowledgments, the invoker task T1234
resumes its execution to get a final result.

–Program partitioning–

Fig.4 shows the above program partitioning. All the entities
declared in the same module, except floating constructs (function Add
in Fig.3), must be allocated into the same processor. The function Add
is referred from every module. In order to increase the amount of
parallelism this function had better be individually executed in
parallel on the each processor. The keyword float in the function
declaration specifies making it floating. An invocation of a normal $(i$.
$e.$, non-floating) construct implies remote execution, while an

5

117

module Add1234; – this module adds 1,2,3 and 4
exports T1234; $-$-exports the entry of this module into outside

function float Add ($x,$ y ; integer) returns integer;
begin

return $x+y$;
end Add;

module M12;
imports Add; – imports function Add
exports X,T12; – exports the result variable and entry
var X: integer;

task T12;
imports Add, var X; – imports X for variable

begin
X: $=Add(1,2)$; !!; – sets a subtotal then returns a reply

end T12;

end M12;

module M34; – same as M12
imports Add;
exports Y , T34;
var Y : integer;

task T34;
imports Add, var Y ;

begin
$Y:=Add(3,4);!!$;

end T34;

end M34;

var S : integer;
task T1234;

imports Add, M12, M34, var $S;–$ imports sub-modules
begin

paracall $M12.T12,$ $M34.T34;rightarrow-$ invokes two tasks and waits
$S:=Add(M12.X, M34.Y);–$ gets a final result
!!; –returns a reply to the system

end T1234;

end Add1234;– this program is just a example.

Fig.3 Simple example written in Nano-2

6

118

Add1234

$\llcorner_{arrow--arrow---arrow-arrowarrowarrowrightarrowarrow----arrow---------arrowarrow-------\lrcorner}|1^{-arrow-arrow--arrow--arrowarrow-----arrow-arrow-------arrow---arrowarrow------\urcorner}\ulcorner|Add(floa\underline{t})_{I}^{i}$

\nearrow \downarrow \backslash

Processor #1 Processor#2 Processor#3

Add1234 M12 M34

$||l^{\vee--arrowarrowarrow---arrow--\neg}L--arrowarrowarrowarrowarrow--arrow-arrow\lrcorner r_{Add_{1}^{I}1}$ $|1^{-arrow--arrow----arrow-arrow\neg}11r_{Add_{I}^{I} ,arrow---arrowarrow--arrow-arrowarrow d}$ $1^{-arrowarrow-arrow-------\neg}|I\llcorner---arrow--------\lrcorner Add_{I}^{t}1$

Fig.4 Partitioning of the program in Fig.3

invocation of a floating construct implies local execution by the caller.
There is, however, no difference between them from the logical
viewpoint of execution.

A unit of partitioning is a combination between a normal module
and all floating constructs referred from it and is regarded as a logical
processor (the processor number in Fig.4 is logical). We write a
program in Nano-2 considering its partitioning, but it is little different
from modular programming considering its functional specification. In

7

119

this current version, a program can be allocated only statically.
Dynamic allocation is a further problem.

–Visibility control and hierarchical structure–

A construct in Nano-2 has closed scope. Visibility of names is
explicitly controlled in much the same way as in Euclid. A name is
visible in the scope in which it is declared. If it is to be visible in the
contained scopes then it must be explicitly imported into those scopes
via an import declaration. Names declared in a construct are visible
outside of it if and only if they are explicitly exported from it into the
enclosing construct by an export declaration. Accessibility is also
controlled in the same declarations. Variables imported (or exported)
with a keyword var are assignable. The use of export declarations are
currently limited in only module constructs. These control will
increase reliability of programs which use shared variables.

In the example, module Add1234 includes module M12 and M34
which may be allocated to different processors and executed in
parallel. Outside of module Add1234, only visible is task T1234 as the
entry of this module. The invocation of this entry looks like processing
on a single virtual processor.

–Interaction betwem constructs–
We had intended to describe SPPs (Self-synchronizing Parallel

$Programs)[4]$ in the previous version of Nano-2. Although SPPs are
parallel programs with high-speed synchronizing mechanism using
hardware FIFO queues, abstraction of processing can be hardly
archived in SPPs.

Now, a new synchronizing mechanism, which is called parallel
procedure call with reply, is introduced in the current version of Nano-
2. Fig.5 illustrates this mechanism. A parallel procedure call may
invoke multiple tasks with parameters at the same time. The invoker
task is blocked until receiving replies from all invoked tasks. Every
invoked task may retum a reply at any time. It may be regarded as the
Dijkstra’s cobegin-coend statement with the restriction that every
statement included in it is only a invocation of a task (i.e. so-called
remote procedure call). Varying the period of synchronization by

8

$12C$

Caller

Fig.5 Mechanism ofparallel procedure call with reply

returning a reply in an arbitrary place may be equivalent to a function
of a disconnect instruction in the language Communication $Port[14]$.

Nano-2 also provides remote procedure call as another invocation
mechanism. Procedures and functions even in other modules can be
called in a ordinary manner. Calling them allocated the same module
means local procedure (or function) call, while calling them allocated
other modules means remote procedure (or function) call. Therefore we
do not need take account of partitioning when using the mechanism of
procedure (or function) call. Since tasks, procedures and functions in a
Nano-2 program must be implemented as reentrant, they can
recursively invoke their own entries. Every invocation mechanism,
parallel procedure call, procedure call and function call are little
different from each other. Consequently, it will be a natural extension

9

121

from sequential programming to write a recursive parallel program
with parallel procedure calls and/or remote procedure calls.

Of course, using invocations with parameters, the example shown
in Fig. 2 can be rewritten not to use shared variables.

3.2 Module Array

A program module executed on each processor may be much the
same as the cthers in some applications. Writing each program module
individually would not only be a laborious work but also make the
program hard to understand. Module array is introduced to solve these
problems.

–Examples–

0

0

for $i:=1$ to n paracall Multiply $[i].Tines(a[i], b[i], c[i])$;

Fig.6 Program ofmatrix multiplication

Fig.6 partly shows a program for multiplying two matrices, whose
control flow is shown in Fig.7. The declaration, module Multiply(n),
(where n is constant) specifies that it is a module array with n

elenents. The expression, Multiply’index, returns a value of its own

10

122

Fig.7 Control flow ofmatrix multiplication

position, thus every module can know its own position in the module
array. The task Times of i-th nodule of Multiply receives column data,
$a[i]$ and $b[i]$, and calculates the inner product by communicating to an
adjacent, and sets a result to $c[i]$. With module arrays we could easily
write this kind of programs.

O

0

for $i:=1$ to x paracall $Sieve[1].Test(i)$;

Fig.8 Program ofEratosthenes’s sieve

Fig.8 shows another example, a part of program of the
Eratosthenes’s sieve, whose control flow is shown in Fig.9. It is a
typical example of pipeline processing. The task Test of each module of
Sieve receives a number p and tests whether p is caught in this sieve or
not. If not, p is sent to the task of the next module.

11

12 .3

Fig.9 Control flow ofEratosthenes’s sieve

–Implementation strategy–

The previous version of Nano-2 provided the above facility as a
repetitive compilation of the compiler control $facility^{[2]}$ which was
implemented in the preprocessor to expand a module array into the
source text. This strategy increases the amount of both processing
time and space in proportion to the number of elements, i.e., the
number of processors. This situation is not agreeable because the
language Nano-2 was designed for computers which consist of a large
number of processors. The revised version provides this facility as a
part of the language specification, and it becomes possible to defer an
expansion of a module array until loading its object into every
processor.

3.3 Mutual Exclusion
A language for parallel programming must provide the means to

guard against time-dependent errors. Such errors can occur by the use
of either shared variables or parallel invocations. Instead of
completely eliminating time-dependent errors, we provide the
language construct which will reduce them.

In SPPs of the previous version of Nano-2, switching a processor to
another task could occur only at the end of the execution of a task.
That is, code sequences in tasks of Nano-2 had to be continuously
executed and were essentially critical regions. SPPs provide only this
simple critical regions for mutual exclusion, but no general means
with conditions such as guarded command[8]. As we have hidden the
concept of SPPs by parallel procedure call with reply, we will also
introduce a high-level language construct for mutual exclusion,
$monitor[11]$ with signal and wait operations over condition variables.

12

124

In a monitor, only one task can be executed at a time and
synchronization conditions can be written by using signal and wait
operations.

Obviously, the monitor construct nay reduce the amount of
parallelism for the sake of safety. For that cases, Nano-2 also provides
semaphore as another mechanism for synchronization.

4. Implementation of Nano-2

We have implemented Nano-2 on the HYPHEN C-16
multiprocessor system. This section describes the implementation
details.

4.1 Hardware Structure

HYPHEN C-16 is a prototype machine consisting of sixteen 8-bit
microprocessors. Fig.10 shows the current configuration of HYPHEN
C-16 connected to the host computer. Enclosed by the dotted line is the
hierarchical exchanging network, where small circles are
bidirectional bus switches. The network is a binary tree on which
processor modules are connected as leaves (large circles in Fig.10).
Though the HYPHEN system has a hierarchical structure, all the
processor modules are uniformly leaf nodes. The access cost is the
lowest between the nearest neighbors and becomes greater as they are
getting apart from each other.

Each processor module consists of a processor unit and a nemory
unit, and has its own address which uniquely specifies the module in
the HYPHEN system. Table 1 shows the detail of a processor module
of the current HYPHEN C-16 system.

The host computer, which is under the Unix*(System-III) operating
system on a Motorola MC68000, is connected to the processor No.O
with a serial comnunication line. Communicating with the processor
No.O, the host computer behaves itself like one of processor modules in
HYPHEN C-16.

\dagger Unix is a registerd trademark ofAT&T Bell laboratory.

13

$1_{t\cdot d}^{t)\ulcorner}$

Fig.10 Configuration ofHYPHEN C-16

4.2 Processing System of Nano-2
Fig.11 shows a flow of the processing system of Nano-2. A source

program, which may consist of several files separately written in
Nano-2, is compiled and then linked with system libraries to obtain
the executable program. The loader allocates and distributes every
partition of the program into a physical processor on HYPHEN C-16.
Most of processing in Fig.11 are done on the host.

14

126

Table 1 Processor module

Fig.11 Flow of the processing system ofNano-2

15

127

-Compiler–

FIg.12 Construction of the Nano-2 compiler

Fig.12 shows the construction of the Nano-2 compiler. The function
of each pass is explained below.
(l)preprocessor–treats including files and expanding macros. This is

currently implemented as an extended version of cpp (the

preprocessor of C compiler). It also includes the facility of repetitive
compilation (mentioned in section 3.2). After module arrays were
implemented, this facility is only used in the case that the number
of repetitions is small and high-speed execution is required.

(2)$pass$ l–analyzes the syntax and points out most of syntactic errors.
This pass is, for the most part, written in so-called compiler-
compiler languages and has capability of recovery from syntactic
errors. The lexical analyzer is written in lex provided by Unix,
while the syntax analyzer is written in a yacc-like language which
was implemented to construct the Nano-2 compiler.

(3)$pass$ 2–analyzes the semantics and generates the object code. Strict
checks of type, visibility and accessibility are done in this pass. The

16

128

object code generated is a calling sequence for run-time routines,
called threaded code[6].

(4)$assembler$–converts an input assembly program into relocatable
format.

–Linker–

The linker nainly perf’orms the following two functions:
(l)to check consistency of external references between separated

programs, and
(2)to combine a normal module and all floating constructs referred

from it into a loading unit executed on a logical processor.
Before Nano-2 was implemented, the linker had allocated loading

units to physical processors according to a specification by a user $($,
which is currently deferred until loading-time as described below).

–Loader–

The loader carries out both processor allocation and program
distribution. Allocation means mapping logical processors to physical
processors. It is difficult to find out suitable allocation especially on
systems with structured access mechanisms. For exanple, frequent
accesses between physical processors No.O and No.F (in hexadecimal)

in Fig.10 is harmful for communications by others which take a part of
the same access path. Without carefully considering it, the root node
would easily become a bottleneck. Access contention is an important
issue as well as balancing load. For the present, since locality of data
accesses and load of execution can not be derived from object codes, the
loader automatically determines allocation on the next assumptions.
(l)The hierarchical structure of a Nano-2 program implies locality of

data accesses. Because modules are designed by fanctional
decomposition, the amount of internal references will be in excess of
one of external references.

(2)The total size of loading units of each processor implies load of
execution. It is, however, an ad hoc assumption.

17

12 $($

J

Little access contention and balanced load will improve run-time
efficiency of a program.

Because these assumptions do not necessarily hold, a user may
specify allocation to the loader as well in the following special cases.
When the program module depends on the system configuration, such
as processing $input/output$ requests, it had better locate on the
processor which possesses appropriate devices. To facilitate
debugging, it is helpful to allocate all physical processors to a single
(usually $t,\iota he$ host) processor. Of course it must be possible to allocate
several logical processors to a physical processor. The program can be
developed independently of the number of physical processors.

After determination of allocation, the loader distributes loading
units into each physical processor according to their allocation. When
loading units include some module arrays, broadcasting can be used
because a single loading unit is copied into many processors. With
software broadcasting on the hierarchical exchanging network, the
order of loading time would be $logN$ (N is the number of elements).

4.3 $Run\cdot time$ Environment

Processor#l Processor#n

Access mechanism

Fig.13 Run-time routines of each processor

18

1 3_{J}^{\cap}

Run-time routines, which supports execution of Nano-2 programs,
are placed on every processor as shown in Fig.13. They consist of the
following two layers.

–Nano-2 kernel–

The upper layer, called Nano-2 kernel, consists of routines for task
scheduling, $input/output$ requests and nemory management. In the
current implementation the compiler generates a calling sequence for
run-time routines, called threaded code[6]. This approach facilitates
the implementation with various kinds of processors. The system can
commonly treat object codes. For example, the loader can distribute a
certain object module into any processor without distinction of the cpu.
In current HYPHEN C-16 (each processor module uses a Zilog Z-80), a
processor module using an Intel 8086 and/or the host computer using a
Motorola MC68000 can be indeed connected as one of the processors.

There are basically two methods to specify the location: one is local
addressing inside a processor and the other is remote addressing
between processors. These addressings are managed with access
protections in the layer because the Z-80 does not possess the
capacities of address relocation nor memory protection. The kernel
covers this heterogeneous configuration and insufficient processor
capacities at the expense of execution time.

As one of the run-time routines, the mechanism of parallel
procedure call with reply is implemented with a countable semaphore.
The current HYPHEN system only provides binary semaphore by
using a hardware instruction, called $test- andarrow set$. Increment (or
decrement) instructions executed in one memory cycle will be needed
for the effective implementation of the mechanism. Parameter passing
can be performed with no message buffering because the mechanism is
basically a blocking type. By returning a reply on being invoked, it is,
however, possible to simulate a non-blocking type.

–SPP kernel-

The lower layer called SPP kernel deals with invocations of
routines and accesses to data on the other processors. This kernel
converts requests, such as $read/write$ functions which directly specify a

19

131

location on another processor, into message exchanging between both
the processors. Although every processor is interconnected by serial
communication interfaces on HYPHEN C-16, the upper layer can
regard this loosely coupled system as a shared memory multiprocessor,
which owes to functions of the SPP kernel.

This layer provides a minimum of functions so that it can be easily
replace by hardware[5].

5. Conclusion

We have described the revised version of Nano-2 and its
implementation. By introducing parallel procedure call with reply,
module construct and its array, nonitor, etc., we have removed
particular concepts and notations of the HYPHEN system from the
previous version. The strategy based on the shared menory model
makes it easy to implement a parallel programming language on a
multiprocessor even without memory sharing.

Module arrays improves efficiency of processing as well as
writability and readability. For example, in Fig.8 of section 3.2, when
we run the program with 120 elements (which is the number of primes
and also the maximum size in current HYPHEN C-16), the amount of
processing time and space of the compiler and the linker decreases to
about 1/100. With broadcasting, loading time also decreases to about
1/15.

Automatic allocation helps beginners and omits a work in the case
of simple parallel programs. In the complicated cases, because the
allocation is hardly determined before execution, re-allocation cost is
required to be low. This requirement is met in this system by
determining allocation when loading-time.

Current HYPHEN C-16 has no memory sharing. But with shared
memory model it is easy to implement and to replace the lower layer
by hardware in real shared memory multiprocessors.

We regard the parallel computer HYPHEN and language Nano-2
as mere tools for investigation of parallel programming or distributed
processing. A distributed operating system and a debugger for a
parallel program are essential and must be implemented with Nano-2.
We have a primary object in constructing parallel programming

20

$13d$

environment on the HYPHEN system and studying parallelism from
practical viewpoint.

Acknowledgment

We would like to thank Professor K.Ushijina for the useful
suggestions about this research, and also thank Miss K.Kai for her
helps in the improvement of the manuscript.

References
[11 Ada Programming Language (ANSIIMIL-STD-1815A), U.S.
Government, Department of Defense, Ada Joint Program Office, 1983.
[21 Araki,K. and Arita,I.: $\backslash Co\iota npiler$ Control Facility As a Tool in
Parallel Programming,” Proc. 28th Annual Convention IPSJ, 1984.
[3] Araki,K., Arita,I. and Hirabaru,M.: \langle NAN0-2: High-level Parallel
Programming Language for Multiprocessor System HYPHEN,” Proc,
of COMPCON $Fa11’ 84$, pp.449-456, 1984.
[4] Arita,I.: $\propto On$ a Parallel Program with Synchronizing Mechanism
Using FIFO Queue (I) –Self Synchronizing Parallel Program –,”
Trans. IPSJ, Vo1.24, No.2, pp.221-229, 1983 (in Japanese).

[5] Arita,I. and Sueyoshi,T.: $\propto On$ a Parallel Program with
Synchronizing Mechanism Using FIFO Queue (III) –Execution
Control Mechanism –,” Trans. IPSJ, Vol.24, No.6, pp.838-846, 1983
(in Japanese).

[6] Bell,J.R.: $eThreaded$ Code,” Commun. ACM, Vo1.16, No.6, pp.370-
372, 1973.
[7] Brinch Hansen,P.: $\propto The$ Architecture of Concurrent Programs,”
Prentice -Hall, 1977.
[8] Dijkstra,E.W.: $eeGuarded$ Commands, Non-determinancy and
Formal Derivation of Programs,” Commun. ACM, Vo1.18, pp.453-457,
1975.
[91 Hirabaru,M., Araki,K. and Arita,I.: “’Implementation of Parallel
Programming Language P-Pascal,” Technical Rep. of IPSJ, SF9-3,
1984 (in Japanese).

21

133

[101 Hirabaru,M., Araki,K., Sueyoshi,T. and Arita,I.:
Implementation of High-level Parallel Programming Language Nano-
2,” IECEJ, EC85-11, pp.35-46, 1985 (in Japanese).

[11] Hoare,C.A.R.: $\propto Monitors$: An Operating System Structuring
Concept,” Commun. ACM, Vol.17, No.10, pp.549-557, 1974.
[12] Holt,R.: ceConcurrent Euclid, the UNIX System, and TUNIS,”
Addison-Wesley, 1983.
[13] Lampson,B.W., Horning,J.J., London,R.L., Mitchell,J.G. and
Popek,G.L.: $eeReport$ on the Programming Language Euclid,“
SIGPLAN Notices, Vo1.12, No.2, 1977.
[14] Mao,T.W. and Yeh,R.T.: $\propto Communication$ Port: A Language for
Concurrent Programming,” IEEE trans., SE-6, pp.194-204, No.2,
1980.
[151 Sueyoshi,T., Saisho,K. and Arita,I.: $*HYPHEN$ C-16 –A
Prototype of Hierarchical Highly Parallel Processing System,” Trans.
IPSJ, Vo1.25, No.5, pp.813-822, 1984 (in Japanese).

[16] Sueyoshi,T., Arita,I., Saisho,K. and Ushijima,K.: $eeProgramming$

System for Performance Evaluation of MIMD Type Parallel Computer
HYPHEN C-16,” Trans. IPSJ, Vo1.26, No.6, pp.1097-1105, 1985 (in

Japanese).

22

