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THETAS AND THEIR DIFFERENTIAL EQUATIONS
by Iacopo Barsotti (Padova)

I'll present a method for introducing theta functions by a local de-
finition, hence unencumbered by periods; it leads, in turn, to diffe-
rential equations (nonlinear of course) which have all and only the-
ta functions as solutions; the method works in any characteristic,
but I'll stick to characteristic zero (the diff. eguations part for
charact. p is still under construction, since differertial algebra

is ruefully inadequate).

Let k be an algebraically closed field of characteristic zero,
and let A be a commutative group-variety of dimension n over k, con-
nected and with degeneration locus Ad; the variety is, of course,
projective, and Ad' of pure dimension n-1, is the set of the points
of A which do not belong to the group. If C = k(A), the composition
law p: AxA —> A has a "dual" P: C —> Q(C ® C) = quotient field
of C(Ek C, which is a coproduct and turns C into a cocommutative
hyperfield. Let R be the completion of k(0/A) = local ring on A of
the zero point O, and let w;, for i =1, ..., n, be a k-basis for the
invariant differentials on A (they are of the first kind if A is abe-
lian); when C is embedded in Q(R), the ¢'s become exact, and have in-
tegrals uy which can be selected in R’ = maximal prime of R; then
Uyr eeer Uy form a reqgular set oﬁ parameters of R, and R = k{u] =
ring of power series in the u's, with coefficients in k and nonnegati-
ve integral exponents. Call'dl,,..., dn a k-basis for the invariant

derivations on A dual to u u d.u, = 9., (more simply,
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di = D/Dui),'and let m £ n be a positive ihteger such that there exi-

st elements cij ¢ k with the property that the constant field, in C,
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for the existence of the cij is that A have no direct factor which is

for the derivations di = 35 c,.d, (i =1, ..., m) is k [the condition
: < ,

the product of more than m additive lines]; and finally consider the
homomorphism of k ju] into k{ui, ++» ur] which sends uy into

%3 cijui. Because of the choice of the di, this homomorphism can be
restricted-extended to an isomorphism of C into Q(k{u']), and I shall
consider C so embedded; the original di' u; are abandoned, and the a-
)/Dui. The

u. (but I'1l

, . . e 3
pex is dropped from di, uj: C«< Q(k{ul, ceevou 1), 4,

l -
ring k {u]l has a coproduct P given by lPui = ui@ 1+1 @ i



rather
use u — u+v), and this P induces in C its own P (because the u's

are invafiant integrals).
Now let X be a divisor on A, without components on the
degeneration locus, and whose support does not contain O (unnecessary

but convenient condition). On A XA consider the divisor

Y = X125y o -2X,-X,-X_,, where the symbollsm is as follows:

AxA —— A gives X ¢é&— X; AXA —> AxA —> A glves
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X, _, =— X (v is the identity mapping); X, = XxA, X, = BxX,
,

X_2 = A x (div-t)X. Then Y ~ 0 (linearly equivalént to zero), as a

particular case of the theorem of the square: set Q = -P in

fb+QX - X - Fbx + X ~ 0. Hence thereis a g(u, v)e

QIC®C)akfu, vl ¢ O(kju] ® k{v]) o k{u, vl such that divAx‘Ag =Y
and we can require g(0, 0) = 1. By looking at the divisors, on A xA,

of both sides we can verify that
(1) g(u+w, v)g(u-w, V)gz(u, v) = g(u, v+w)g(u, v-w)gl(v, wig(-v, w).

I claim that a g(u, v) € kju, v] which satisfies (1) must
"split"; namely, there must exist a Jqu) e k jul (and we require
710) = 1) such that

glu, v) = JYu+V)JYu—V)/32(u)JnV)JW—V)-

The proof is achieved by applying dﬁdsds to the logéi}thm of (1),
with q, r, s multiindices, and by setting u = v = beihis gives
relations among the coefficients in the power series g(u, v), and
the conclusion follows easily. Well, Jku), from now on denoted by
#&(u), is the theta type of X, or the theta of X when m = n; moreover,
+/'is holomorphic (which means that X is effective) if and only if
glu, v) ¢ ktu] ® k{v]. Naturally, when k = €, m.= n, A is abelian,
and X is effective,-ﬁk(u) is the classical theta function whose set
of zeroes has, on A, the image X.

The next task is to define a theta type a priori, without A and
X; it is enough.  to turn the tables: Jﬁul, ey um) ¢ kjiu] is a theta

type if it satisfies the prosthaferesis formula

(2) JYu+v)JYu—v) ¢ Qlkjul ® k{v]);

it is holomorphic if it satisfies the holomorphic prosthaferesis,
which is the same (2) without Q. The sequence of consequences of
this definition is as follows:

A. Because of (2), the ratios of the coefficients (belonging to kju])

of the left-hand-side of (2), seen as a power series in the v's, to
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one of them, say172(u), generate, over k, a finitely generated
field C.
B. The field C is generated, over k, by (finitely many) iterated
derivatives, from second derivatives on, of logiﬁu), after assuming
J) = 1. :
C. The field € is a cocommutative hyperfield with respect to the P
of kful: PC ¢ Q(C®C).
D. Hence C = k(A) for a commutative group-variety A.
E. g(u, v) = JYﬁ+v)gYu—v)/32(u)ﬂYv)JQ-V) e Q(C ® C), and there esists
a divisor X on A such that X12+Xl,_2-2X1—X2—X_2 = divAx adi we say
that X = div . ' ‘
F. V=

A pléasant surprise is that any A} other than those with a di-
rect factor which is the product of at least 2 additive lines, can be
reached in this manner when m = 1. We shall accordingly use u for
just one argument, and look more closely at the holomorphic prostha-
feresis formula: '

(3)  Jutv)V(u-v) e kful ® k{vl.

The absence of Q (which was present in (2)) permits to say more than
just the finite generation of the field C; it permits to say that
the ratios of coefficients mentioned in point A above form a finite
~dimensional vector space P over k; this is actually a necessary and
sufficient condition for the validity of (3). Let's then have a clo-
ser look at these ratios: set J; = (r!)_ldrlogx?x let Yor Ygqr --- be
indeterminates, and set

P, (¥) ==§3 2|j‘—1y;ly22...y;;, where |j| means Zi 3
and j ranges over all the multiindices (jl, ooy jr) such that
ji 2 0 and jl+2j2+...+rjf = r. Then P is generated, over k, by fini-
tely many among the PZr(ﬁs = P2r($5, JZ, ceey J&r)'

It is now clear what the differential equations defining theta
types are: just express each P2r' when r is outside a certain finite
set N, as a linear combination with coefficients in k of the st
for s ¢ N; this provides infinitely many differential equations, or-
dinary, nonlinear, in Jr(actually in J;); but --really any one of
them can be so considered, the others becoming initial conditions; a
posteriori, only finitely many of them are needed, so that the remai-
ning ones are either redundant or incompatible. If one wants equations

which will give all possible theta types whose spacés P are generated
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by the P2rvwith r € N, we can simply write the equations which ex-
press the vanishing of the wronskians of all the sets

{PZi' ie NaJ{j}} when j ranges over the nonnegative integers not
in N.

The theory provides all the usual trimmings of commutative group
-varieties, such as their Picard variety, the maximal algebraié sys-
tems of divisors on them, and so on. I may mention two a posteriori
connections with other theories:

1). By taking m = 3 instead of = 1 (in which case the P's will
have 3 indices), a necessary and sufficient condition in order that
A (abelian) be a jacobian with "theta divisor" X is. that X be irredu-
cible, and that k(A) = k(J;, J}, ...). for a suitable kaor which the
following linear relation among the P???(Jj obtains:

12P, g9 + 3Pgyq ~2P1g) * CBpgg = O for some c & k.

This, of~course, is not proved withih the framework of the theory
(but it would be desiderable to so prove it): it is a translation into
my symbolism of the K dV equation [8].

2). In [9) one can find, after a suitable interpretation, the
definition of a k-bilinear mapping Z'oflcuﬂ ® k fu] into k{ul rela-
ted to a given polynomial A, with coefficients in k, in the inva-

riant derivations di = 3/Dui; the definition is as follows:
Algoy) = 16 )1 @A) [¢udl + 1eu) yuEl - 1®u)], where

~S
¢ is the natural mapping of kf{u] onto k: ef(u) = £(0). This Ais
related to the P2r by:

N
_ 1y-19-2 2r .
P, (F,, Fy, -eePh) = (/2) (@b TR T2 @F ey,
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