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0. Introduction

In recent years, there have been many interesting papers on
the digitél geometry. These works develop as the theoretical
foundation of digital image processing. Among them, the problem
of connectedness is one of the most interesting topics;

It is well-known that there are 4- and 8-connectedness of 2D
digital pictures and also the 6- and 26-connectedness of 3D
digital pictures. 1In this paper, we propose a new definition of
connectivity of 3D digital pictures. Although the exact
definition is given in next section, it means the following
topological properties: Let Sq and S, be two subsets the same 3D
digital picture. S1 and 82 are connected when they satisfy the

*)The main part of this paper was done while the first author
stayed at Division of Mathematics and Statistics, CSIRO, NSW,
Australia, Sept. to Oct., 1985.
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following conditions (1)-(3):
(1) S4 and S, are toruses,
(2) Sq goes through a hole of Sy,
(3) S, goes through a hole of §;. ,
The above connectedness of‘S1 ahd S, is illustrated in Figure 1.

This connectedness relation is called a chain-like connectivity.

After giving the exact definition, we consider the decision
problem whether or not S4 and S, of an arbitrary 3D digital
picture is connected in a chain-like style. We prove that any
one-pebble acceptor cannot determine whether an arbitrary 3D
picture is connected in this style. This result seems to be
interesting in contrast with the following problems of the usual
definition of connectedness. \
(1) It is still open whether a finite state automaton (FSA) can
determine connectedness of a 2D picture (see, e.qg., [11). -
(2) A one-pebble acceptor can determine whether an arbitrary 2D

picture is connected (see [2]).

(3) A one-way 3D parallel/sequential acceptor cannot determine
whether an arbitrary 3D picture is connected (see [{31]).

An idea of proof in this paper comes from the paper [2].
That is, the number of equivalence classes by a one-pebble
acceptor are larger than a number of diferent digital pictures

's of 0's and 1's. |
It is assumed that the readers ére familiar with some basic

notionsﬁénd definitions of 3D digital topology (see [41]).

1. Preliminaries and definitions

In this paper, we exclusively treat a three—dimensional.(3D)
digital image L in the usual way.

Consider the 3D Euclidean space E and its subset D
consisting of all lattice points in E. Let X be a connected
subset of D such as H= {(i,3,%) | 1¢i¢®, 1¢jem, 1¢ken} . A 3D
digital picture f is a mapping from & to {O, 1} , i.e.,

£f: & — {o, 1} . Each point (i,j,k) is called a voxel. To
avoid special case, we assume that f(i,j,k)=0 if at least one of
these i, j, k is equal to either 1 or £ , 1 or m, 1 or n,
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respectively. The set of such points, {(i,j,k) l i=1vi=ﬂvj=1v
j=mvk=1vk=n} , is called the border of Z . We also assume that
each voxel which is not in Z has a value #, i.e., a 3D digital
picture is a rectangular parallelepiped sinking in the sea of
#'s. Usually, the subset of &, {(i,3,%)| £(i,3,00=1}, is
called S and its complement is called S. For every pair of
distinct points X=(x1,x2,x3);-v Yé'(y1,y2,y3), X and Y are 6-
adjacent if /

Cxamva] o+ Ixg-val o+ Yxs-vs) =0
X and Y are 26-adjacent if '

max( |xq-yq| o+ |x3-va| + Jx3-v3l )=1.

If points X and Y are 6-adjacent (26-adjacent), the X is

called 6-neighbor (26—neighbor) of Y. To avoid ambigious
situations, we assume that the opposite type of adjacency is used
for S and -S_, i.e., if 6-adjacency (26-adjacency) is used for S,

26-adjacency (6-adjacency) is used for S. A 6-path (26-path) is

a sequence of lattice points, TI:PO,P1,..'.,Pm, where P; is a 6-
neighbor (26-neighbor) of P; 4, for all i such that 1¢i¢m. Any
two points P, Q are called 6-connected (26-connected) in S if
there exists a 6-path (26-path) P=Pgy,...,P =0 from P to Q, where

P, €S. The relation, "connected", is an equivalence relation,
It partitions S into equivalence classes. These classes are

colled the connected components of S. 1In the same way, we can

define connected components of S. Clearly, exactly one component
of S contains the border of Z . This component is.called the
background of S; all other components of S are called cavities of
S'

Now, let N27(P) denote the 26 voxels in 3x3x3 neighborhood
of P excluding P itself.

Definition 1.1. Let P be a voxel of sS. P is called a

removable voxel if the following (i)-(iv) are satisfied:

(i) SAN,7(P) has the same number of components (in the S
sense) as (SAN,7(P)) Y{P] . ' , |

(ii) Sf\N27(P) .has the same number of components (in the §
sense) as (S NNy7(P)) U{P} .
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(iii) SAN,5(P) has the same number of holes as
(SAN,7 (P {p} . |
(iv) SAN,4(P) has the same number of holes as

(S qN27(2) Y{p} .

In (iii) of above definition, the hole in SPANy4(P),
(Sr\N27(P))\J{P} mean an object which corresponds to a torus of
the Euclidean space. (Figure 2 shows a torus in 2D case. The
hole in the above definition means the 3D version of Figure 2.)
For (iv), this situation is similar.

From this definition, we know that the removable voxel is
the same as the simple point of 3D (see [5]). For this simple
point, it has been shown that removal of a point preserves
topology (in the 3D sense) — the number of objects and holes,
and cavities — if and only if the point is simple.

Here, we consider characterization of holes for the general
case. Even in ordinary topology it is difficult to do it. An
object is defined to have no hole if every simple closed curve
{in 3D) in the object is continuously deformable (remove and
addition of‘simplé points) within the object to a single point.

Now, we define a new connectivity relation among objects
with a hole. Then, we can build an object without hole by adding
some Pi's. This part which consists of added voxels mentioned
above is called the inside of hole. Obviously, the inside of

hole is not unique.

Definition 1.2. Let Sq and S, be two objects with a hole of

the same 3D digital picture ¥ . S; and S, is called separate if
and only if there exist insides of S, and S, which do not meet.

Otherwise, Sq and'Sz\are connected in a chain-like style.

The above definition is for two objécts S1 and 32, We

extend this definition to the general case.

Definition 1.3. Let S and R be two objects with hole. -Then,

S and R are connected in a chain-like style if and only if there
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exists a sequence S;3,S4,...,S, satisfying the following

conditions:

In particular, a single object with hole is connected in a
chain-like style.

The chain-like connectivity is obviously reflexive,
symetric, and transitive.,

In the next section, we consider a problem of recognition by
an acceptor.

A 3D finite automaton (FSA) is defined as follows:

Definition 1.4. A 3D finite automaton is a triple (Q, V, ),

where ‘

Q is the set of states,

V is the set of symbols,

§ :0xV — 2QxVxA4 (or —> QxVxA, in the deterministic case) is
trasition function, and A = {L,R,F,B,U,D,N} is the set of
movedirections ("left", '"right", "front", "back", "up",

"down", and "no move").

Definition 1.5. A 3D finite state acceptor is a triple

A=(M, gg, Qp), where M is a 3D finite state automaton, qg is M's
initial state, and Qp is a set of accepting states.

A configuration of acceptor and acceptance of a‘3D input
tape are defined in the usual way.

A 3D tape-bounded automaton M is defined as follows:

M "bounce off" #'s, so that it is essentially confined to the
non-# portion of its input tape. Especially, we require that if
M has just moved in direction d and read the symbol #, it must
not rewrite the # as anything else, and must move inv the opposite

direction.
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Definition 1.6. A 3D one-pebble acceptor A(1) is a 3D tape-

pounded finite state acceptor whose state set Q and vocabulary V
are of the special forms ’

0=0'x {o,1} ,

v=(v'x { 0,1} HUfs] ,

and whose transition function & satisfies the following
restrictions: If state (gq,uq) and symbol (wg, v4) give rise to
state (g, uy) and symbol (wyp, vy), where evéry u and v is 0 or
1, then wy=wq and only the following combinations of (uq, vq,
Uy, V,) are possible: (0,0,0,0), (0,1,0,1), (0,1,1,0),
(1,0,1,0), and (1,0,0,1). '

2. Unacceptability of a chain-1like connectivity by a 3D one-

pebble acceptor. '

In this section, we show that any 3D one-pebble acceptor
cannot determine a chain-like connectivity.

First of all, we consider a 3D picture Z with 7 units in
thickness. So, for some m,

T o= {00 | 1¢i,3me2, 1k}

Figure 3 represents . Here we define two defferent 5x5x5
patterns as shown in Figure 4a-b. Then, consider arbitrary n by
n‘matrix of those 5x5x5 patterns (see Figure 5). Adjacent local
patterns are 6-connected as shown in Figure 4c-d. Note here that
each local pattern consists of two disconnected (in normal
~definitions) objects. ’ o
‘ Now, suppose that 3D picture L contains the patterns of
Figure 5 having 7 units in their thickness (i.e., the top and
bottom plane form some parts of ¥.'s border). Then, we check the

behaviors of 3D deterministic finite-state acceptor on 3D picture

.

Lemma_ 2.1. Let S be the set of all reétangular
parallelopipeds represented in Figure 5. Then, anyv3D
deterministic finite-state acceptor A partition the set S into at
most (14On|Q|+T)14Q|Q| equivalence classes, where |Q|is the
number of states of acceptor A.



Proof: Since 3D acceptor A is deterministic finite-state, the
number of the equivalence class generated depends on the
enterning, leaving positions and the states of A only. There are
4x7x5nx |Q] possible enterning configulations (i.e., the surface
area of an element of S by the number of states of A). There
also exist 4x7x5nx|Q| plus one possible leaving configulations
({including the case where A does not leave). Thus, the number of
the possible combinations of enterning and leaving configulations
are (140n]Q|+1)140n'Ql. Therefore, any 3D deterministic finite-
state acceptor can partition the set S8 into at most

(14On|Q|+1)140n|Q‘ equivalence classes.
Now, we prove the main theorem of this paper.

Theorem 2.2. Any 3D deterministic one-pebble acceptor cannot

determine the chain-like connectivity of arbitrary given digital
picture. ‘

Proof: Consider the set T of the patterns represented in
Figure 6. Let the hatched parts of its elements are the elements
of S defined in Lemma 2.7. On the other hand, the outer parts
have a fixed pattern. Suppose here that there exists a 3D
deterministic one-pebble acceptor A(1) yhich accepts an element t
of T if and only if t has connected objects in chain-like style.
Without loss of generality, we can assume that Al1Y) has a
physical marker, and Al1) starts its accepting behavior at the
upper-north-west corner of the elements of T. It is obvious that
the accepting behaviors of all) depend on the patterns of
central parts. Now, let A(1)'be the acceptor which is get from
the acceptor all) by taking away the maker from all), Obviously,
A(1)' is a 3D deterministic finite-state acceptor. So, from the
result of Lemma 2.1, it partitions the set T into at most
(14mﬂQLH)14m”Q| equivalence classes. We call these
equivalence classes A(15—equivalence classes. On the other hand,
the set T has 2"° eclements since there are 2n% patterns of the
central part. Since 2n2 > (140le|+1)140n|Ql for sufficient1Yi

large n, the largest equivalence class of A(1V has at least
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20"/ (140nlo|+1)140n 0| |
dlfferent rectangular paralleloplpeds. A1) starts at upper-
north-west corner of these two different rectangular
parallelopipeds with its maker. Then, A1) carries its maker
into central part in one of 140n|Q|ways. Now, let us define any
two A(1&—equivalent 3D pictures of T are A(1?—equivalent provided
that A(M) carries its maker into central parts and brings it back
in the same way for both pictures. Then, at least one‘of these

(1? -equivalence classes has /

2n% / (140n]|) (140n o] +1)140n IQl
elements. Now, con51der any different 3D pictures‘x1, yq of an
A(11—equivalence class. To distinguish these pictures, Al1) nmust
bring its maker into central part at 1east'two times in one of
(140le|)(140n]Q|—1) ways‘since if A(1) carries its maker in the
same way for both times, it falls into cycling. By the same
argument as above,‘at least

-/ (140n|Q|)(140n|Q|—1)(14On|Q[+1)140n!Q'
elements are A(1% -equivalent.
Continue in this way, .there are

on? (14On|Ql)1(140n|Q]+1)140n’Ql
3D pictures of T which are A(214On)Q|N -equivalent. For a
sufflclently large n, we have 2@ >(140n]Q])'(14On|Q|+1)(140n|Q|
Then, 2n /(14On|Q|)'(14Olel+1)(140le')>1 for such n. However,
al1) cannot carry its maker into the central part more than
(140n]Ql)' times without cycllng. Here, let us con51der two
different elements t1, ty, in a A(814Olelw-equ1valence class.
Note that there exists at least one pair of corresponding 5x5x5
local patterns of thelr central parts which are different each
other (see, Figure 7) For any palr of such plctures, we can
construct a new outer pattern such that t, has connected objects
in the chain- llke style,‘but t2 has no such objects. We cail
rthese new 3D plctures t' 1 and " 2 (see Flgure 8) Note here that
y'q and y' 2 are still all 2140n‘Q|)' equlvalent " Therefore, if
YA(T) accepts t! 17 it also accepts t' 2e It is a contradlctlon.
Thus, we have thlS theorem. ‘
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From Theorem 2.1, we have easily the following corollary:

Corollary 2.2. A 3D FSA cannot determine the chain-1like

connectivity.

3. Remarks

It has been shown that a 3D one;pebble acceptor cannot
recognize the chain-like connectivity. By the similar argument,
it is easily shown that one-pass parallel/sequential acceptor
given in [3] cannot recognize this connectivity. It is shown
without difficulty that a 3D tape-bounded acceptor can accept
this set. How is a situation for a 3D two-pebble acceptor ?
This question seems to be interesting. We will treat this

problem at further papers.
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