
134

On the concurrency
and

a yet another standard form of concurrent programs
of

Smalltalk-80 \dagger

Norihisa Doi
土居範久

Institute of Information Science, Keio University
Kiyoshi Segawa

瀬川 清
Jobu College of Commerce

Abstract
In this paper, the concurrency of Smalltalk-80 is clarified by examining the execution re-
sults of the several programs, and a standard form of concurrent programs is presented
by using the classical concurrent problems in Smalltalk-80. A scheme to enrich the con-
currency in Smalltalk-80 is also proposed.

0. Introduction
In this paper, the concurrency of Smalltalk-80 is clarified by examining the execution results of several
concurrent programs, not by looking into the Smalltalk-80 system itself (as physicians do, not as surgeons
do). Then, using the classical concurrent problems, such as Producer Consumer Problem and Readers and
Writer’s Problem, a standard form of concurrent programs of Smalltalk-80 is presented. Finally, the scheme
to enrich the concurrency in Smalltalk-80 is proposed.

1. class Process

In Smalltalk-80, a process is a sequence of actions described by expressions and performed by the Smalltalk-80
virtual machine. Each process is represented by an;nstance of class Process.

A process is created by sending the message fork. fo$rkAt:$. newProcess and newProcessWith; to a
block. The process created by fork or forkAt: is scheduled to be executed by the virtual machine (but it
is not always executed immediately), so such a process is called scheduled. On the other hand, the process
created by newProcess or newProcessWith: is not scheduled to be executed and is called suspended. A
suspended process $i\epsilon$ scheduled by sending the message resume to it.

Example 1.1
[actionA] f ork.
act ionB.

In this example, actionA and actionB are executed concurrently. .
Example 1.2

$processarrow$ [actionA] newProcess.
actionB.
process resume.
actionC.

In this example, actionB is executed alone, then actionA and actionC are executed concurrently. .
The return value of [actionAlfork is the block [actionA] itself, not the created process. So if the

created process is referred to later, the process must be created by newProcess or newProcessWith: as in
example 1.2.

There is only one processor capable of carrying out the sequence of actions a process represented. That
is, in spite of saying “be execu$tedconc$urren tly ,“ there is only one process actually being executed. The
process which is currently being executed is called active.

There exists only one instance of class ProcessorScheduler globally named Processor. Processor
selects the active process among the scheduled processes. Moreover, there are some messages for Processor
to inquire about or change the state of the system. For example, the priority of the active process is returned

\dagger Smalltalk-80 is a trademark of Xerox Corporation

1

数理解析研究所講究録
第 586巻 1986年 134-152

135

by sending activePriority to Processor and the active process is terminated by sending terminateActive
to Processor.

To select the active process, Processor uses a FCFS(First-Come, First-Serve) ready queue with priori-
ties. More strictly speaking, it adopts the multi-queue scheduling algorithm which uses a FCFS ready queue
for each priority. The process waiting for the processor longest becomes active first among the processes with
the same priority, and the processes with the highest priority become active before the processes with lower
priorities. Once a process becomes active, it will be active continuously unless it relinquishes the processor by
itself or a process with the higher priority is scheduled (The processor will never be assigned to processes in
a time-slicing manner). When a process whose priority is higher than that of the active process is scheduled,
the new scheduled process preempts the processor. The situation, however, is slightly different if the priority
of the scheduled but not act ive process is changed by the message priority:. In example 1.1, actionB
is executed before actionA and in example 1.2 the execution order is “actionB,actionC and actionA,“
unless each process relinquishes the processor by itself.

A process created by fork, newProcess or newProcessWith: receives the same priority as the process
that creates it. On the other hand, a process created by forkAt: level receives the priority level. By
sending priority: level to the process, its priority becomes leve1.

Example 1.3
[actionA] forkAt: levell.
actionB.

Assume that the above program is executed in the process with priority leve12. If
levell $>$ leve12,
actionA is executed before actionB , and if
levell \leq leve12,
actionB is executed before actionA. .

There are a fixed number of priority levels numbered by ascending integers. Ordinarily, user processes
are executed at priority 4. Even if a process whose priority is less than 4 is created in a user process, it
is uncertain when the process will be executed (The process created in the user process might be executed
after the user process terminates, but it is not correct).

If Processor receives the message yield, Processor suspends the active process and places it at the
end of the ready list pertaining to its priority (There are as many lists as priority levels). Then the first
process on that list becomes active. If there are no other processes on that list, the process just suspended
becomes active again, so yield has no effect in such a case. Sending yield to Processor is one of the
methods for relinquishing the processor.

If the block representing the process has arguments, the message newProcessWith: must be used to
create the process. The argument of this message must be an instance of Array and the elements of it are
given to the block arguments.

2

136

2. class Semaphore

A semaphore is used as a synchronization primitive in Smalltalk-80. An instance of a semaphore is created
by sending the message new to class Semaphore, and the value of the created semaphore is 0 . A semaphore
is also created by the message forMutualExclusion instead of new, and its initial value is 1.

Sending the message wait to an instance of Semaphore corresponds to a P-operation, and sending
signal corresponds to a V-operation. A semaphore in Smalltalk-80 is a counting semaphore whose value
is a non-negative integer. So, if several signal exceed wait, the semaphore remembers the number of the
excess signal.

A semaphore queue in Smalltalk-80 is a FIFO queue, so the processes suspended in the queue will be
resumed in the same order in which they were suspended independently of the priority. If the priority of the
process resumed by signaI is higher than that of the process which sends signal, the resumed process will
become active.

In Smalltalk-80, there are two special messages for the mutual exclusion. For an instance creation, the
message forMutualExclusion is prepared. By this message, as stated before, a semaphore whose value is
1 is created. To execute a block, aBlock, mutual exclusively, the message critical: aBlock is sent to the
semaphore. This message is implemented as follows:

critical: aBlock
$|$ value $|$

self wait.
value $arrow$ aBlock value.
self signal.
$\uparrow value$

3. class Delay

In Smalltalk-80, semaphores are used to handle hardware interrupts. Each process handling a hardware
interrupt sends wait to the appropriate semaphore and suspends itself. When an interrupt occurs, the
Smalltalk-80 virtual machine detects it and sends signal to the appropriate semaphore to resume the
interrupt handling process. The Smalltalk-80 virtual machine detects the following three conditions[Gol]:

1. user event: a key has been pressed on the keyboard, a button has been pressed on the pointing device,
or the pointing device has moved,

2. timeout: a specific value of the millisecond clock has been reached, and
3. low space: available object memory has fallen below certain limits.

A class Delay is prepared to handle the second condition. Using this class, the active process might be
suspended for a specified amount of time. An instance of Delay is created by the following messages.

forMilliseconds: time - to suspend the active process for time milliseconds.
forSeconds: time –to suspend the active process for time seconds.
untilMillisecondg: time - to suspend the active process until the millisecond clock reaches time .
The active process is actually suspended when the message wait is sent to an instance of Delay. The

suspended process will be scheduled when the specified amount of time elapses.
The following two examples show how to suspend the active process for 1 second.

Example 3.1
$|$ sleepingTime $|$

sleepingTime $arrow Delay$ forSeconds: 1.
sleepingTime wait..

Example 3.2
(Delay forSeconds: 1) wait..

3

137

4. State transition of a process

The following is a state transition diagram of a process.

5. Carrying out concurrent processes

4

138

5.1 Selection of the active process
As stated before, a preemptive, priority based FCFS ready queue is used to select the active process among
the scheduled processes in Smalltalk-80. In principle, the active process can be continuously executed to its
end. If we run the program:

1: [10 timesRepeat:
2: [Transcript show: ‘forked $proce\epsilon s$; cr] fork.
3: 10 timesRepeat:
4: [Transcript show: ‘main process; cr]

the child process created by fork at line 2 wiU become active when the parent process terminates. So the
result of this program is as follows:

main process
main process

main process
forked proc ess

forked process

forked process

To execute two processes –parent and child – concurrently, that is, to activate them alternately,
Processor yield must be used as follows:

1: [10 timesRepeat:
2: [Transcript show: ‘forked process‘ ; cr .
3: Processor yield]] fork.
4: 10 timesRepeat:
5: [Transcript show: ’main process ‘ ; cr .
6: Processor yield].

Each process relinquishes the processor at lines 3 and 6 in its own loop, so each process alternately executes
its own loop. The result of this program is as follows:

main process
forked process
main process
forked process

main process
forked process

Instead of Processor yield at lines 3 and 6, (Delay forSeconds: 0) $wait$ can also be used. If the
active process wants to be suspended even for 0 seconds, the context switching occurs and this process
becomes inactive. Thus, to exchange the active process, (Delay...)wait may be used(Note that, in some
cases, it is better to use (Delay...)wait instead of Processor yield. See the section 7.1).

s

139
S.2 Changing priority

The priority of a process can be changed by sending the message priority: to it. This message, however,
does not take effect immediately. The priority of the process will be changed to the specified level after the
process becomes active.

1 : $|$ procl proc2 $|$

2: procl $arrow$

3: [Transcript show: procl – start ‘ ; cr .
4 : Processor yield.
5: Transcript show: ‘procl -end“ ; cr] newProcess.
6: $proc2arrow$

7: [Transcript show: ‘proc2– start ‘ ; cr .
8 : Processor yield.
9: Transcript show: ’proc2 - end ‘ ; cr] newProcess.

10: procl resume. proc2 resume.

11: Transcript show: ‘main - 1 ‘ ; cr .
12: proc2 priority: 5.
13: Transcript show: ‘main - 2 ‘ ; cr.
14: Processor yield.
15: Transcript show: ‘main -3 ‘ ; cr.
16: Processor yield.
17: Transcript show: ‘main -end‘ ; cr.

The result is as follows:

main - 1
main - 2
procl $arrow$ start
proc2 $arrow$ start
proc2 -end
main $arrow 3$

procl - end
main - end

6

140

5.3 Implementation of mutual exclusion by semaphores

The following example shows how to implement a mutual exclusion by Semaphore.

1 : $|$ sem procl proc2 $|$

2 : sem\leftarrow Semaphore new.
3: procl $arrow[1to;20$ do:
4: [$:c1|$ sem wait.
5 : cl pr intString displayAt: 1000100 .
6 : sem signal]] newProcess.
7: proc2 $arrow[1to:20$ do:
8 : [: c2 $|$ sem wait.
9 : c2 printString displayAt: $100Q150$.
10: sem signal]] newProcess.

11: procl resume. proc2 resume .
12: Processor yield.
13: s em s ignal.

This program alternately displays the numbers from 1 to 20 at the two points (coordinates $(100,100)$ and
$(100,150))$ on bit mapped display. The heart of this program is line 12. Proces sor yield at line 12 activates
procl, but the value of the semaphore s em is 0 , so procl is suspended at line 4. Then proc2 becomes active
and for the same reason becomes suspended at line 8. Now the main process which executes the whole
program becomes active again. Sem signal at line 13 is executed and procl is scheduled. At this point,
the main process terminates and procl becomes active. By line 5, 1 is displayed at the points $(100,100)$ and
by line 6 proc2 is scheduled (Note that the value of sem is 0). Then, procl is suspended at line 4. In turn,
proc2 becomes active. By line 9, 1 is displayed at the point $(100,150)$ and by line 10, procl is scheduled.
Then, proc2 is suspended at line 8. Procl becomes active again and so on.

Now, line 12 is assumed to be omitted. After the execution of line 13, procl becomes active. The
value of sem is 1, so procl sets it to 0 and displays 1 on the display. By sem signal at line 6, the value
of sem becomes 1 because there are no processes in the semaphore queue(proc2 is waiting in the ready
queue). Procl can pass through sem wait at line 4 again and display 2. After procl has displayed the
numbers from 1 to 20, proc2 becomes active. So if Processor yield is lacking, the numbers from 1 to 20
are displayed at point $(100,100)$ and then at point $(100,150)$.

Two special messages for mutual exclusion are provided in Smalltalk-80. Using these messages, the
above program can be rewritten as foliows:

1 : $|$ sem procl proc2 $|$

2: sem $arrow$ Semaphore forMutualExclusion.
3: procl $arrow[1$ to: 20 do:
4 : [: cl $|$

5 : sem critical: [cl printString displayAt: 1000100]]

6 :] newProcess.

7: $proc2arrow[1to:20$ do:
8 : [: c2 $|$

9 : sem critical: [c2 printString displayAt: $100Q150$]]
$i0$;] newProcess.
11: procl resume. proc2 resume.

By these messages, the structure of the program is made clear. Procl, however, precedes proc2, because
there are no essential differences between this program and the former one without line 12. To activate procl
and proc2 alternately, Processor yield must be inserted after displaying the number as stated in 5.1 or
the following three lines must be added after line 11 to make this program functionally same as the first one.

12: sem wait.
13: Processor yield.
14: sem signal

7

141

6. Sharing resources among objects

In sequential programs or concurrent programs, there are two common standard ways to share resources
among objects:

1. using shared variables, and
2. passing resources (which are also objects) to objects by messages.

6.1 Using shared variables

There are five kinds of variables in Smalltalk-80. They are distinguished by their scopes and lifetimes. Tbese
variables may be grouped in two categories, private (variables) and shared (variables).

A private variable can be accessed by only one object, and instance variables and temporary variables
are private variables. Instance variables are existed during the lifetime of the object which accesses them
and temporary variabies are existed during the activation of one action(e.g. a message). Private variable
names must be begun by the lower alphabetical characters.

On the other hand, a shared variable can be accessed by more than one object. Shared variables may
be grouped, and each group is called as a pool. A pool can be named and the name of the pool is called as
name of pool.

The following three variables are shared variables:
(1) class variables – A class variable is shared among all instances of one class. Class variables are declared

in the class definition . Each class has a special pool in which all class variables of it are kept.
(2) global variables –A global variable is shared among all instances of all classes. To use glob$a1$ variables,

they must be added into the special pool named Smalltalk.
(3) pool variables – A pool variable is shared among the instances of more than one class. To use pool

variables, the name of the pool must be declared in the class definition, the pool variables must be
added into the pool and the name of the pool must be added into the pool Smalltalk.
Shared variable names must be begun by the uppercase alphabetical characters.
Moreover, in Smalltalk-80, the hierarchy among classes may be defined. The child process (subclass)

inherits the variables and the methods of the parent class (superclass) in principle(If the superclass has the
method whose pattern is same as the one of the superclass, the subclass uses the own method according to
the rewriting rule in Smalltalk-80. On the other hand, the subclass can not have the variable whose name
is same as the one of the superclass). So, the instances α and β whose classes have the same superclass can
share the variable Σ , which is the class variable of the superclass(Note that the contents of the instance of
the subclass are constructed of the subciass and all of its ancestor classes).

The instance variables of the superclass can not be shared between α and β because they are created
each time when the instance of the subclasses are created.

8

1 $4\ulcorner d$

6.2 Passing the shared object by message
To accomplish the situation in which the object Σ is $sl_{1}ared$ between the obcan be used. At first, the object Σ is created, then when the objects a and β

en $eoJ^{ects}\alpha$ and β , the followin g way
argument in $t1_{1}e$ instance creation message. In $t1_{1}e$ classes, which are the templates of and th

are created, it is passed as an
object is $t1_{1}\epsilon$ argument in the instance creation methods and in the bodies of $theinstancesthep\alpha anh$

dob .β , the shared
$1S$ accessed by sendmg messages to this argument.

s are $oJec\downarrow$

By this way, the information about the shared object Z is hidden automatically(Ofwhose \dot{N}lstances are α and β can be defined only when it is known that the $objecty\Sigma$
is passed b th

course, the classes
argument). y e

7. A yet another standard form of concurrent programs
In this cbapter, we consider the method in which the relation between the sharedis deled by the $\iota lass$-subclass relationship. This method basically uses the shared variables b

s are resources and its users
from the usual methods, it may be expected that the readabdity of programs is incre $r_{d^{la}b^{e8}’ u}$

ut, different
resource-users relationship is clarified. This method can be used for both sequential ro rams and

crease ecause the shared
programs, and here tbis method is used for the classical concurrent processin $roblmp$

an conrurrent
the Smalltalk-80 program is presented at first to clarify the problem accordin to h

process ng pro ems . For each problem,
programming. Then, the program is examined and the solution accord in to the ob

r ng to te procedural orientcd
is presented. n accor ngo eo ject oriented programming

7.1 Producer Consumer Problem
A process producer and a process con umer communicate thducer sends data to buffer and consumer $t^{o}dmun$

ca e rough a shared bounded buffer buffer. Pro-
the procedural oriented programming concept. Suppose that

gets ata from buffer. The following is the solution based on
and 10 as its data and that he size of buffer is

ϵ^{pose}
aproducer sends arandom number between 1

9

143

1: $|$ buffer bufferSize valueAvailable gpaceAvailable mutex
2: readPosition $writePosition$ producer consumer count value rand $|$

3: $producerarrow$

4 : [$[true]$ whileTrue:
5 : [(Delay forSeconds: rand next $*10$) wait.
6: spaceAvailable wait.
7: mutex critical:
8 : [count $arrow$ (rand next $*10$) truncated $+1$.
9 : buffer at: writePosition put: count.
10: $writePositionarrow writePoBition\backslash \backslash buffer8ize+1$].

11: valueAvailable signal]] newProcess.

12: consumer $arrow$

13: [[true] whileTrue:
14: [valueAvailable wai$t.$.
15: mutex critical:
16: [value $arrow buffer$ at: readPosition.
17: Transcript show: ‘get value pr intString; cr .
18: readP$ositionarrow readPosition\backslash \backslash bufferSlze+1$].

19: spaceAvailable signal.
20: (Delay forSeconds: rand next $*10$) wait]] newProcees.

21: bufferSize\leftarrow 5.

22: $bufferarrow Array$ new: bufferSize.
23: valueAvailable \leftarrow Semaphore new.
24: $spaceAvailablearrow 8emaphore$ new.
25: bufferSize timesRepeat: [spaceAvailable gignal].
26: mut$exarrow Semaphore$ forMutualExclusion.
27: $readPositionarrow writePositionarrow 1$.
28: $randarrow Random$ new.
29: producer resume . consumer resume.

If tbere are no spaces $\dot{u}\iota$ buffer, producer will be suspended in the $semap1_{1}ore$ queue of spaceAvailable,
and if buffer is empty, consumer will be suspended in the semaphore queue of valueAvailable. Semaphore
mutex is used to accomplish mutually exclusive execution of the critical sections , but in these sections two
processes never relinquish the processor, so there is no need to construct these parts as critical sections by
mutexl

(Delay ...) wait at line 5 determines the timne needed to prepare data by a random number and line 20
determines the $ti_{1}ne$ needed to process data. Tltey only simulate the situation of takin g some time to prepare
or process data, and in red program $t]_{1ere}$ are no triggers such as (Delay)wait or Processor yield
to exchange $t1_{1}e$ active process. So, if producer becomes active prior to consumer, it is being active until
buffer is full. Then consumer becomes active and remains active until buffer is empty. On the other hand,
if consumer becomes active prior to producer, it will be suspended at line 14, and after that the situation
will be same as before. To activate producer and consumer alternately, it is necessary to insert either
Procesgor yield or (Delay...)wait at the points where data is prepared and where data is processed in
the program. if Processor yield is sitnply inserted at each point, however, the number of data in buf fer

is at most one.
We are ready to consider $t1_{1}e$ object oriented $vers|on$ of this program. BoundedBuffer, Producer and

Consumer might be seen as main $ob_{f}e$cts in $t1_{1}is$ problem. The relation among $t1_{1}ese$ three objects is as followg:

$T1_{1}el1$, the relatiolls[tip among these $t1_{1}ree$ objects might be seen as follows.

10

144

The shared resources–bounded buffer – which is an instance of BoundedBuffer might be assigned to a
class variable of BoundedBuffer. If the bounded buffer is assigned to an instance variable of BoundedBuffer
instead of a class variable, then the instance of BoundedBuffer might be created each time the instance
of Producer or Consumer is created and these bounded buffers can not be shared among producers and
consumers.

In Smalltalk-80, subclass inherits all the variables and the methods of its superclass. In this case, the
variables of BoundedBuffer for implementing the buffer, such as the buffer area and pointers, are in the
scope of Producer or Consumer. That is, the information about the bounded buffer can not be hidden from
its users –Producer and Consumer.

Then, let define BoundedBuffer as an independent class and ProducerConsumer as a superclass of Pro-
ducer and Conaumer. The instance of BoundedBuffer is assigned to a class variable of ProducerConsumer.

By this, the information about the bounded buffer can be hidden from its users. Moreover, as a side
effect, the multiple instances of Producer and Coneumer can be created if necessary.

The following Smalltalk-80 program is constructed according to this idea. In this case , each of the
producers and consumers is given its identification number. Each producer repeats sending its identification
number to the bounded buffer, and each consumer repeats getting it from the bounded buffer and displays
it with its own identification number.

1 : class BoundedBuffer
2:superclass Obj ect
3 : inst vars buffer bufferSize readPosition writeposition
4 : valueAvailable spaceAvailable mutex

5 : class method
6: instance creation
7: new: size
8 : $\uparrow super$ new init: size

9 : instance methods
10: accessing
11: remove
12: $|$ value $|$

13: valueAvailable wait.
14: mutex critical:
15: [value $arrow buffer$ at: readPosition.
16: $readPositionarrow readPosition\backslash \backslash bufferSize+1$].
17: spaceAvailable signal.
18: $\uparrow value$

19: deposit: value
20: spaceAvailable wait.
21: mutex critical:
22: [buffer at: writePosition put: value.
23: $writePositionarrow writePosition\backslash \backslash bufferSize+1$].

24: valueAvailable signal.
25: $\uparrow value$ ”no need to return value”

26: private
27: init: size
28: $bufferarrow Arr$ay new: size.
29: bufferSize $arrow size$.
30: $readpositionarrow writePositionarrow 1$.
31: valueAvailable $arrow Semapbore$ new.
32: $spaceAvailablearrow Semaphore$ new.
33: size timesRepeat: [gpaceAvailable signal].

11

145

34: mut$exarrow Semaphore$ forMutualExclusion

$1:class$ ProducerConsumer
2 : superclass Obj ect
3 : class vars Buffer Rand

4 : class method
5: initialization
6: initialize
7 : $Bufferarrow BoundedBuffer$ new: 5.
8 : $Randarrow Random$ new.
9: Producer initialize.
10: Consumer initialize

11: example
12: example
13: $|$ pl p2 $c1$ c2 $|$

14: ProducerConsumer initialize.
15: pl $arrow Producer$ new.
16: $p2arrow Producer$ new.
17: $c1arrow Consumer$ new.
18: $c2arrow Consumer$ new.
19: pl resume . p2 resume.
20: $c1re$ sume. c2 resume

$1:class$ Producer
2 : superclass ProducerConsumer
3 : class var NoOfProducer
4 : inst var myName

$5:class$ methods
6: initialization
7: initialize
8 : $NoOfProducerarrow 0$

9: instance creation
10: new
11: $|$ newProduc er $|$

12: $No0fProducerarrow No0fProducer+1$.
13: newProduc$erarrow super$ new.
14: newProducer setName.
15: $\uparrow ne$wProduc er define

16: instance methods
17: private
18: setName

19: myName $arrow$ No0fProducer

20: def ine
21: $|$ newProducer $|$

22: newProduc $erarrow$

23: [[true] whileTrue:
24: [Buffer deposit: myName.
25: Transcript show: ’Producer - myName printString; cr .
26: (Delay forSeconds: Rand next $*10$) wait]] newProcess.
27: $\uparrow newProduc$er

$1:class$ Consumer

2 : superclass ProducerConsumer
3 : c lass var No0fConsumer
4 : inst var myName

$5:class$ methods
6: initialization
7: initialize
8 : $No0fConsumerarrow$ 0

12

146

9: instance creation
10: new
11: $|$ newConsumer $|$

12: $NoOfConsumerarrow NoOfConsumer+1$.
13: newConsum$erarrow super$ new.
14: newConsumer setName .
15: $\uparrow newConsumer$ define

16: instanc e methods
17: privat e

18: setName

19: $myNamearrow No0fConsumer$

20: define
21: $|$ newConsumer data $|$

22: $newConsumerarrow$

23: [[true] whileTrue:
24: [$dataarrow Buffer$ remove.
25: Transcript show: ’Consumer - ’. myName printString,
26: : ’. data pr intString; cr .
27: (Delay forSeconds: Rand next $*10$) wait]] newProcess.
28: $\uparrow newConsumer$

An example of using these classes is shown as a class method example in the class ProducerConsumer,
and two instances of Producer and Consumer are created. The following is one of the results of this example:

Producer - 1
Producer -2
Consume$r-1:1$
Consumer - 2: 2
Producer - 1
Producer - 1
Producer - 2
Consumer -1 : 1
Consumer - 2: 1
Producer –2
Consumer - 1: 2

There is no need to use a semaphore mutex in the instance methods remove and deposit: if these
classes are used as in example. lf the priorities of producers and consumers are different, mutex becomes
necessary. For example, suppose that the priority of pl is higher than that of $p2$. Now pl is suspended
during the time determined by a random number, and p2 is active and begins to execute deposit:. At this
point, if the waiting time of pl expires, pl becomes active and then executes deposit:. So, to preserve the
consistency, we can not omit mutex. (Incidentally, note that pl, $p2$, cl and c2 are the instances of class
Process, not class Producer or Consumer.)

13

147

7.2 Readers and Writer’s Problem

The following is the solution for this problem based on the procedural oriented programming $concept[Cou]$.
In this solution, it is assumed that two readers and one writer access the shared resource.

1 : $|$ readCount mutex w readerl reader2 writer rand $|$

2: readerl $arrow$

3 : [[true] whileTrue:
4 : [mutex wait.
5: readCount $arrow$ readCount $+1$.
6: (readCount $=1$) ifTrue: [w wait].

7 : mutex signal.

8: Transcr ipt show: ‘readerl $arrow$ start’; cr .
9 : (Delay f orSeconds: rand next $*10$) wait.
10: Transcript show: readerl $arrow$ end ‘ ; cr .
11: mutex wait.
12: readCount $arrow readCountarrow 1$.
13: (readCount -0) ifTrue: [w signal].
14: mutex signal.

15: (Delay forSeconds: rand next $*10$) wait]] newProcess.

reader2 same as readerl

16: $writerarrow$

17: [[true] whileTrue:
18: [w wait.
19: Transcript show: wr iter –start ‘ ; cr .
20: (Delay forSeconds: rand next $*10$) wait.
21: Transcript show: wr iter -end ‘ ; cr .
22: w signal.

23: (Delay forSeconds: rand next $*10$) wait]] newProcess.

24: readCount $arrow 0$.
25: $mutexarrow Semaphore$ forMutualExclusion.
26: $warrow$ Semaphore forMutualExclugion.

27: $randarrow Random$ new.
28: readerl re sume . reader2 resume. writer resume.

Lines 8 to 10 mean that readerl is reading from the shared resource and lines 19 to 21 mean that writer
is writing into the shared resource. There are some (Delay...)wait in this program. As in the Producer
Consumer Problem, they simulate the t ime to perform reading and writing, and they never appear in the
real program, but are needed to execute the processes concurrently.

The semaphore mutex is used to construct the critical section . This kind of guard can be omitted in
the Producer Consumer Problem, but it can not be omitted in the following case. Suppose that lines 4 and
7 are omitted so there is no guard around the critical section. When writer is using the shared resource, if
readeri attempts to use the resource because the value of readCount is 1 (after incremented by readerl),
it is suspended at line 6. At this point, if reader2 becomes active and attempts to use the resource, it is able
to use it because the value of readCount is 2 so reader2 skips w wait at line 6. If line 4 exists, reader2 is
suspended at line 4 in this case, so there is no problem. On the other hand, in the critical section guarded
by $1\dot{u}$les 11 and 14, there is no chance to exchange the active process so there is no need to construct this
part as critical section.

Now we will solve this problem based on the object oriented programming concept. In this case,
File(shared resource), Reader and Writer are considered as objects. Multiple instances of Reader and
Writer can be created. The relation among these is sketched as follows, where, readerl, ..., readerN are
the instances of Reader, writer1, .. ., writ erM are the instances of Writer and file is the instance of File:

14

148

This relation has the difference in nuance which the relation in the Producer Consumer Problem has, but
in both cases there is one shared resource and there are two kinds of users. So, the standard form derived
from the Producer Consumer Problem can also be applied to this problem. To perform the information
hiding of File and emphasize the combination of the file itself and its operations, the class for the shared
resource is named as FileIO. The instance of FileIO is assigned to the class variable of ${\rm Re}$adersWriters,
which is the superclass of Reader and Wr iter. The relation among these classes is as follows:

A program based on this idea is shown below.

1:class FileIO
2 : superclasg Obj ect
3 : inst vars mut ex w readCount rand

$4:class$ method
5: instance creation
6: new
7 : $\uparrow super$ new initialize

8 : instance methods
9: accessing
10: concurrentRead: re ader
11: self startRead.
12: Transcript show: ‘reader‘. reader printString,
13: $arrow$ start; cr .
14: (Delay forSeconds: rand next $*10$) wait.
15: Transcript show: ‘reader‘. reader printString,
16: - end ‘ ; cr .
17: self endRead

18: exclusiveWrite: writer
19: self startWrite.
20: Transcript show: ’writer‘, writ er printString,
21: ‘- start ‘ ; cr.
22: (Delay forSeconds: rand next $*10$) wait.
23: Transcript show: ‘writer’, writer printString.
24: - end ‘ ; cr.
25: self $endWr$ite

26: private
27: initialize
28: readCount $arrow 0$.
29: $mutexarrow Semaphore$ forMutualExclusion.
30: $warrow Semaphore$ forMutualExclusion.
31: $randarrow Random$ new

32: startRead
33: mutex wait.
34: $readCountarrow readCount+1$.
35: (readCount $=1$) ifTrue: [w wait].

36: mut ex signal

37: endRead
38: mutex wait.
39: readCount $arrow readCount-1$.
40: (readCoun$t=0$) ifTrue: [w signal].
41: mut ex signal

42: st artwrite

15

145

43: w wait

44: endWrite
45: w signal

$1:class$ ReadersWriters
2:superclass Obj ect
$3:class$ vars File Rand

4:class methods
5: initialization
6: initialize
7 : File $arrow FileIO$ new.
8: Reader initialize.
9: Writer initialize.
10: $Randarrow Random$ new

11: example
12: example
13: $|rir2r3w1$ w2 $|$

14: ReadersWriters initialize.
15: $r1arrow Reader$ new.
16: $r2arrow Reader$ new.
17: $r3arrow{\rm Re}$ader new.
18: wl $arrow Wr$iter new.
19: $w2arrow Wr$iter new.
20: $r1$ resume. $r2$ resume. $r3$ resume.
21: wl resume. w2 resume

$1:class$ Reader
2:superclass ${\rm Re}$ adersWriters
$3:class$ var NoOfReaders
4 : inst var myName

5:class methods
6: initialization
7: initialize
8 : $No0f{\rm Re} adersarrow 0$

9: instance creation
10: new
11: $|$ newReader $|$

12: NoOfReaders $arrow NoOfReaders+1$.
13: newReader $arrow\sup$er new.
14: newReader setName.
15: $\uparrow newReader$ define

16: instance methods

17: private
18: setName

19: $myNamearrow NoOfReaders$

20: define
21: $\uparrow[[true]$ whileTrue:
22: [(Delay forSeconds: Rand next $*10$) wait.
23: File concurrentRead: myName]] newProcess

1 : class Writer
2 : superclass ${\rm Re}$adersWriters
3 : class var $NoOf$Writers
4 : inst vars myName

5 : class methods
6: initialization
7: initialize
8 : NoOfWrit $ersarrow 0$

9: instance creation

16

15 C

10: new
11: } newWriter $|$

12: NoOfWriters\leftarrow NoOfWriters $+1$.
13: newWriter\leftarrow super new.
14: newWriter setName .
15: $\uparrow newWriter$ define

16: instance methodg

17: private
18: setName
19: $myNamearrow NoOfWr$ iters

20: define
21: $\uparrow[[true]$ whileTrue:
22: [(Delay forSeconds: Rand next $*10$) wait.
23: File exclusiveWrite: myName]] newProcess

An example of using these classes is shown as a class method example in the class ReadersWriterg,
and three instances of Reader and two instances of Writer are created. One of the execution results of this
problem is as follows.

reader2 – start
re ader3 – start
readerl $arrow$ start
reader3 $arrow$ end
readerl $arrow$ end
reader3 $arrow$ start
readeri – start
reader2 $arrow$ end
readerl $arrow$ end
reader3 - end
writerl – start
writeri - end
writer2 - st art

writer2 – end
readeri - start

Unlike the monitor procedures of Hoare’s monilor[Hoa], more than one process is able to use the methods
in one class simultaneously (a method even can be used by more than one process at the same time). So the
users of the shared resource have only to use the two methods c oncurrentRead: and exc lusiveWrite:, un-
like Hoare’s monitor in which we have to use startRead, endRe$ad,$ startWrite and endWrite. Accordingly,
protection of the shared resource is easily accomplished in $SmaUta1k- 80$, and cannot in Hoare’s monitor. If
monitor is used for this problem, the users must execute startread or BtartWrite before using the shared
resource and endRead or endWrite after completion of using it. Moreover, accessing the shared resource is
done directly by users, the users can use it without executing startRead or startWrite. So it is natural
that the idea has come up which restrict the execution order of monitor procedure by path express:ons[Cam],
but such constructs may not be necessary if SmaUtalk-80 is used.

There are, however, some problems. If the class FileIO is defined as before, the processes which use the
instance of it must know how to access it completely. By this, it is not suitable that the resource is capsuled
at which it is scheduled. Moreover, in Smalltalk-80, if several processes execute the methods in the same
class at the same time, the copy of the text is prepared for each process. So it must be noted about that
and in some cases such methods must be constructed as critical section.

The semaphore mutex in the instance methods startRead and endRead can not be omitted. The reason
for the case in startRead is the same as in first version, and the reason for the case in endRead is as follows.
Supposed that there are two readers, say rl and $r2$, and the priority of $r1$ is higher than $r2$. Now rl is
being suspended at line 22 and r2 has used the shared resource. If the suspending time of $r1$ elapses just
before r2 executes w signal, $r1$ becomes active, executes startRead, uses the shared resource, and comes
to suspended at line 14. At this point, if $r2$ becomes active, it executes w signal. Consequently, the writer
can enter into the critical section even if $r1$ is in the critical section.

17

151

8. Toward realistic concurrent processeg

As stated before, in principle, once a process of Smalltalk-80 gets the processor, the process keeps it continu-
ously unless the process relinquishes it by itself. If the existing algorithms for concurrent processing are used
to compose $SmaUtalk- 80$ programs, not only may the programs contain useless parts but als0 the processes
may not be executed concurrently.

In the following sections, we will discuss how to execute the processes concurrently. Three methods are
suggested below. The first two methods impose some burden on the programmers and the last one is to
reconstruct the Smalltalk-80 system so that there is no such imposition on the programmers.

8.1 The method using Processor yield or (Delay...)wait

This method is tbe easiest one. If Processor yield is inserted at every space among the lines in the
program, the program turns out to be executed as if the original program is executed on the system which
adopts time slicing. Clearly, this method not only imposes an enormous overhead on the system, but it is
also troublesome.

To avoid such annoyances, Processor yield or (Delay...)wait has only to be inserted at the appro-
priate points. Here, the appropriate points mean the points which must be executed concurrently or the
points at which the active process must be exchanged.

Concrete points are different according to the programs, but the typical patterns can be put in order as
the standard form of the Smalltalk-80 programs argued in chapter 6. Moreover, it is not desirable that the
things which are not related to the algorithms like Processor yield or (Delay...)wait must be used in
the programs and the programmers must do such work. Process scheduling is one of the important things
with which the operating system must deal.

8.2 The method making monitors
Let consider the method in which the monitors managing the processes are prepared and nothing is inserted
into the user programs. This monitor is one of the user’s processes managed by Processor and a private
scheduler for the particular program.

The outline of this monitor is as follows. Let $P1p_{2},$ $\ldots,$ Pn be the processes created in the program
and the priorities of these processes be lower than that of the monitor.

create processes
$p_{1}arrow$. . . newProcess.

$Pnarrow\ldots$ newProcess.

$iarrow 1$.
repeat the following block

[p: resume .
(Delay forMilligeconds:slice)wait.

Pi suspend.
$iarrow$ $i\backslash \backslash n+1$]

This method has the following problems:
1. How to manage processes which are created dynamically,
2. How to detect the process termination, and
3. This monitor is private to the program, so the new monitor must be prepared for each program.

18

$15L$

8.3 Reconstructing ProcessorScheduler

Because objects , originally, exist independently, the Smalltalk-80 system may be reconstructed to carry out
all objects concurrently. One of the examples based on this idea is Concurrent Smalltalk[Yok]. Concurrent
activities, however, depend on the scheduling algorithms. In Smalltalk-80, this problem may be solved by
using simple time slicing .

To implement the time slicing, it seems to be enough to prepare the process TimeSlicer as follows. Of
course, Processorscheduler must be reconstructed, and the extent of the effort to reconstruct the system
will depend on future research.

1: $TimeSlicerarrow$
2: [[true] whileTrue:
3: [$iarrow Processor$ activeProcess. ttset the active processee
4: Processor yield: i . “put process i on end of the ready queue“‘
5: (Delay forMilliseconds: slice) wait]].

Note that activeProcess and Processor yield: are not existing methods in Smalltalk-80.

Acknowledgment
Authors would like to thank Y. Yamamoto for discussing with them and his helpful comments, and M. Tokoro
for his many comments about the usage of shared resources.

References
[Cam] Campbell,R. H. and Habermann,A. N., “The Specification of Process Synchronization by Path Expres-

sions,“ in Lecture Notes in Computer Science, Vo1.16, 8kl02.

[Cou] Courtois,P. J., Heymans,F. and Parnas,D. J., ”Concurrent Control with Readers and Writers,“ CACM,
Vol.14, No. 10, 667-668 (1971).

[Gol] Goldberg,A. and Robson,D., uSmaUtalk-80: the language and its inplementation,“ Addison-Wesley,
1983.

[Hoa] Hoare,C.A.R., ”Monitors : An Operating System Structuring Concept,“ CACM, Vol.17, No.10, 549-
557(1974).

[Yok] Yokote,Y. and Tokoro,M., ”Concurrent Smalltalk,“ Computer Software, Vol.2, No.4, $2- 18(1985)(in$

Japanese).

19

