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Some results on reflection principles in fragments

of Peano arithmetic .

Hiroakira Ono {( Hiroshima University )

N BOH W

This is an abstract of the paper [3]. Let Izk denote the
fragment of Peano arithmetic, whose axioms are Peano’'s axiomé
k-formulas‘ We willydevelop a
proof-theoretic study of various principles of fragments of

with induction restricted to =

Peano arithmetic such as reflection principles, transfinite
inductions. well-ordering principles and large set principles,

and compare their proof-theoretic strength.

Let Prk(x) be a canonical representation of the provability

predicate for 1IZ Let 1%, =+ Tm be the arithmetic obtained

k* kK
from Izk by adding all true Hm—sentences as- additional axioms.

In the following. the function symbol 8 represents the Godel's
B-function. So. B(x.i) = y means that y is the {—th element of

the sequence coded by X. We will define ordinals mn by mD = 1

[}
T L . ,
and mn+1 = @ . For each positive integer n. let ﬂn be a

canonical primitive recursive well-ordering of natural numbers
of order-type @ Sometimes. we will omit the subscript n of
<y when no confusions will occur. For each natural number x.
let lxin denote the ordinal o represented by k in the well-

ordering in‘ By abuse of notations. we will often write the
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ordinal o in place of X, when o = len.

We will consider the following seven principles:
1) RFNZm({Zk) ( ¥ -uniform reflection principle of 1%, ):
Fowwany Zm—formula P(xX). VXPrk(r@{ﬁ)1) D Vxe(x).

2}  Con( Izk + T ) ( consistency of 1T

3y Tl [mn} ( 7

K + Tm 3.

ansfinite induction up to o for nm~formula3 1

any nm—formul@ Yyix).,

Yo < mn[ vy( ¥8( 8 <n ¥ 2 ¥(8) ) D ¥(y) ) > ¢(a) 1.

4) WOPZm[mn] { well-ordering principlse of ®, for Zm-farmulas )
Let 8 be a formula containing at least two free variables

and let F(8) denote the formula V¥x3!y0(x.y). Then. wOPZ [mn]
W

is the schema: for anv Zm—fcrmula 8 containing at least ftwo

fre

bz,-.GS ’

®

vari

&

F(8) o 3Ix3y3Iz( 9(xX.¥y) A B{x+1.2) A °( Z <n v ) ).

Roughly speaking. WOP_ [w 1 means that if a function f : N — o

n
m

is represented by some Zm—formula then the sequence f(0), f(1J.
f(2).... 1is not strictly descending with respect to <n.
5) LSPZm[mn] ( mn-Large s2t principle for Zm—formuZas ).

Let [x.y]l denote the set { z | ¥ £ z £y } of natural
numbers. Suppose that 6 is a formula containing at least two
free variables. Then. SIF(8) is the formula

YxIyO(X,y) A VXYYVZ( ( 8(X.Y) A B8(x+1.2) ) Dy < z ),
which means that 8 is the graph of a strictly increasing
function. Let {y}(x) be the fundamental sequence defined in

[13. Let fsn be the function symbol which represents the
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primitive recursive function fsl such that fSn(U,X) = w if and

1

only if {ful Y(x) .= lwl, . Now. for each a < o, and each

formula 6. we will abbreviate the following formula
z[ B(z.0) = o A Vw((y;x)auat( B(z,w) = u A 8(xX+tw.t)
A Blzoutl) = £5 (U.t) ) A B(Z.y=x) = 0 T,

to 'Ix.y]l is (¢.0)-large’'. Then, LSPZ [mn] is the schema;
m

for any Zm—formuéa 0 containing at least two free wariables.
SIF{8) o Vo < mnVXHy( [x.v¥v] is (a,8)-large }.

Clearly.”LSPZ [mn] means that if a function f is represented by
m

some Zm—formula then for any « <,wn vx3y( [X.y1l is (o.f)-

large ) holds. Here. we say that Ix.¥] is {(w.f)~-large if the

e

set f(Ix.y]) is w-large ( see [2] ).

‘ * . . . . . ; e
6) WOP o 1 ( well-orderingy principle of w, for Zm—aeftnable

= n n

i)
Ffunctions J: For any Zm—formuza 8 containing at least two free
variables,

Prm(rF(6)1) o AxIAvIAz G(xX.v) A B{x+l.2)y A O zZ <y ¥ ).

n
¥ , ' e s
7) LSP [mn] ( w, -targe set principle for im—definaoze

i

For any Zm~formuzg 8 containing at least two free

Prm(rSIF(631) o Yo < manay( [x.¥] i3 (2.0)-large ).

Thern. we have the following theorems{

THEOREM 1. Let m be positive infeve:
= “h { ’ ‘ T ?
1) Iz_;1 + RF‘zm+1‘IZm+“° ) F Inlpwn+l] for n > 0



2) The following three theories arée aguivalent (n 2 0 )3
S
b. Izm + wOPZ [mnvl]’
m
a. Izm + LSPZ [wn+1]‘
m
3) Izl +'T1ﬂm{mn+1] F Izm + RFNZm(IZm+n_1} far n > 0

4) The following four principles are equivalent in Izm

12 For each . 1z ).
THEOREM 2. 1y Fo m >0 Ia]FRm%m1“LW1}

2)  For each k > 0 and m =2 0, 1T, + Tm'F RFNZ (Izk) if IZk +
‘ m

To prove Theorem 1. 3), we need to introduce Skolem
functions. and reduce the original fragments of arithmetic to
fragments in the extended language., having weaker mathematical

induction. ( As for details. see €3 of [31. )

In the following, we will give a proof of Theorem 1. 2).
We assume the familiarity with Ketonen and Solovay (1] and

Kurata [21]. We remark that both iwmplications c¢. ==> b. and

b. ==> a. can be proved in the same way as Theorems 2.5.5 and

2.5.8 in [2]. In either case., we need the Zm—mat%ematieal

induction Indzm or the Zm-leasi number principle LZW. which is
i

%
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equivalent to Ihdzm.; To show this., we will give here a
detailed proof of the implication b. ==> a.
Let T be the theory obtained from IX_ by adding
(1) VxX( Vy( y <n X D @ly) ) 2 @(x) )
and
(2) dz p(z)
as additional axioms, where @(z) is a ﬂm—formula. We can

suppose that ¢(z) is Vuy(z.u) for a = -formula ¥ (z.,u). Then,

m-1
it follows from (1) that
(3N T F ¥xVuldy3dvl W(x,u) o ( vy <n X A W(y,v) ) 1.
Let J be the primitive recursive pairing function defined by
J(X.y) = —%—[(x+y)2+3x+y] and both K(z}) and L(z) are primitive
recursive projection functions satisfying that
i. J(K(z).L(z)) = z,
ii. K(J(x,y}) = x and L(J(X.y)) = y.
Now. define 8(z) by =W(K(z).L(z)). Clearly, 0(z) is a L
formula. From (3) it follows that
T F vVz3wl G(Z} > ( K(w) <n K(z) A 8(w) ) ).
Let €(z,w) denote the formula
8(z) o  K(w) <n K(z) A 8(w) ).
Then. &(z.,w) belongs to A Since
Qwg(z.w) > FIwl L(z.w) A VudwIg(z,u) )
follows from LZm,
T F VzAlw( g(z.w) A Yukwig(z.u) ).
Similarly. since T F 3wB(w) and moreover 3JIwd(w) o Iw( G(w) A

Vu<wa8iu) ) follows from Lzm. we have

TF FTwl B8{w) A Yukw8(u) ).

iy
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Now define zm—formulas Tt(x.t) and o(x.s) by

tix,t)y = 3z[ 3y 8(z.0) = y A 6(y) A Vu<y8(u) )
| A VUKxAvaw( B(z.U) = Vv A E(v.W) A Vr<wig(v.r)
A Blz.u+tl) = w ) A B(z,x) = t 1.
and
o(x,s) = 3t Tix.t) A s = K(t) ).

( Notice that T and ¢ represent the graphs of functions g and f
in the proof of Theorem 2.5.6 in [2]. respectively. ) By using
Indzm. both F(t) and F(o) are provable in T. On the other
hand.
TF (0oxX.3) A o(x+1,8") ) D 3t3t°'[ s = K(t)
A s = KIt') A tix,t) A Tix+l.t) A T(E.L") 1.

Clearly. ¢g(t.t') implies 6(t) o K(t") <n K(t), i.e., 8(t) o

s’ <n s. But by using Indzm. TF tix.t) o 8(t). Therefore.

T F VXVsVs'( ( g(xX.5) A o(x+l.5'} ) o s <n 5 ).
Hence. WOPZ [mF] for ¢ fails in T. By taking the contra-

m 1
position. we have
IZm + WOPZ [mnl F Tln [mn].
m m
Next, we will show that Izm + Tlnm[mn} F LSsztmnj. We

remark here that Tln [mn] is equivalent in IZ, to the schema

m ,1
(4) Axf(x) o FvL Yly) A ¥Vz( 2z <n y D W(z) ) 3.

where ¢ (x) is a Zm—formula. Let T be the theory obtained from
Izm by adding the above schema (4) and the formula SIF(8) for a
Zm—formula 8. as additional axioms. Let o« be an ordinal such

that o < o_. For a given number x. let 8% (s.v) denote the

n
following Zm—formula;
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3z[ B(z.0) = o A Vw<sTFuat( B(z.w) = u A B(x+w,t)
A Blz,w+l) = fsn(u,t) ) A B(z,5) =V ];
Clearly, 6*(5,0) means that [x.x+s] is (a.08)-large. When o = 0,
it is obvious that T F 3s07(s,0). So. suppose otherwise.
Let ¥(r) be 3s3v( 87(s,v) A v < 1 ). Then., T b 3ry(r).
Thus, by the schema (4)
TFE Irl ¢(r) A vVz( 2z <n r o wiz) ) 1. ,
Take such an r. Then, 3s3v( 0% (s.v) A v <n r . Take also
such s and v. Then, ﬁwkv) holds. Hence
(5) Tk V¥s'Wv'( 87(s'.v') 27 v < v,
On the other hand.
T b Vs 3wl (5°,w)
by using Indzm. In particular. T F 3w (s+1.w). Thus we
have
T b 3s3vAwl 07 (5.v) A 07 (s+1,w) A 7w < V) )
by (5). ‘But, fundamental sequences have the property:
T b VsVuvw( ( 87(s,v) A 87(s+1.w) A O <n V) 2 w <n v ).
Hence, T F 3567 (s.,0). Therefore,

Yoo < @, Vx3y( Ix.¥] is (a,8)-large )

is provable in T.

Remark here that Izl + TIn ] + Lzm if o < o. Thus.
in

Izm + TIn [mn] is equivalent to IZ1 + TI" [mn] when n > 0.

n m
Therefore. we have Theorem 1. 2).
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