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Abstract

Temporal Prolog is a logic programming language based on temporal logic. This language
allows clear and natural representation of state-transition, concurrency, mutual exclusion
and nondeterminism. A formal semantics of the language is given. As an application, its
use as an executable specification language for real time systems is presented.

1 Introduction

There are at least two purposes for which concurrency in programs is desired.
One is to execute programs faster. One expects faster parallel computation when he
writes a program in a concurrent language than in a sequential one because it is
difficult to execute in parallel a sequentially written program in an effective manner.
The other is to provide programs with natural structure. If we write a simulation
program in a sequential way, the program becomes clumsy when the phenomenon
simulated occurs in parallel in the real world.

It depends on application and requirement which of the purposes is more
important. The first category consists of applications like data processing in which high
speed computation is desired. Requirement of faster computation is often the motive of
describing a data processing program in a concurrent manner. A characteristic of the
first category is that we seldom take care of the order of computation and transition of
internal states of processes. For example, to sort a huge amount of data, we want to
execute the program in parallel and get the result faster. We do not want to know
internal states of processes except for debugging purposes. This becomes clearer
supposing that we write such a program like sort in a stream programming language.
Generally, state transition is sometimes not essential for the first category.

On the other hand, explicit inclusion of the notion of state transition is
essential for such systems as simulation, man-machine interaction, data bases and real-
time systems. The second category consists of these applications. It is not possible to
write programs which simulates the phenomena occurring in parallel in the real world
without taking account of the state transition of each process. Similarly, real time
program is developed considering the internal states of each component of the system.
For the second category, a language in which concurrency and state transition can be
naturally expressed is suitable.

Object oriented programming languages like SIMULA or smalltalk are suited for
simulating phenomena in the real world because those notions like internal state“ and its
transition along the “time“ axis are includ$ed$ in those languages.
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At present we have several concurrent logic programming languages which were
designed in order to describe concurrent computation: Concurrent Prolog (C.P.)

[Shapiro1983] and PARLOG. In those languages, concurrent computation stands for
concurrent resolution. Internal states and their transitions are regarded as states of
resolution and their transitions.

Because the original logical system (i.e. first order logic) does not include the
notion of time, the state transitions are not expressed explicitly in programs. Therefore,
C.P. is rather suited for the first category applications. For the second category,
however, it sometimes becomes a disadvantage. In C.P., in order to specify the way of
state transitions of processes read only annotation and commit operator must be
introduced, which do not exist in the original logical system.

If we design a logic programming language based on a logical system which
includes the notion of time, we can describe the state transition in the original system
itself. From this point of view, we choose temporal logic as a basis.

In this paper, a concurrent programming language ‘’Temporal Prolog“‘ is
presented. In section 3, we present the informal syntax of Temporal Prolog. In section 4,
we describe several simple examples in order to explain what expression is possible in
Temporal Prolog. After that, we give a formal semantics of Temporal Prolog in section 5.

2 Temporal Logic

Temporal logic is an extension of classical logic. In order to deal with the
notion of time, some modal operators are added.

For example,

$a\underline{arrow}>Ob$

$a=\rangle$ a$b$

$a=>Ob$
$a=>bunt\check{\iota}1c$

Each formula has the following informal meaning respectively.

If $a$ is true at some point in time
then $b$ is true at the next point in time.

If $a$ is true at some point in time
then $b$ will be true forever from that point in time.

If $a$ is true at some point in time
then $b$ will become true at some time in the future including that
point in time.

If $a$ is true at some point in time
then $b$ will be true until $c$ becomes true.

$>$
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Usually, we use these four $symbols:O$ロ Ount $i$ [, in addition to the symbols used
in first order logic (we introduce other modal operators in this paper).

3 Temporal Prolo$g$

We do not present the formal syntax of Temporal Prolog completely to parse a
program by computers, but present only an adequate informal syntax for human beings.

First of all, we define the sets of symbols.

V: the set of variables
SF: the set of skolem functions
PFi: the set of internal pattem functions
PFe: the set of external pattem functions
PF $\underline{arrow}$ PFi U PFe
Pi: the set of internal predicates
Pe: the set of external predicates $=,true,false,at\in$ Pe
$P=$ Pi U Pe

at$(n)$ is true iff the program was executed just $n$ steps.

V,SF,PFi,PFe,Pi and Pe are disjoint. Each element of SF,PFi and PFe has a non
negative integer (arity) which represents the number of arguments.

PFi and Pi are pattem functions and predicates which are defined in the
program, PFe and Pe are pattern functions and predicates which are defined outside of
the program (i.e. given functions and predicates).

Constants are skolem functions whose arities are naught.

We define term and atomic formula.

T(term)

V $\subseteq T$

$f\in$ SF U PF, arity of $f$ is $k,$ $t_{1}\ldots t_{k}\in T$ implies $f(t_{1}, \ldots t_{k})\in T$

$t\in T$ , an element of PF is found in $t$ implies $\bullet t\in T$

The value of $\bullet t$ is the value of $t$ at the previous point in time.

AF(atomic formula)

$p\in$ P. arity of $p$ is $k,$ $t_{1}\ldots t_{k}\in T$ implies $p(t_{1\cdotarrow}t_{k})\in$ AF

AFi is the set of atomic formulas whose predicates are elements of Pi.

$\backslash$?
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Next, we define condition formula.

CF(condition formula)

AF S CF

Let $c.d\in$ CF, $n$ be a non-negative integer.

$\sim_{C\in}$ CF ;not $c$

$\bullet c\in$ CF $;c$ was true at the previous point in time.
(if there is no previous point in time, false.)

$\blacksquare c\in$ CF $;c$ has been true until now (including now).
$2c\in$ FS $;c$ was true at some point in the past including now.
$csi$ nce $d\in$ CF $;c$ has been true since $d$ was true last.
$c$ af ter $d\in$ CF $;c$ became true at least once after $d$ had become true.
$c$ for $n\in$ CF $;c$ was true for $n$ times continuously.

;where $n$ is a positive integer.
$c\wedge d\in$ CF $;c$ and $d$

A legal program of Temporal Prolog is a subset of $R$ , which satisfies the
condition in Section 5.

R(result)

AFi $\subseteq R$

$f\in$ PFi, arity of $f$ is $k,$ $t_{O}\ldots t_{l}\in T$ implies $f(t_{1’\sim}t_{k})-\rangle$ $t_{0}\in R$

$;f(t_{1,\sim}t_{k})$ is reducible to $t_{O}$ .

Let $q,r\in R,$ $c\in$ CF.

$c=>r\in R$ $;c$ implies $r$ .
$q\wedge r\in R$ $;q$ and $r$ .
ロ$r\in R$ $;r$ is true forever.
$r$ unt $i$ I $c\in R$ $;r$ is true until $c$ becomes true.
$r$ atnext $c\in R$ $;r$ becomes true when $c$ first becomes true.

atnext was introduced in [Kroger1984].

Temporal Prolog includes pure Prolog.

Example

Let $a,b,c,d\in$ Pi; $f\in$ PFi; $0,1\in SF;X\in V$ , then

$\sim_{a(f(X))}\wedge$ ( $\bullet a(l)si$ nce $\blacksquare c(X)$ ) $\overline{arrow}>(f(X) -\rangle 0)$ unt $i$ $[d$

$\gamma$



$3_{\vee}^{r_{t}}\cdot 4$

is an element of R.

4 Simple Examples

$\ln$ this section, we present simple programming examples and explain what
descriptions are possible in Temporal Prolog.

4.1 Concurrency
To describe concurrent processes in Temporal Prolog, The only thing we must

do is to write the processes in parallel. For instance, the following program controls two
foot warmers concurrently.

$temperature_{-}of_{arrow}foot_{arrow}wamerJ>comfortablearrow tem$perature
$=>off_{-}foot_{arrow}warmerl$

$tem$perature-o$f_{-}foot_{-}wamerl$ く $comfortablearrow tem$perature
$=>on_{-}foot_{arrow}warmerl$

$temperature_{arrow}of_{-}foot_{arrow}wamer2\rangle com$fortable-temperature
$=>off_{arrow}foot_{-}warmer2$

$temperature_{-}of_{arrow}foot_{arrow}wamer2$ く $comfortable_{arrow}tem$perature
$=>on_{-}foot_{arrow}warmer2$

4.2 Class and instance
Above two processes do the just same thing. We apply the notion of object

oriented programming to it.

$tem$perature-o$f_{-}foot_{-}wamer(X)>comfortable_{-}tem$perature
$=>off_{arrow}foot_{arrow}wamer(X)$

$temperature_{-}of_{-}foot_{-}wamer(X)$ く $com$fortable-temperature
$=>on_{arrow}foot_{arrow}wamer(X)$

This program defines the class ”foot warmer controller“. We call $X$ instance
variable because the value of $X$ discriminates an instance from the others. If the domain
of $X$ is {1,2} then this program is equivalent with the program in 4.1.

4.3 Starting and Terminating processes
in the above program, processes control foot warmers from the first point in

time and will control them forever. If we want to control a foot warmer from some point
in time, the following program is adequate.

start$(X)=>$ ロ$((temperature_{arrow}of_{-}foot_{-}wamer(X)>comfortablearrow tem$perature
$=>off_{-}foot_{arrow}wamer(X))_{\wedge}$

( $temperature_{arrow}of_{arrow}foot$-wame$r(X)$ く comfortable-temperature
$\approx>on_{arrow}foot_{arrow}wamer(X)))$

$\zeta$
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If start$(n)$ becomes true at some point in time, a process whose instance
variable‘s value is $n$ is invoked. This process controls foot warmern forever.

Furthermore, to terminate a process at some point in time,

start(X) $=>((tem$perature..of-foot.warmer(X) \rangle $com$fortable.-temperature
$arrowarrow>off_{-}foot_{arrow}wamer(X))\wedge$

( $temperature_{-}of_{-}foot_{arrow}wamer(X)\langle comfortable_{arrow}tem$perature
$arrow->on_{arrow}foot_{-}wamer(X)))$ unt $i$ Iend(X)

start$(n)$ invokes an instance and end$(n)$ terminates an instance whose instance
variable’s value is $n$ .

unt $i$ I can play the roles of assert,retract.

assert $arrow->(\Lambda-arrow>B)$ unt $i$ I retract

If assert becomes true, $A=>B$ is asserted. After that, if $re$tract becomes true, $A$

$=>B$ is deleted.

4.4 Inter process communication
There are two types of communication in Temporal Prolog. One is to refer the

internal states of other processes without disturbing them. Another is to send a message
to other processes and change their internal states. (We did not define the “process” nor
its internal states until now. A Process is a set of instances of atomic formulas. Its state
is their truth values. For instance, $(off_{arrow}foot_{arrow}wamer(l),on_{arrow}foot_{arrow}wamer(J))$ is a process
and $\{off_{arrow}foot_{-}wamer(2).on_{-}foot_{arrow}wamer(2)\}$ is another process in 4.2. Of course we can
define above two processes as one process. There is a lot of freedom to define a process.
Although this notion is different from ordinary one, it plays the role of process in
Temporal Prolog.)

The following program is a temperature monitor, which gives an alarm if one of
the one hundred thermometers indicates more than one hundred degree.

$temp_{arrow}is(X,C)\wedge C\rangle 1\theta\thetaarrow->$ dangerous(X)
Processl (in fact, one hundred processes)

dangerous(X) $=>$ ロalarm
Process2

The domain of $X$ is $\{1, \ldots 100\}$ .

Processl watches the temperature and process2 gives an alarm.
Let processl $(temparrow is(n.C),dangerous(n))$ and process2 be (alam}. Processl does

not change the internal state of process2. Process2 watches the internal state of processl

6
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(of course, without changing the state of processl).
On the other hand, if we define processl as ($temparrow is(n.C)$} and process2 as

{dangerous(n),alam}. Then processl sends a message to process2 and changes its state.
Due to the definition of processes, We get different interpretations of process

communication.

Inter process communication in Temporal Prolog is quite different from stream
programming languages.

4.5 Wait
atnext enables a process to wait a signal.

$...=>$ wait
$wait=>$ restart atnext signal
restart $\underline{arrow}>$ continuation

When it becomes necessary to synchronize with another process, wait becomes
true. After that, at the first time when another process makes signal true, restart
becomes true and processl continues its execution.

4.6 Mutual exclusion
Next example is mutual exclusion program of one resource.

assign(J) $\wedge\bullet assigned_{-}to(J)=>assigned_{-}to(l)$

assign(2) $\wedge\bullet assigned_{arrow}to(2)=>assigned_{arrow}to(2)$

assign(J) $\wedge\bullet^{\sim}assigned_{-}to_{arrow}something\overline{arrow}>assigned_{-}to(l)$

assign(2) $\wedge\sim_{assign(1)\underline{arrow}>}assigned_{arrow}to(2)$

$assigned_{-}to(X)=>assigned_{-}to$-something

The domain of $X$ is {1,2}

(first and second lines can be replaced by “assign(X) $\wedge$ $\bullet assigned_{arrow}to(X)$ $=>$

$assigned_{-}to(X).)$

Process $n$ makes assign(n) true when it wants to use the resource. That process
waits until $assignedarrow to(n)$ becomes true by the program in section 4.5. Of course, the
process $n$ must keep assign$(n)$ true until this resource becomes not necessary for process
$n$ . For this action, the use of unt $i1$ in section 4.3 is available.

In the above example, process 1 has a higher precedence than process 2. (i.e. if
process 1 and process 2 want to use this resource simultaneously when it is unused,
process 1 gets it.)

2
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4.7 Nondeteminism
The example in section 4.6 is deterministic. That program is suitable if actually

we would like to give precedences to processes. On the other hand, sometimes we do not
care which process gets the resource when plural processes want to get a resource
simultaneously.

assign(X) $\wedge\bullet assignedarrow to(X)=>assignedarrow to(X)$

assign(X) $\wedge\sim_{assignedarrow to}$-another(X) $=>$ assigned-to(X)
assigned-to(X) $\wedge\sim X=Y=>\alpha ssigned_{-}to_{arrow}another(Y)$

The domain of $X$ is {1,2}.

$assigned_{-}to_{arrow}another(n)$ is true when the resource is assigned to some process
other than process $n$ .

When process 1 and process 2 want to be assigned the resource simultaneously,
it is assigned nondeterministically. (i.e. the resource will be assigned to process 1 or it
will be assigned to process 2.)

note: Above program can be applied even if the domain of $X$ is changed.

5 Semantics

We define the semantics of Temporal Prolog by a transformation. We transform
a program in Temporal Prolog to special formulas (we call them nomal formula) and
define the semantics of normal formulas as a program.

The advantage of this approach is that we can easily and concisely define the
formal semantics. Furthermore, we can convert the normal formulas into Prolog after the
transformation and automatically get an implementation of Temporal Prolog although the
aim of the transformation is just to present a formal semantics.

We define the formal semantics of normal formulas in the same way as pure
Prolog [Apt,Emden1982]: we give a sort of minimal $mode1$ as a meaning of normal
formulas. The execution of normal formulas is to construct the model, i.e. to decide an
instance of atomic formula is true or false in the model.

From now on we treat $\wedge as$ n-ary operator. In other words, $a\wedge(b\wedge c)$ and $(a$

$\wedge b)\wedge c$ are the same formula as $a\wedge b\wedge c$ . Similarly, we do not distinguish $A=>(B=>$
$C)$ and $\Lambda\wedge B=>C$ . Therefore, $a\wedge((b\wedge c)\wedge d)=>((e\wedge f)=>g)$ is treated as if that
is $a\wedge b\wedge c\wedge d\wedge e\wedge f=>g$ .

As described Above, a program of Temporal Prolog is transformed to normal
formulas. Normal formula is like the following:

$c_{1}\wedge C_{2}\ldots\wedge c_{k}arrowarrow>d$

$\delta’$
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where $d\in$ AFi, $c_{j}$ is $\bullet$ $\sim\bullet a$ or $\bullet$ $\sim\bullet^{\sim}a,$ $a\in$ AF (of course, an atomic
formula and an atomic formula with a negation are legal). There is no pattem function
and no modal operator in $c_{j}$ .

Examples
Let $\alpha,b,c,d\in P,$ $f\in$ SF, $X\in$ V.

$\bullet b(X)\wedge\sim_{c(X)=>}d(f(X),Y)$

is a normal formula. While the next is not.

$\sim\bullet c(X)=>a$

5.1 Algorithm of transformation
In this section, we denote elements of AF by $\alpha$ and $b$ , elements of $R$ by $q,r$ and

$s$ , an new element of Pi by $p$ respectively. $fu(a),fu(r)$ and $fv(a,r)$ means the fr$ee$

variables in $a,$ $r$ and the union of $fu(a)$ and $fu(r)$ respectively.

$Step_{-}1$

In this step we eliminate M,unt $i1$ and atnext.

(Termination condition) Each formula in $Pr$ takes the fom $r$ or $a=>$ $r$ and $r$ is an
atomic formula or $f(t_{1}, \ldots,t_{l} )$ -\rangle $t_{O}$ . Where $Pr$ is the program which is transformed.

If the condition is not satisfied, we take a formula, an element of $Pr$ , s.t.
because of its existence, the termination condition is not satisfied, and transform it in
the following way.

(1) $q\wedge s$ $-arrow\rangle$ $q$

$s$

$a=>q\wedge s$ –\rangle $a=>q$
$a\Leftrightarrow>s$

(2) ロ$q$ –\rangle $q$

$a\Leftrightarrow>$ ロ$q$ –\rangle $a=>p(X_{1}, \ldots,X_{l})$

$\bullet p(X_{1}, \ldots,X_{k})=>p(X_{1}. \ldots,X_{K})$

$p(X_{1}, \ldots.X_{k})\overline{arrow}>q$

where $X_{1},$
$\ldots,$

$X_{k}$ are $fu(q)$

(3) $q$ until $a$ $–>$ $\sim_{\alpha}=>q$

7
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$a=>q$ until $b$ –\rangle $a=>p(X_{1}. \ldots.X_{k})$

$\bullet p(X_{1}, \ldots,X_{l})\wedge\bullet^{\sim}b=>p(X_{1}, \ldots.X_{k})$

$p(X_{1}, \ldots,X_{k})\wedge\sim b=>q$

where $X_{1},$ $\ldots,X_{k}$ are $fu(q,b)$

(4) $q$ atnext $a$ –\rangle $a=>q$

$aarrow->q$ atnext $b$ –\rangle $\alpha=>p(X_{1}, \ldots,X_{l})$

$\bullet p(X_{I}, \ldots,X_{k})\wedge\bullet^{\sim}b=>p(X_{1}. \ldots,X_{l})$

$p(X_{1}, \ldots.X_{k})\wedge barrow->q$

where $X_{1},$ $\ldots,X_{k}$ are $fu(q.b)$

Repeat the above procedure until (termination condition) is satisfied. This
repetition will stop eventually because the number of ロ. unt $iI$ , atnext and $\wedge(in$ the
consequences) decrease one by one. We get the unique result except the difference of
new predicates names even if we change the order of the transformation.

Example
$(temp1*temp2)/2\rangle J20$ for $\backslash j=>$ switch-off $\wedge$ ロalam

is transformed to normal formulas in the following way.

$(tempJ\prime temp2)/2\rangle J20$ for $3arrow->$ switch-off
$(templ*temp2)/2>J20$ for 3 $arrow$$->$ fi$al\alpha m$

$(tempJ\prime temp2)/2\rangle J20$ for $3=>switch_{arrow}off$

(templ$*temp2$ ) $/2\rangle$$120$ for $3=>p$
$\bullet p-arrow>p$

$p=>alam$

Step 2

We eliminate si nce. af ter, for, $\blacksquare$ and 2 in $Pr$ .

(Termination condition) There is no $si$ nce, af ter, for, $\blacksquare$ nor 2 in $Pr$ .

If the condition is not satisfied, we take a formula from $Pr$ and in which there
is $si$ nce. after. for, $\blacksquare$ or 2, and transform it in the following way.

In the next table, ... X ... $=>r$ means an element of $Pr$ and X is a condition
formula which has just one modal operator except $\bullet$ .

(1) ... $\blacksquare a\ldots=>r$ $–>$ ... $p(X_{1}, \ldots,X_{l})\ldots=>r$

$\alpha\wedge at(0)=>p(X_{1}, \ldots,X_{l})$

1 o
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$a\wedge\bullet p(X_{1}, \ldots,X_{k})=>p(X_{1}. \ldots.X_{k})$

where $X_{1},$ $\ldots,X_{k}$ are $fv(a)$

(2) ... $2\alpha\ldots=>r$ $–>$ $-p->r$
$a\overline{arrow}>p(X_{I}, \ldots,X_{k})$

$\bullet p(X_{1}, \ldots,X_{k})=>p(X_{1}, \ldots,X_{l})$

where $X_{1}$ . $\ldots X_{k}$ are $fu(a)$

(3) ... $a$ $si$ nce $b\ldots=>r$ –\rangle ... $p(X,. \ldots,X_{k})_{rightarrow}=>r$

$b\wedge a=>p(X_{1}, \ldots,X_{k})$

$\bullet p(X_{1}. \ldots,X_{k})_{\wedge}a=>p(X_{1}, \ldots,X_{k})$

where $X_{1},$ $\ldots,X_{k}$ are $fu(a,b)$

(4) ... $a$ after $b\ldots=>r$ –\rangle ... $p(X_{1}, \ldots,X_{k})\ldots=>r$

$a=>\rho(X_{1}, \ldots.X_{k})$

$\bullet p(X_{1}, \ldots,X_{k})\wedge\sim b=>\rho(X_{1}, \ldots.X_{k})$

where $X_{1},$ $\ldots.X_{k}$ are $fv(a,b)$

(5) ... $a$ for $n\ldots=>r$ $arrow->$ ... $(a\wedge\bullet a\wedge\cdot\cdot\wedge\bullet^{n- 1}a)\ldots\approx>r$

;An alternative is to generate a predicate
defined recursively.

Repeat the above until the (termination condition) is satisfied. This
transformation will stop eventually because the number of $si$ nce, after. for, $\blacksquare$ and
2 in $Pr$ decrease one by one. We get the unique result except the difference of new
predicates names even if we change the order of transformations of formulas. After this
step, we have no modal operators in $Pr$ except $\bullet$ .

Example

The program:

(templ$*temp2$ )$/2\rangle 120$ for $3=>$ switch-off
$(temp1*temp2)/2\rangle J20$ for $3=>p$
$\bullet p=>p$

$p=>alam$

is transformed to:

$(temp1\prime temp2)/2\rangle 12t)\wedge\bullet((tempJ\prime temp2)/2>120)\wedge$ ee$((tempJ\prime temp2)J2>120)$

$=>$ switch-off
$(temp1*temp2)/2\rangle 120\wedge\bullet((templ*temp2)/2>120)\wedge\bullet\bullet((templ*temp2)l2>120)$

$=>p$

$\bullet p\sim>p$

$p\cdot>dam$

//
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Step 3

This step is consist of two substeps. In the first substep, we introduce new
internal predicates which are correspond to internal pattem functions. Second substep is
expansion of pattern functions.

First substep
(Termination condition) There is no $arrow\rangle$ in $Pr$ .

We chose a formula whose form is $f(t_{1}, \ldots t_{k})->t_{O}$ or $a=>f(t_{1}. \ldots t_{k})->t_{0}$ and
convert it in the following way.

$f(t_{1}, \ldots,t_{k})$ -\rangle $t_{O}$ $arrowarrow>$ $f(t_{1}, \ldots t_{k},t_{0})$

$a=>f(t_{1}, \ldots t_{\aleph})$ -\rangle $t_{O}$ $-\rangle$ $aarrowarrow>f(t,, \ldots,t_{k},t_{O})$

We add $f$ to Pi as a new internal predicate whose arity is the arity of $f$ plus 1.

Second substep
(Termination condition) There is no pattern function in $Pr$ .

Let $f$ is an occurrence of pattern function which is most outside (i.e. does not
occur in an argument of another occurrence of a pattern function) and occurs right
most. Its expansion is done in the following way.

.. $p(\ldots f(t_{1}, \ldots.,t_{k})\ldots..)\ldots\ldots\underline{arrow}>r$

$-arrow>$ .. ( $p$( $\ldots$ X.....) $\wedge\bullet^{n}f(t_{1}$ . $\ldots..t_{k}.X)$ ) $\ldots\ldots=>r$

$arrow=>p(\ldots f(t_{1}, \ldots.,t_{l})\ldots..)--\rangle$.. $\wedge\bullet^{n}f(t_{1}, \ldots.,t_{k},X)arrow->p$( $\ldots$ X.....)

Where $p$ is a predicate, $X$ is a new variable. $n$ is the number of $\bullet s$ which occur
between levels of $p$ and $f$. For example, $n$ is 2 for $f$ and 3 for $u$ in
$p(\bullet b(X,\bullet\bullet u,\bullet f(2)),Y)$ .

According to $f$ is an external or internal pattem function, we add $f$ to Pe or Pi
as an external or internal predicate whose arity is incremented by one.

After the second substep, we eliminate the all $\bullet s$ which are attached to terms.

Examples

append$([]_{*}X)$ -\rangle $X$

append$([A|X],Y)arrow\rangle$ $[A|append(X,Y)]$

$/Z$.
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is converted to:

append$([].X,X)$

append$([A|X],Y,[A|append(X,Y)])$

append$([],X,X)$

append(X,Y,$Z$ ) $=>append([A|X],Y.[A|Z])$

$0\prime X$ -\rangle $X$

$s(X)\prime Y$ -\rangle $s(X\neq Y)$

is converted to:

$*(0,XX)$
$*(s(X).Y,s(X\prime Y))$

$’(0.X.X)$

$’(X.Y,Z)=>*(s(X),Y,Z)$

sum $->temp’\bullet temp$

is converted to:

sum$(temp’\bullet temp)$

$’(temp.\bullet temp,X)=>sum(X)$

$\bullet temp(Y)_{A}*(\ell emp,Y_{*}X)\approx>sum(X)$

$\bullet t(\gamma)t(z)*(Z.YX)arrowarrow>sum(X)$

Step 3 is essentially the same as expansion in [Tamaki1984]. The difference is we
deal with $\bullet$ .

Step 4

After this step, each negation is directly attached to an atomic formula in $Pr$ .
(Termination condition) Each negation is directly attached to an atomic formula in $Pr$ .

$...\sim_{a\ldots\fallingdotseq>}r$ –\rangle $...\sim_{p(X_{1},\ldots.X_{l})\ldots=>}r$

$\alpha=>p(X_{1}, \ldots,X_{l})$

$/J$
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where $X,$ . $\ldots,X_{k}$ are $fu(\alpha)$

$a$ is not an atomic formula.

Repeat the above procedure until the (termination condition) is satisfied.
This transformation will stop eventually too. We get the unique result except

the difference of new predicates names even if we change the order of selection of
formulas.

Example

$\sim\bullet c=>d$ $-arrow>$ $\sim_{e}=>d$

$\bullet c\overline{arrow}>e$

Step 5

Distribution of $\bullet$ .

Example

$\bullet(a\wedge\bullet b)=>r$ $-arrow>$ $\bullet a\wedge\bullet\bullet b=>r$

After these 5 steps, we get a transformed program $Pr$ in which all the formulas
are normal.

5.2 Model

While a model of a set of formulas in ordinary first order logic defines the
meaning of functions and predicates just in one world. A model of a set of formulas in
temporal logic is an infinite sequence of worlds (time) where the domain, the
interpretations of functions and predicates, i.e. values of functions and truth values of
predicates, can vary in time.

In this paper, we do not deal with such a general model. The domain is always
the Herbrand Universe of A. The interpretations of functions are data constructors
similarly to pure Prolog and do not vary. The only thing which can vary in time is the
interpretation of each predicate.

The meaning of $=$ is the equality in Herbrand Universe.

$0arrow>0arrow>0arrow>0arrow>$

$w(\theta)w(1)w(2)w(3)$

Model of temporal logic

In this paper, we denotes the $n$‘th world by $w(n)$.

Like first order logic, the truth value of a formula is automatically defined if

$(\{$
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the interpretations of domains, functions and atomic formulas are defined. The difference
is the truth value of a formula is given in each world while only on$e$ truth value is
given to a formula in first order logic.

The truth value of a formula in (this paper $s$ version of) temporal logic is
defined in the following way.

Let $F$ be a formula of temporal logic.

$\sim\bullet F$
at $w(n)$ iff $n>0$ and $F$ at $w(n- 1)$

$\wedge v=><=>\forall\exists$ are defined similarly to first order logic at each world. We
do not define the meaning of $\circ$ ,ロ,O,$\blacksquare$ ,2,atnext,unt $iI,since,af$ ter,for because their
meaning are not necessary to define the semantics of normal formulas.

Because We have already defined the domain and the interpretations of
functions, we can define a model of A by giving interpretations of ground instances of
atomic formulas in all $w(n)$. Therefore, we regard $w(n)$ as { $p(d_{1}, \ldots d_{l});p(d_{1}, \ldots d_{l})$ at
$w(n)\}$ .

$W(A)=$ { $p(d_{1},$ $\ldots,d_{k}):p$ is a predicate in $A,$ $d_{1},$ $\ldots.d_{k}\in$ domain}

$w(n)$ is a subset of $W(A)$.

The exact definition of the model $M$ of A is く$w(\theta)_{*}w(l)$. $\ldots>$ .

A tuple $<W_{O},$ $\ldots W_{k}>$ is a division of $W(A)$ iff $W_{O},$ $\ldots W_{k}$ are disjoint and U $W_{i}=$

$W(A)$.

Let \langle $W_{O},$ $\ldots W_{\aleph}>$ be a division of $W(A)$. L;く$v(O),\sigma(l),$ $\ldots>$ and M:く$w(0).w(1)_{*}rightarrow\rangle$ be
models of A. $L>M$ iff there are non-negative integers $m’\iota$ s.t.

for all non-negative integer $l,$ $l<m$ implies $n(l)-arrow w(l)$ and
for all non–negative integer $i,$ $i\langle n$ implies $v(mXlW_{i}\overline{arrow}w(mX)W_{i}$ and
$w(m\lambda W_{\mathfrak{n}}\subsetneq v(m)]W_{n}$.

$>$ is a partial order relation among the models of A.

Let $M$ be a model of A.
$M$ satisfies A iff any formula in A is true at any point in time.
$M$ is minimal iff $M$ is minimal by $>$ among the all models in which all formulas in A

is always true.
$M$ is least iff $M$ is the unique minimal model.

5.3 Model construction
$\ln$ this section, we give a formal semantics of a program $Pr$ in which all

formulas are normal. We quantify $aU$ free variables which occur in a formula at outside

$f\Gamma$
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of it. (We abbreviate these quantifiers.) The interpretation of external predicates are
already defined (i.e. their meaning are given externally).

We give several definitions.

Dependency relation

First, we eliminate all atomic formulas to which a $\bullet$ is attached.

Example

$\bullet a\wedge\bullet\bullet\sim b\wedge c\wedge\sim d=>e$

becomes

$c\wedge\sim d\underline{arrow}>e$

We apply this elimination to all formulas in $Pr$ .

Dependency relation is defined in the following way.

For all $p,q\in Pr$ ,

$d*(p.q)$ iff A formula whose form is
... $\wedge q(\ldots)\wedge\cdots=>p(\ldots)$ occurs in $Pr$ .

$d-(p.q)$ iff A formula whose form is
... $\wedge\sim q(\ldots)\wedge\cdots-arrow>p(\ldots)$ occurs in $Pr$ .

$d(p,q)$ iff $d^{g}(p,q)$ or $d-(p.q)$

We get a partial preorder $d*by$ extending the relation $d$ to a transitive relation and
define an equivalence relation $\#$ which is obtained by $d*$ . We denote an equivalence
class of $p$ by $[p]$ . $d*is$ applicable to $[p]$ naturally.

We divide the internal predicates in $Pr$ to equivalent classes $[p_{1}]$ , ... $[p_{\mathfrak{n}}]$ .
provided that $i\langle j$ implies not $d*([p_{i}]. [p_{j}])$ (condition $0$ ). We define $[p_{0}]$ as {all external
predicates} and $W_{i}$ as ( $p(d_{1}, \ldots,d_{k});p\in[p_{i}],d_{j}\in domain,k=arity$ of $p$}. く $W_{0},$ $\ldots.W_{n}>$ is a
division of $W(Pr)$.

If there is no pair of $p,q\in[p_{i}]$ s.t. $d-(p.q)$ for all $i,$ $0\leq i\leq k(condition1)$, then we
get the following theorem. A program in $Te$mporal Prolog is legal if the condition 1 holds
after the transformation described in 5.1.

Theorem 1
If the condition 1 is satisfied then there is the least model of $Pr$ .

(proof)

$\Gamma^{S}$
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We define $f_{pq}:P(W(Pr)P\cross P(W_{O})\cross\ldots XP(W_{q})->P(W_{q})$ for O$p, $Jarrow<q4n$ in the following
way. (where $P(A)$ denotes the power set of $A.$ )

$c_{O}\in f_{pq}(w_{0}, \ldots,w_{p\cdot 1},x_{O,rightarrow},x_{q})$ iff
there is an instance of a formula in $Pr$ s.t.
$\bullet^{m_{1}}(\sim)c,$ $\wedge\cdots$

$\wedge\bullet^{m_{k}}(\sim k_{k}=>c_{0}$ where
$0\leq m_{i}\leqq p$

$c_{i}Ew_{p\cdot m}i$ if $m_{i}\neq 0$ and $\sim$ is not attached to $c_{i}$ .
$c_{i}\not\in w_{p- m}i$ if $m_{i}\neq 0$ and $\sim$ is attached to $c_{i}$ .
$c_{i}\in A_{q}x_{i}$ if $m_{i}=0$ and $\sim$ is not attached to $c_{i}$ .
$c_{i}\not\in\ovalbox{\tt\small REJECT}_{q}x_{i}$ if $m_{i}=0$ and $\sim$ is attached to $c_{i}$ .

for all $iJ\leqq i\leq k$

$\lambda x$ . $f_{pq}(w_{0}, \ldots,w_{p- 1},x_{O,arrow}x_{q\cdot 1},x)$ is continuous when we consider $P(W_{q})$ lattice ordered by
$arrow\subset$ because the condition 1 is satisfied.

Now, we construct the least model of $Pr$ .

We denote $w_{p}\cap W_{q}$ by $w_{pq}$ . If $w_{pq}$ is defined for all $q0\leq q\leq n,$ $w_{p}$ is defined. We construct $w_{pq}$

inductively.

Suppose $w_{O}$ : $w_{p\cdot 1}$ are already defined. $w_{qO}$ is also already defined because it consists of
external predicates. $w_{pq}$ is defined as the least fixed point of

$\lambda x$ . $f_{pq}(w_{0}, \ldots,w,.w. \ldots w_{pq\cdot 1}.x)$

inductively.

\langle $w_{O}$ . $w_{1}.$ $>$ is a model of $Pr$ .
If not, there must be a counter example, i.e. there is an instance of a formula in $Pr$ ,

non-negative integers $p$ and $q$ s.t.
$\bullet^{m_{1}}(\sim k_{1}\wedge\cdots$ $\wedge\bullet^{m_{k}}(\sim)c_{k}=>c_{O}$ where

$0arrow<m_{i}\leq p$

$c_{i}$ $\in w_{p\cdot m}i$ if $m_{i}\neq 0$ and $\sim$ is not attached to $c_{i}$ .
$c_{i}\not\in w_{l^{m}j}$ if $m_{i}\neq 0$ and $\sim$ is attached to $c_{i}$ .
$c_{i}\in A_{q}x_{i}$ if $m_{i^{arrowarrow}}0$ and $\sim$ is not attached to $c_{i}$ .
$c_{i}$ $\not\in Ax_{i}$ if $m_{i}arrow-0$ and “ is attached to $c_{i}$ .

for all $il\leq i\leq k$ and
$c_{O}\not\in w_{pq}$

the predicate of $c_{O}\in[p_{q}]$

This contradicts with the way of construction of $w_{q}$ . (The least fixed point $w_{pq}$ must
contains such an instance.)

く $w_{O}$ . $w_{1}.$ \rangle is the least model of $Pr$ . because we make $w_{pq}$ least to satisfy $Pr$ in each
inductive step.

ロ

If the condition 1 is satisfied then the least model is the semantics of $Pr$ .

”
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Even if there are several divisions which satisfy condition $0$ , the least model is defined
uniquely.

Let $Pr$ be the formulas which are obtained by rewriting the formulas in $Pr$ in the
following way. First, we change the variable names, sc that there is no variable which
occurs in more than one formula. Second, we select a internal predicate, say $p$ , and
gather all the formulas whose forms are $Aarrow->p(\ldots)$ or $p(\ldots)$.

$A_{1}=>p(t_{11}, \ldots,t_{1k})$

$A_{j}=>p(t_{i1}, \ldots,t_{jk})$

( $A_{j}$ can be empty.)

We get the following formula from the above formulas.

$((\exists(Y_{11}, \ldots.Y_{lm\tau})$

$(A_{1}\wedge X_{1}-t_{11}\wedge\cdot\cdot\wedge X_{k}arrowarrow t_{1k}))v$

$(\exists(Y_{i1}, \ldots,Y_{im}i)$

$(\Lambda_{i}\wedge X_{1}arrowarrow t_{i1}\wedge \wedge X_{k}=t_{ik})))$

$<=>$ $p(X,. ...X_{k})$

where $Y_{j1},$ $\ldots Y_{jm}j$ are the free variables which occurs in $A_{i}$ and $p(t_{j1}. \ldots t_{j\aleph})$ . $X_{1}$ . $\ldots X_{k}$

are new variables.

We apply this procedure to all internal predicates and get $Pr’$ .

Theorem 2
If $Pr$ satisfies condition 1 then the least model $M$ satisfies $Pr’$ .

$(proof)=>$

Because $M$ is the model of $Pr$ .

$<=$ If not, there are a tuple \langle $d_{1},$ $\ldots,d_{k}>$ and a non-negative integer $n$ s.t.
$p(d_{1}, \ldots,d_{\aleph})\in w_{\mathfrak{n}}$ and
for all $jlarrow<j\leq i$

$\sim(A_{j\wedge}d_{1}-arrow t_{j1}. \ldots,d_{k}-arrow t_{jk})$

for all instantiations of $fu(A_{j}.p(t_{j1}, \ldots,t_{jk}))$

This contradicts with the way of construction of the least model.
ロ
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We can verify a program by this theorem if we prepare an appropriate formal axiom
system.

The condition 1 is not satisfied in the following example.

$\sim_{a=>}\alpha$

Even in this case, there is at least one minimal model. A minimal model always exists
because the model in which all instance of atomic formulas are true satisfies $Pr$ .
However,

$\sim_{a}$ く=> $a$

has no model. On the other hand,

$\sim b\overline{arrow}>a$

$\sim_{\alpha=>}b$

has a model which satisfies the following formulas.

$\sim b<arrowarrow>a$

$\sim_{a}<=>b$

Therefore we have two ways of giving the semantics to a program which does not
satisfies the condition 1.

(1) We give the semantics as all minimal models. (If there are plural minimal
models, we can execute lt according to any minimal model, this means the program is
nondeterministic.) Any program which satisfies conditions in section 4 is legal.

(2) If there is a model which satisfies $Pr$ . $Pr$ is a legal program. The semantics of
$Pr$ is defined as all minimal models of $Pr$ .

In this paper, we select (2). Therefore, we must decide whether $Pr$ can be satisfied or
not, even if whatever interpretations of external predicates are given.

If the Herbrand Universe is finite, there is a sufficient condition which is decidable.

Each formula in $Pr$ can be converted to an equivalent propositional temporal logic
formula if the Herbrand Universe is finite. Therefore, we consider the case there is no
variable in $A$, a set of formulas of temporal logic, and suppose that there is no other
temporal operator than $\bullet$ in A.

We say a finite sequence of worlds く$w_{O},$ $\ldots$
$w_{k}\rangle$ $(0\leq k)$ satisfies A iff each formula in A is

true at $w_{l}$ in the model く $w_{O}$ . $\ldots.w_{k},\phi.\phi$ . $\ldots>$ .

$(\uparrow$



32(il

We construct a nondeterministic finite automaton. The input alphabets are the states of
external propositions (i.e. instances of external predicates) and consists of $2^{m}$ symbols,
where $m$ is the number $\backslash .f$ external propositions. The states of the automaton are
elements of ( $0,$ $\ldots n$ } $\cross W(p_{\Gamma}r^{1}$ , where $n$ is the number of $\bullet$ which occur in A. $W(Pr)$ is
regarded as {all the states of truth value of propositions} and finite. The initial state is
く $0,\phi$ . $\ldots.\phi\rangle$ . The state transition function $\delta$ is defined in the following way.

く $i.x_{0}$ . $\ldots x_{n}\rangle$
$\in\delta$ (く$j,w_{O}$ . $\ldots w_{\mathfrak{n}}\rangle,a$ ) iff

$i= \min(j\star l.n)$ and
$x_{u}=w_{t+1}$ for all $k$ $0\leq k\langle n$ and
$\alpha=x_{n}\cap W_{O}$ and
く $x_{n\cdot j},$ $\ldots,x_{\mathfrak{n}}\rangle$ satisfies A.

where $W_{0}$ is the set of external propositions.

Now, we get a nondeterministic automaton. If the empty set does not appear as the value
of 6 for any input alphabet sequence, i.e. we can always construct the next world, A has
a model. This condition is decidable.

The restriction, the Herbrand Universe is finite, seems too strong. In fact, it is
possible to relax the restriction. We have not given a type to variables, functions nor
predicates. i.e. there is only one type. When we type variables, functions and predicates,
if $\prime t_{1},$ $\ldots t_{k}$ are types which occurs in $[p_{1}]$ in which there are $p,q$ s.t. $d-(p,q)’$ implies “the
Herbrand Universe of types $t_{1},$ $\ldots t_{k}$ are finite“, the above decision procedure is available.
In real applications, the number of processes and resources are usually finite. Therefore,
for example, mutual exclusion like in section 4.6 can be justified.

6 Implementation

We describe two ways of implementation in this section.

6.1 $Tr\alpha nsfom\alpha tion$ into Prolog
Supposing that we have closed formulas of temporal logic and its model, we can

convert them to a closed formula of ordinary first order logic and its model so that the
values of functions and truth values of predicates are naturally reserved, even if the
domain and the interpretations of functions vary according to time. In this paper, We
suppose that the domain and the interpretations of functions are fixed.

The following is the transformation.

By increasing the arities of predicates by one and we represent their truth
values which vary according to time by their new arguments. For instance,

$P^{0}$
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$a(X)=>$ ロ$p(b(X))$

is transformed to:

$a(W.X)=>\forall Wl(R(W.WI)=>p(Wl_{*}b(X)))$

We call the variables $W$ and $Wl$ world variables. $R(W,Wl)$ is a predicate which
represents the accessibility. In temporal logic, the domain of world variables is non-
negative integer and $R(W.Wl)$ iff $W\leq Wl$ .

By transforming a program in which all formulas are normal, we get a (not

pure) Prolog program. If there is no negation in the original program, we get a pure
Prolog program.

Example

dangerous(X) $=>p$

$\bullet p=>p$

$p=>alam$

dangerous(W,X) $=>p(W)$

$p(W)=>p(s(W))$

$\rho(W)=>dam(W)$

where dangerous is an external predicate and $s$ is the successor function.

The transformed program can be executed by ordinal Prolog interpreter or
compiler. The condition 1 in section 5.3, however, must be satisfied and variables must be
instantiated completely when a negation as failure is done [Clark1977].

6.2 Asserting the facts which $\alpha re$ true at each point in time
The implementation described above has several disadvantages. In the above

example, suppose that we would like to decide $\alpha lam(1000)$ is true or not, then the
interpreter calls $p$ for 1000 times if dangerous has never become true. The speed of
execution becomes slower and slower in time.

One solution of this problem is to assert the facts which is true at each point in
time. Then we do not have to call $p$ recursively 1000 times. On the other hand,
exhaustive asserting is often redundant. For instance, we do not have to assert $al\alpha m(n)$

in the above example. Because $al\alpha m(n)$ does not occur in the condition part.
We divide the predicates into two category. Only the facts whose predicates are

in the first category are asserted. In the above example, { $p$, dangerous} is the first
category and { $p$. alam} is the second category.

Only one $\bullet$ is attached to $p$ and no $\bullet$ is attached to dangerous, we can retract
the facts which describes about $p$ at the two point before in time and the facts which
describes about dangerous at the previous point in time.

If the condition 1 is not satisfied, we must extract a finite automaton and run

2/
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it.

7 Application $rightarrow as$ an executable specification language

One of the targets of Temporal Prolog is a use as an executable specification
language.

The traditional way of building softwares for real time systems is the following:
first, we write a (informal) specification, second, we design the program and implement
according to it. Recently, an alternative is proposed [Zave1984]: First, we define an
abstract model of the system. Second, we write an executable specification on it. Finally,
we transform the specification equivalently and get an efficient implementation.

This method seems it has several advantages: because the specification itself is
executable, we can ‘’debug” the specification by executing it. Prototyping is not
necessary (because the specification itself plays the role of prototype). Furthermore, if
the transformation for getting good efficiency is automated to some extent, we can
easily cope with a change of specification even after we get an implementation.

The key of this method is the equivalent transformation. For the purpose of
equivalent transformation, the semantics of the executable specification must be given
strictly and simply. 0therwise, if not strict, we can not be sure the equivalence of two
programs before and after the transformation. If not simple, probably the transformation
becomes complex.

Another important factor is readability and writability of the executable
specification language. For all practical purposes, it must be easily written and read by
human beings. Otherwise, the specification in that language is just a program rather than
specification.

Therefore, the design of the executabl$e$ specification language is important. In
[Jackson1983], a CSP like language is used. In [Zave1982], a functional programming
language is adopted.

We think Temporal Prolog is one of the candidates of executable specification
language for real time systems because of its readability and its strict and simple
semantics.

8 Concluding $rem\alpha rks$

We proposed a concurrent logic programming language which includes the
notion of time and state transition because the temporal logic, which is the basis of
Temporal Prolog, includes such notions. Concurrency, mutual exclusion and
nondeterminism can be easily expressed in this language.

By transforming a rather complex program into a simple one, we defined the
formal semantics of Temporal Prolog.

We also described the implementation of Temporal Prolog. However, in order to
enhance efficiency, further research is necessary. In order to apply this language to real

$\perp 2$
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time controls, the research about the transformation which increase the efficiency of a
program is also necessary.
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