goooboooogn
O 5870 1986 O 69-79

69

A sufficient condition for a bipartite graph to have

a k-factor.

Katsuhiro Chta (KB % F4 )

Department of Information Science
Faculty of Science

University of Tokyo

In this paper, we consider only finite undirected simplé graphs. A graph
denoted by (X,Y;FE) is a bipartite graph with partite sets X and Y and edge set
E cC Xx Y. If A is a subset of vertices, N(4) denotes the set of vertices adjacent
to one of the vertices of A. Fér two disjoint subsets of vertices 4 and B, e(A,B)
denotes the number of the edges joining 4 and B. A vertex z is often identified
with {z}. So e(z,B) means e({z},B) axd N(z) means N({z}). The other nota-
tions may be found in [1]. |

A k-regular spanning subgraph is called a k-factor. In a bipartite graph
(X,Y,E), a complete k-matching from X to Y is defined as a spanning vsubgraph
such that the degree of each vertex of X is k, and the degree of each vertexof Y
is at most k. We abbreviate the complete 1-matching from X to Y as a complete

malching from X to Y.

Theorem A (Hall[2]). A bipartite graph (X,Y;E) has a complete matching

from X to Y if and only if |N(S)| = | S| holds for all ScX.
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The next theorem, first proved by Ore and Ryser, gives a necessary and
sufficient condition for a bipartite graph (X, YE) to have a complete k-matching .

from X to Y. pr, for SCcX and TCY, we define
6(S,T) =e(S,Y-T)+k|T| -k]|S].

Theorem B (Ore, Ryser[4]). A bipartite graph (X,Y,E) has a complete k-
matching from X to Y if and only if 6(S,T)=0 holds for all SCX and all TCY.

In this paper, we give a sufficient condition for the existence of a complete
k-matching in a bipartite graph, which is an extension of Hall's theorem
(Theorem A). Katerinis proved the following theorem.

Theorem C (Katerinis[3]). If a bipartite graph (X,Y;E) satisfies (C.1) and
(C.2), then (X,Y.E) has a 2-factor.

(C.1) Xl =|Y]|=2

(C.2) For all MCX,

INGDL= 2111 i< |2y

weni=ivl ilwl=

2

27y,

2 17| ]

As a generalizatioh of Theorem C, we give our main result in this paper.

Theorem 1. Suppose k = 2.. If a bipartite graph (X,Y,E) satisfies (1.1),

(1.2) and (1.3), then (X,Y;E) has a complete k-matching from X to Y.

(1.1) | X|=|YIl, |Y|I=k.

(1.2) For : every . Mcx satisfying | M < (k~1+—}1—)‘ll)’[],

\N(H)| > (k—1+i—")|mhozds.

(1.3) For every MCX satisfying |M| = (k—1+;—)'1l}’li, |[N(M)| = | Y| holds.

In case of |X| = |Y|, a complete k-matching from X to Y is equivalent to a
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k-factor. Therefore, Theorem 1 also gives a sufficient condition on the existence
of a k-factor. Hence, in case of k :2; Theorem 1 implies Theorem C. Moreover, if
we apply Theorem 1 to the case of k=1, then we have the non-trivial implication

of Hall’s theorem.

The next theorem is slightly stronger than Theorem 1. Hence, we prove

Theorem 2 in_stead of Theorem 1.

Theorem 2. Suppose k = 2. If a bipartite graph (X,Y;E) Satisﬁes (2.1),

(2.2) and (2. 3),ch,en (X,Y;E) has a complete k matching from X to Y.

(21)  |X|=|Y], |Y]|=k.

(2.2)  Fer every McY satisfying |M| <

(lc—l+%~)"!¥|] and
| M |=1 (modulo k), |N(M)| = (k'—1+%—)|Ml,

(2.3)  For every MCY satisfying |M| =

(Ic—-1+—]t~)“1[Y|l, IN(M)| = | Y| holds.

Before proving Theorem 2, we state the following lemma.

Lemma 3. Let k = 2 be an integer, and G = (X, Y;E) be a bipartite graph
satisfying |X| < |Y| and | Y| = k. Suppose there exist SCX and TCY such that
6(S,T) < 0. If we choose such S and T so that S\ (Y —T) is minimal, then (3.1),

(3:2), (3.3) and (3.4) hold.

(3.1) For any wvertex z of S, e(z,Y-T)<k-1 holds. Therefore

e(S,Y-T) < (k—1)|5| holds.

(3.2) For any vertex y of Y—T, e(S,y) = k—1 holds.
(33)  IN(S)| < (k=145
(3.4) There exists a subset M of S such that |M|=1 (modulo k) and

[ |
IN(M)| < (k——1+’t—)|M| holds.




Proof. Suppose there exists a vertex z of S such that e(z,Y-T)=>k. Let
S':=8 —{z}]. Then
S(S'"T)=k|T| +e(S.Y=T)—k|S’|
<k|T|+e(S.Y-T)—k —k|S|+k
=6(5,T) < 0. _
This contradicts the minimality of S(j(Y—T). Thus we obtain (3.1).

Similarly, suppose there exists y€Y—T such that e(S,y)=k, and let
T':=Tyly}]. Then 6(S,T')=<6(S,T) <0, contradicting the minimality of
S U(Y-T), and (3.2) follows.

Since G is a bipartite graph, |N(S)| = |T|+e(S,Y—T). By the fact that
6(S,T) < 0and (3.1),

IN(S)| = |T| +e(S,Y-T)
<IS|+(1-Je(S,Y-T)
1
<|S|+(-D-1)s]
1
= (k-1+-)|5].
(k-1 15|
Thus (3.3) is obtained.

If |S|=1(modulo k), then immediately (3.4) holds. By the fact that
6(S,T) <0, S # ¢. Hence let |S|=1+r (modulo k) where 1 <r <k—1 and R be
a subset of S such that e(R,Y-T) is maximl;m over |R| =7 and RCS. Let
d := minfe(z,Y—-T);z€R} and M := S—R. Then we have

e(z,Y-T)=d forallzeR
e(z' . Y-T)<d forallzx'eM v ,
and by (3.1), d =k—1. On the other hand, |N(M)| < |T|+e(M,Y-T). There-
fore,
IN(M)| <= |T| +e(M,Y-T)
<|S| - —};—e(S,Y—T) +e(M,Y-T)

= (1—;—)e(M,Y~T) - -Ii—e(R.Y—T) +|5]
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1 1 4
< (=DM | = -d|R| +[5]
= S4k-1)| M| - |R1} + |S|

(k—1)2 k—1 ‘

< S M| = SR+ M| + R
e (k1 1) 1

= (k=1+ D H| + i~ ||

[ 1
= [em1e 1

and (3.4) follows. =
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Proof of Theorem 2. We assume that (X,Y;E) has no complete Ic-_rhatching

from X to Y. By Theorem B, there exist SCX and TCY satisfying 6(S,T) < 0. We

may assume that the situations of (3.1) — (3.4) occur. By the assumption (2.2)

and (2.3), we have N(M) = Y. Since MCS, also we have N(S) =Y.

Let z := min{e(S.,y);y€Y-T}. Note that Y—T#¢, by the assumption that"

(5(5,7‘) < 0. Hence z is well-defined, and 1 < z < k—1, by (3.2) and the fact that

|[N(S)|=Y. The neighborhood of S, that is Y, is at most |T| + ;—e(S,Y—T).

Hence by (3.1) and the fact that 6(S,T) <0,

Y] = IN(S)| = IT| + +-e(S.Y=T)
<Is] +(-;——-};—)e(S,Y—T)

< |51+ (- Dk-1)[S]

_ kP—k+z

P |S].

(1)

Let y, be a vertex of Y—T such that e(S.y,) = 2z, and let Sp:= .5 — N(¥,).

Since N(S)CY — {yo}, So cannot satisfy the conclusion of (2.3). Hence

k

Sol=|S| -2z 5¥———
ISol = 151 =2 % 5y

|Y] - 1.
By (1) and (2)1.
k(k—1)(z-1)|S| < z(z—1)(k®—k+1)

z
k—1

1
|S|‘<(lc—1+k—)-

()
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1
<=k—-1+—
k

Thus |S| <k and therefore |M| = 1. But (3.4) and the fact that N(#)=7Y
[ 1

imply that |Y| = |N(M)]| <Ik—1+ 1= k. This contradicts the assumption that

|Y|=k. =

Theorem 2 is in some sense best possible. The graph:(X,Y;E) defined as the

following shows that the condition [N(M)]| = (k-—l+;i——)lM| of {2.2) cannot be

replaced by iN(M)] 2 [(k—1+lt—)|M II -1 (éee Fig. 1).

X = Ay4d’
where 4 = {al., o Gkma1)
A= {Qmazs 00 ) n>(k*+k+1)m +2k —1.
Y:=BycCcyDb
where B = {b;; | Isi<km +1, 1<j<k —1}
C=fcyn " Cm} L ;
D=t{dy - .d} (k—1)(km +1)+m +l=n.

E = {a;b;; | 1sikm +1, 1=j<k -1} (y (AXC) y (4'xY).
Moreover, in this graph all but one # ( = 4 ) satisfy (2.2).
Besides, the conditions (1.2) and (1.3) of Theorem 1 cannot be unified to the

condition:

| N(#)| = min{| Y|,(k—1+}c—)|M I} for all MCX. (1.4)

The graph in Fig. 2 satisfies (1.1) and (1.4) but has no c‘or'nplete k-matching from
X toY. |

But the graphs which satisfy (1.1) and (1.4) and have n§ complete k-

matching from X to Y have a similar induced subgraph. Finéllyf, we prove the

next theorem.

Theorem 4. Suppose k = 2. And also suppose that G = (X,Y;E) is a bipar-

tite graph such that |Y| < |Y| and |Y| 2 k. If G satisfles (1.4) and G has no
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Tem +1 0 ~\§v;r//’1/” ~ Ykm +

il D

2L 7S :
/ "/’//I XXSEO bim 41,k -1
W '
<

complete k-matching from X to Y, then there exist ,SCX and TCszuch. that
(4.1), (4.2) and (4.3) hold.
(4.1) [S|=k|T| + 1.
(4.2) | e(S,y)=1for al;yEY;T.
(4.3) e(z,Y-T)=k—-1 forallzesS.

Proof. Since G has no complete k-matching from X to Y, we may assume
that we héve (3.1) - 4(8.4). Therefore | we have N(S)=7Y. Let
z := minf{e(S,y);y€Y-T{. Since Y—-T#¢, z is well-defined, and 1<z <k-1.

Now, we have



km +1
(NS
Y,
SELULL IR
l
(Osl=m +(k -2)(km +1) )

Y] = IN(S)| = 1T| + -e(S.Y-T)

2_
< k“=k+2z

e IS

Let yo€Y—T such that e(S,yy) =2, and let Sy:=S5 — N(yo)

N(Sy)CY — {yo}, we have

1 1
Y1 =12 |[N(So)| = (k—1+.9[So| = (k=1+ (]S |~2).
By the above two inequalities, we have

k2~k +2

1
k2 IS|>|Y|=(k 1+k)(|S| z) + 1,

(k~k+2)|S | > 2(kP—k +1)(|S [~2) + kz,
2¥3(k®-k+1) —kz > (z-1) k (k-1)|S]|,

Since |Y| =k, |S|= |M|=k+1. Hence

Since



2¥(k?—k+1) —kz > (z-1)k(k—1)(k+1),
2%3(k?~k+1) — zk> + k(k*—1) > 0.

We claim that the only situation that z = 1 makes this inequality true. Suppose

2=2, and let fi (z) := 23(k®—k +1) — zk® + k(k?~1). Then, since k=>z+1=3,

4(kP—k+1) — 2k3 + k (k®-1)
—k3 + 4k® -5k + 4
—k(k—2)°*—k +4<0,

Je(2)

and

felk—1) = (k=1)%(k?-k +1) — (k=1)k® + k (k?-1)
= (k-1){1 = (k-1)(k—R)} < 0.

Hence, 2=z =k —1 implies ‘f, (2 )<0, which is a contradiction. Thus the claim fol-

lows.

Define

U:=fueY-Te(S,u) =1},
W:={weY-Te(Sw)=2}=Y-T-U.

Since z=1, U#¢. We choose ue€U arbitrarily,. and let z, be the only neighbor-

hood of w in S. Now, define «, § and 7y as the following non-negative integers

(especially, note that y = 1).

a:= 3 (e(S,w)-1),

weWl
B:=Y(k—-1—e(z,Y-T)),
zeS
v:=e(z,,U).

By these definitions, we have

Y] = |N(S)| = |T| +e(5,Y-T) —«a,
e(S,Y=T) = (k=1)|S| - ,
Y] =72 IN(S-(@)| = (k=14(1S |-1).

By the definitions of « and £, -

a=e(zx,, W),

Bzk —1-e(z,,Y-T).

(3)
(4)

(5)

(6)

(7)

77
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Thus we have

a+B+y=k-l. ’ (8)

By (3) and the fact that 6(S,T) < 0,

Y| < |S]|+ (1—%——)e(S,Y—-T) - a

And by (4),

1 1 '
Y] < (k=145 ] — o = (1-19)8. (9)
Thus with (5), we have
oty + (k—1){a+p+y) <k® -k + 1.
If o+ 8+ =k, we have a + ¥ < 1. This contradicts the fact that y= 1.

Therefore in (8), hence also in (6) and (7), the equality holds.

From the equality of (7), we have e(z,Y-T) =k—1forallzeS — {z,]. From
the equality of (8), for all weW, e(S,w)=2 and z,eN(w)NS, and hence
a=|W]|.

First we claim that W = ¢. In case of k¥ =2, W = ¢ is an immediate conse-
quéncé of (3.2). Thus it suffices to show the claim in case of £k = 3. Assume
W+#¢ and let weeW. Since |S|=k+1=4 and e(S,wy) =2, thare exisis
z,€S — N(w,). We note that zo#z,. Because of the fact that
e(ze, Y—T)=k—1>a=|W|, there exists veUNN(z,). Especially v#u., and the
only neighborhood of v in S, say =z,, is zo. Hence the similar arguments lead us
to the fact that z,e N(w)NS for all weW. But z, =25 £ SN\N(wp). This is a

contradiction. Thus we have the claim, and therefore (4.2) holds.

Next .we prove (4.3). It suffices to show that e(z,,Y—T)=4k—1. Since
|S|=k+1 =3, we can take z'€S — {z,]. From the above arguments, we can
regard z' as the only neighborhood in S of some vertex ve€U = Y—T. Then by
the similar arguments, e(z,Y~T) = k—1 holds for all z€S — {z']. Especially

e(x,,Y—T) = k~1 holds.

._10_



The results given above show that a = =0 and ¥ = k—1. Hence by (5) and
(9)1
(k-1+1)]5] - 1< 7] < (k-1+D)|5]
k k k '
and so

Y| = (k-1)]5] + 2L

'k
This implies (4.1), for we have |Y—T| = (k—1)|S| from (4.2) and (4.3). And we

complete the proof. =
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