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SUMMARY

If we assume that magnitudes of earthquakes are distributed
identically and independently according to the
negative-exponential, then the maximum 1likelihood estimate
proposed by Utsu for the b-value is biased from the true value.
We suggest an unbiased alternative estimate which 1is
asymptotically equivalent to the maximum likelihood estimate.
The relation between the unbiased estimate and the maximum
likelihood estimate are presented from a Bayesian viewpoint.
The two estimates are compared to show the superiority of the
unbiased estimate to the maximum likelihood estimate, on a basis
of the expected entropy maximization principlg for‘ the
predictive distributions. From the same principle the posferior
which derives the unbiased estimate is recommended for the
inferential distribution of b-value rather than the standardized

likelihood.
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1. Bias of the maximum |ikelihood estimate
According to Gutenberg-Richter’s law (Gutenberg and
Richter, 13844), the number N(M) of earthquakes having magnitude

M or larger can be expressed by the equation
log,o N(M) = a - bM. : (1)
Utsu (1965) proposed the estimate for b by

b = N log,,e 2)

N
2 (Ms=Mo)

where N is the number of earthquakes and M, is the minimum
magnitude in a given sample. Aki (1965) suggested that this 1is
nothing but the maximum likelihood estimate which maximizes the

likelihood function

N C
L(b) = NFM 18D, : C (3)
where
FMiB) = e M0 (M > M), (4
and B=b/log,ge . Using the large sample theory for the maximum

likelihood Aki (1985) 4also provide the asymptotic error bands
for large N . It is further seen that the maximum likelihood

estimate (2) tends to the true value &, and that b is
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asymptotically unbiased estimate of b, ;: i.e. E(b)-b, -0 as N
increases.
However for fixed N, b is not unbiased. Indeed using the

exact distribution density of & in (2)

1) = poyes () ee(-50 (5)
which is derived from (1.4) by Utsu (1966), we have
Nb, by
E(b) = [(bf(b)db = 323 = borgy: 8)

This suggests that the bias is not small when N is small or b,
is large.

A natural way for correcting ‘the bias of b arises

immediately based on (8); that is,

N y ’
2, - Ho)

(7
is the unbiased estimate for b, . Although there are many
unbiased estimators of b, Dbesides 3.‘ we will show that the

estimator (7) enjoyes certain optimality.
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2. Relation between b and B from a Bayesian viewpoint

Without loss of generality we ‘consider B=N/§_’:1Xi and
E;(N—l)/éiX, instead of b and % .‘respectiVely. where X,=M,-M, is
distributed according to f(x|B)=Be™™ . Suppose a prior
distribution n(8) ‘fof the ‘parameter' B . " Then by the Bayes

theorem we have the posterior distfibution

j:n(B)L(ﬁ)dﬁ

Consider the case where
z(B) = 1, 0 < 8< =, ‘ ' (9)

although this is not the probability density: this is called the
unif&rm improper prior . Then (8) becomes the
standardized likelihood which is conventionally‘ used for the
confidence probabiiity distribution. ’For the present case this

is given by

{ZX }Ni‘l _
Psy(B) = ——Ffr— BYe P (10)
where the sum ¥ is taken from =1 up to i=N, and the mode is
given by the.maximum likelihood estimate 8 . The choice of a

prior (9) to characterize a situation where ~nothing (or more

‘realistically, little) is known a priori- does not seems to be



-]
>

appropriate in general. Jeffereys (1961) suggested the rule
that such noninformative prior distribution 1is given by the
square root of Fisher’s information measure. The rule is
justified on the grounds _of its invariance under parameter
transformations: see also Box and Tiao (1973) and Akaike (1978)
for example. For the present case the Fisher’s information

measure is

.
18 = E[-25 1 f(MIB)] = 1/8%

Thus the noninformative prior is improper and zn(8)=1/8., (0<B<=) .

Therefore the posterior probability is given by

- =x)" -
Dur(B) = il e | (11)

where the sum ¥ is taken from i=1 up to I=N . It is easily seen
that the mode of the posterior distribution (11) is B . while

the posterior mean (Bayes estimate) is

-
[ruieras = (12)

which is equal to the maximum likelihood estimate 8 .
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3. Entropy maximization principle and the performance of the
estimates

Akaike (1977) introduced and formulated the
entropy maximization princidle ., which may be specifically
described for our purpose as follows. Denote by x the vecﬁor of
observations (&, Ty = Ty) . Assume that the true distribution of
x is specified by an unknown density function f(z)=f(z, 25 = 2y)
and coﬁsider a parameterized density g(zl|8) . Considering
y=(¥;» ¥p = yy) as the future observation with the same
distribution as x ., and supposing that we predict it based on
the - present data set x , we may call g(yl|@) predictive
distribution. where #=8(x) is an estimate of the true parameter
60 satisfying f(y)=g(ylfy)

As the measure of the goodness of fit of g(yl¥) to f(y) we

use the entropy of f(y) with respect to g(y|d) defined by

B(f:g) = - Lly) log _f_S_y_L} g(yl|8)dy. (13)
Tio j{g<y|5>] {g<y|6>
Note that B(f:;g) is the function of x . Therefore we consider

the expecied entrody

J(@) = [B(fig)f(x)dx = ExlB(f:ig)]

~ExEy[log{f(Y)/g(Y|8(X))}1. (14)

where Ey and E, are exbectation with respect to the random

vectors X and Y . respectively. Akaike (1977) justifies the use
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of:this measure bésed oh the :proéess of‘ éonceptual sampling
experiments, and describes +the natural relation to'the log
likelihood{ :Further the AIC Was‘ derived from this quantity
(Akaike. 1973). | |
Here we use fhe expected ehtrépy J(F) to measure the
performance of the estimates; a larger value shows the better
fit.  Suppose {X,} and {?,}.i=1.2,4.N ‘are identically and
independently distributed acébrdiné J to the density

g(z1By)=Bge . Then we have

J(B) N{ g N - gty - ¢(N)} (15)

and

J(B) = N{log(N-1) - ¢(N)}). (18)

Here we have used the equalities

El1/ZX,] = Bo/(N-1) and Ellg ZX,] = () - log B,

and ¢(N) is the digamma function such that ¢(z)=é% log I'(z) .
Note that both J(B) and J(B) are independent of B,. Since

| _ N NS
(JB-JBW/N = 7 - 1 - g oy > 0.

we see the superiority of the estimates B=(N-1)/ZX,.



Furthermore, consider a family of estimators of the form
§/ZX, where § is a positive constant, then we find the optimal

& Substitute this for F(X) in (14), then we have

J=N[1+lg§- o) - 17-§-_1]

From this we see that £=N-1 maximizes the expected entropy (14).
One may consider the expected square loss B[ (8(X)-6,)?1 to
measure the performance of the estimators. For the estimators

of the form §/ZX, we have

. 2
EL(&/ZX, - B,)%1 = (N—lI)S(()N—Z) (&% - 2(N-2)¢ + (N-1) (N-2) ). (17)

The equality suggests that the wunbiased estimator B = (N-1)/ZX,
is better than the maximum likelihood estimator A =N/3X,,
although the minimum of (17) 1is attained by +the estimator
(N-2)/ZX,. Further interesting loss to see is absolute value df
the difference, 16(X) - 8,]. - By a Monte Carlo experiment the
comparison has been performed for the estimator N/2ZX, (N-1)/ZX,
and (N-2)/ZX,.  The trial was repeated 10000 times for B, such
that b, =8,log,,e=0.5 1.0 and 1.5. The sample averages of the
loss are shown in the Table 1, which shows that the unbiased

estimator B performs best.

4. Predictive distributions using posteriors

In the previous section we have only considered the case
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where the predictive distribution is given in the form of g(yl|8)
by substituting a point estimate &=8(x). But it is shown in
Akaike (1978) that the predictive distribution of ﬁhe form
fg(yle)p(Glx)dBV provides a better fit on average than a
particular g¢(yl|?) with 7 randomly chosen by the posterior
distribution »(81x).

The implication of this is that the full use of posterior
distribution performs better than the point estimates. For
example the posteriors (10) and (11) for the estimate of b-value
provides the so-called confidence 1limits or error bars of the
inferential distributions. Incidentally the both distributioné
(10) and (11) tend to the pormal distributions in a sense as the
sample size increases, and the confidence limits provided in AKki
(1965), for example, are obtained.

To see the performance of the posferiors for fixed sample
size we calculate +the expected entropy. For the predictive

distribution with the posterior (10), we have

s = N+log A - (aN+1)9(2M) + (N+1)$N) + log 2, (18)

and for the predictive distribution with the posterior (11), we

have

Jur = N+ log LIE - ang 2m) + No (). (19)

Note that these quantity also are independent of true value §,.

Therefore
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2N-1
Jur = Jsy = 9(2N) - @(N) - log2 = T 1/k - lg2>0, (20)

which suggests that the posterior distribution with the
noninformative prior works better than one with the uniform
pribr from the predictive viewpoint.

To compare the values of (15), (18), (18) and‘(19), we
carried out numerical calculation using the approximation of the

digamma function for large =z

1 1 1 1 1

122° T 1202° ~ 2522° | 240z° 182z

~ 1 _
o(zx) logz - S

and also using the relation ¢(zx+l1)=¢(x)+1/x . Table 2 suggests
that the predictive distribution by averaging the posterior is

more effective than those based on the point estimates.

5. Concluding remarks

The entropy maximization principle suggests that the full
use of posterior (11) is the most effective among the considered
estimations for b-value. Thus the gonfidence limits, for
example, should be made based on the posterior (11).

As far as the point estimation 1is concerned the unbiased
estimate BA=(N-1)/ZX, is better than the maximum likelihood
estimate, and further +the best among the family of the type

§/2X,

-10-
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Table 2

of the expected entropy

W 00 3 O™ U1 H W N

e I N
w D = O

845569
688911
830022
599116
580077
567174

550798
545278
540844
537191
534152
531564
529339
527409
625722
524224
522897
521698

557851

. 527329
. 484194
. 433636
. 415649
. 403812
. 395440
. 389193
. 384384
. 380518
. 377369
. 374781
. 372569
. 370684
. 369063
. 367636
. 366381
. 3652886
. 364291
. 363402

. 387143
. 874007
. 387259
. 363163
. 360415
. 358451
. 3566970
. 355818
. 354893
. 854132
. 3535186
. 852963
. 862512
. 852119
. 361789
. 351483
. 851204
. 350956
. 3560758

*)

N is the

- Comparison
J(B)
. 45927 -0.
. 972515 -0.
. 812827 -0.
. 7383397 -0.
. 686148 -0.
. 654785 -0.
. 832458 -0.
. 815752 -0.
. 802784 -0.
. 582429 -0.
. 583987 -0.
. 576928 -0.
. BT09TT7 -0.
. 685872 -0.
. 561464 -0.
. 5567803 -0.
. 564195 -0.
. 561173 -0.
. 548462 -0.
sample size.

—14-

81



