A Quantitave Version of the Schneider-Lang Theorem

By Noriko HIRATA (平田 典子)
Ochanomizu Univ.

§1. Introduction

We begin with the result of Hermite and Lindemann which implies the transcendence of e and π . Secondly, we refer to the Gel'fond-Schneider theorem, that is the solution of the seventh problem of Hilbert, settled in 1934. Next, we state the Schneider-Lang theorem, and we show how this result contains the Hermite-Lindemann theorem and the Gel'fond-Schneider theorem. Finally, here, we give a quantitative version of the theorem of Schneider and Lang.

Let us recall the above theorems.

Theorem (Hermite-Lindemann). Let α be a non-zero algebraic number, then e^{α} is a transcendental number.

Theorem (Gel'fond-Schneider). Let α and β be algebraic numbers. Assume that $\alpha \neq 0$, $\alpha \neq 1$, and that β is not rational.

Let $\log \alpha$ be any determination of the logarithm of α . Then $\alpha^{\beta} = \exp(\beta \log \alpha)$ is a transcendental number.

Important examples of numbers whose transcendence follows from these theorems are e^{π} and $2^{\sqrt{2}}$. Gel'fond's proof was based on the following ideas. If we suppose $\log \alpha_2 = \beta \log \alpha_1$ with an irrational algebraic number β and algebraic numbers α_1, α_2 (# 0, 1), then the two functions $\alpha_1^z = e^{z \log \alpha_1}$ and $\alpha_2^z = e^{z \log \alpha_2} = e^{z \beta \log \alpha_1}$ take algebraic values at all integer points. Moreover, their derivatives with respect to the derivation operator $\frac{1}{\log \alpha_1} \frac{d}{dz}$ at all integer points are also algebraic.

We can construct a non-zero polynomial P $\in \mathbf{Z}[X_1,X_2]$ such that the function $F(z) = P(\alpha_1^z,\alpha_2^z)$ vanishes at several integer points with a high order, and after that we show that F has more and more zeroes, finally, $F \equiv 0$, which is a contadiction to the algebraic independence of the two functions α_1^z and α_2^z because β is not rational.

We now mention the following general result.

Theorem (Schneider-Lang). Let K be a number field and let f_1,\cdots,f_h be meromorphic functions. We assume that f_1 and f_2 are algebraically independent over \mathbf{Q} , and of order at most

The order of an entire function f is

$$\lim_{R\to\infty} \frac{\log \log |f|_R}{\log R}$$

and if a meromorphic function can be written as quotient of two entire functions of order $\leq \rho$, then it is called a function of order $\leq \rho$.

We obtain the theorem of Hermite-Lindemann as a corollary to this theorem by setting K = $\mathbf{Q}(\alpha, \mathbf{e}^{\alpha})$, h = 2, $\mathbf{f}_1(z) = z$, $\mathbf{f}_2(z) = \mathbf{e}^z$, $\rho_1 = 0$, $\rho_2 = 1$. Secondly, when K = $\mathbf{Q}(\alpha_1, \alpha_2, \beta)$, h = 2, $\mathbf{f}_1(z) = \mathbf{e}^z$, $\mathbf{f}_2(z) = \mathbf{e}^{\beta z}$, $\rho_1 = \rho_2 = 1$, we deduce Gel'fond-Schneider theorem from this theorem immediately.

This upper bound $(\rho_1 + \rho_2)[K:Q]$ is sometimes the best possible (the functions z and $\exp(z(z-1)\cdots(z-k+1))$ take integer values at k points).

The Gel'fond-Schneider theorem shows that if we take any distinct complex numbers w_1,\cdots,w_m with $m>(\rho_1+\rho_2)[K:\mathbf{Q}]$ then at least one value $f_i(w_\mu)$ (1 \le i \le h, 1 \le μ \le m) doesn't belong to K. We deduce from this property that the sum

$$\begin{array}{ccc}
h & m \\
\sum & \sum \\
i=1 & \mu=1
\end{array} | f_i(w_{\mu}) - \alpha_{i\mu}|$$

is not zero where $\alpha_{\, i\mu}$ are any algebraic numbers in K. Here, we give a lower estimate to this sum in terms of heights ${\rm H}(\alpha_{\, i\mu})$ of $^{\alpha}{\rm i}_{\, i}$.

§2. Statement of result

Theorem. Let K be a number field and let f_1, \dots, f_h be meromorphic functions. We assume that f_1 and f_2 are algebraically independent over \mathbf{Q} , and of order at most ρ_1, ρ_2 respectively. We assume further that the ring $\mathrm{K}[f_1, \dots, f_h]$ is stable under the derivation $\frac{\mathrm{d}}{\mathrm{d}z}$. We take any distinct complex numbers w_1, \dots, w_m which are not poles of f_1, \dots, f_h with $m > (\rho_1 + \rho_2)[k:\mathbf{Q}]$ and $w_1 = 0$. Suppose also that $f_i(0) \in \mathrm{K}(1 \le i \le h)$. We denote by d the maximum of the total degrees of A_i where $\frac{\mathrm{d}}{\mathrm{d}z} f_i = A_i(f_1, \dots, f_h)$, $A_i \in \mathrm{K}[X_1, \dots, X_h]$ for $1 \le i \le h$. Put $\delta = [\mathrm{K}:\mathbf{Q}]$ and

$$\kappa_0 = \frac{2^{h}(d-1)(\delta-1)(\rho_1+\rho_2)}{m-\delta(\rho_1+\rho_2)}.$$

Then for all K > K_0, there exists an explicit number H_0 such that if we take any algebraic numbers $\alpha_{i\mu}$ (1 \leq i \leq h, 1 \leq μ \leq m) in K, then we have

$$\sum_{i=1}^{h} \sum_{\mu=1}^{m} |f_i(w_{\mu}) - \alpha_{i\mu}| \ge \exp(-H^{\kappa})$$

where $H = \max (H(\alpha_{i\mu}), H_0)$.

Remark. We deduce from this theorem the following result which is mentioned by D.W.Masser in [M]: For any $_{\epsilon}$ > 0 there exists a number m $_{0}(\epsilon)$ such that for all m > m $_{0}(\epsilon)$ we have

$$\sum_{i=1}^{h} \sum_{\mu=1}^{m} |f_i(w_{\mu}) - \alpha_{i\mu}| \ge \exp(-H^{\epsilon}).$$

The above theorem gives to Masser's $\mathbf{m}_0(\epsilon)$ an explicit value, namely

$$m_0(\varepsilon) = \frac{2^h(d-1)(\delta-1)(\rho_1+\rho_2)}{\varepsilon} + \delta(\rho_1 + \rho_2).$$

§3. Outline of the proof

We assume

(1)
$$\sum_{i=1}^{h} \sum_{\mu=1}^{m} |f_{i}(w_{\mu}) - \alpha_{i\mu}| < \exp(-H^{\kappa})$$

and we shall get a contradiction. Let ℓ be a sufficiently large integer. Without loss of generality we may assume H >> H_0 where H_0 is sufficiently large with respect to ℓ . Put

$$U = H^{\kappa}$$
, $T = H^{\kappa/2}^{h}$, $L_1 = \ell T^{\rho_2/(\rho_1 + \rho_2)}$, $L_2 = \ell T^{\rho_1/(\rho_1 + \rho_2)}$.

Step 1. Construction of algebraic numbers $\alpha(\lambda_1, \lambda_2, t, \mu)$

We can write

$$\frac{d^{t}}{dz^{t}} f_{1}^{\lambda_{1}} f_{2}^{\lambda_{2}} = Q_{\lambda_{1}, \lambda_{2}, t}(f_{1}, \dots, f_{h})$$

where $Q_{\lambda_1,\lambda_2,t}$ is a polynomial with coefficients in K (0 $\leq \lambda_1$ <L₁,

 $0 \le \lambda_2 < L_2$, $0 \le t$), using the differential equations of f_i ($1 \le i \le h$). Define

$$\alpha(\lambda_1,\lambda_2,\mathsf{t},\mu) = Q_{\lambda_1,\lambda_2,\mathsf{t}}(\alpha_{1\mu},\cdots,\alpha_{h\mu}).$$

Then for 0≤t<T we get

$$\left| \frac{d^{t}}{dz^{t}} f_{1}^{\lambda_{1}} f_{2}^{\lambda_{2}}(w_{\mu}) - \alpha(\lambda_{1}, \lambda_{2}, t, \mu) \right| < e^{-\frac{1}{2}U}$$

by the hypothesis (1).

Step 2. Construction of an auxiliary function F

We consider the linear system

$$\sum_{\lambda_1} \sum_{\lambda_2} p_{\lambda_1 \lambda_2} \alpha(\lambda_1, \lambda_2, t, \mu) = 0$$

for $0 \le \lambda_1 < L_1$, $0 \le \lambda_2 < L_2$, $0 \le t < T$, $1 \le \mu \le m$ of Tm equations in L_1L_2 unknowns $p_{\lambda_1\lambda_2}$. This system has coefficients

in K and we get a non-trivial solution by the choice of L_1 and L_2 . Siegel's lemma gives that

$$\max_{\substack{0 \leq \lambda_1 \leq L_1 \\ 0 \leq \lambda_2 \leq L_2}} \log |p_{\lambda_1 \lambda_2}| < \frac{1}{\ell} T \log T + O(T).$$

Put

$$F = \sum_{\lambda_1, \lambda_2} p_{\lambda_1 \lambda_2} f_1^{\lambda_1} f_2^{\lambda_2}(z).$$

Step 3. Upper bound of the order of zeroes at the origin

Liouville's theorem implies that $f_i(0) = \alpha_{i1}$ for all $1 \le i$ $\le h$ because $f_i(0)$ is algebraic. From this, we have

$$\frac{d^{t}}{dz^{t}} F(0) = \sum_{\lambda_{1}, \lambda_{2}} \sum_{\lambda_{1}, \lambda_{2}} \alpha(\lambda_{1}, \lambda_{2}, t, 1) = 0$$

for $0 \le t < T$, that means ord z=0 $F \ge T$.

Let \mathbf{T}_1 be the smallest integer such that there exists 1 $\leq \mu_0 \leq$ m with

$$\sum_{\lambda_1,\lambda_2} p_{\lambda_1\lambda_2} \alpha(\lambda_1,\lambda_2,T_1,\mu_0) \neq 0.$$

By the algebraic independence of f_1 and f_2 , we can deduce from the theorem of Brownawell and Masser ([B-M])

$$\operatorname{ord}_{z=0} F \leq (dl^2 T)^{2^{h-1}},$$

so we have

$$T_1 \leq (d\ell^2 T)^{2^{h-1}}$$
.

Step 4. Contradiction

We can estimate the derivatives of F:

$$\log \left| \frac{d^t}{dz^t} F(w_{\mu}) \right| < -\frac{1}{3}U$$

for $0 \le t < T_1$, $1 \le \mu \le m$.

Then using the residue formula, we have

$$\log |F|_{r} \le (\frac{1}{\ell} - \frac{m}{\rho_1 + \rho_2})T_1 \log T_1 + O(T_1)$$

for
$$r = 1 + \max_{1 \le \mu \le m} |w_{\mu}|$$
.

Put

$$\gamma = \sum_{\lambda_1, \lambda_2} p_{\lambda_1 \lambda_2} \alpha(\lambda_1, \lambda_2, T_1, \mu_0)$$

which is not zero. As above we can estimate the \mathbf{T}_1 th derivative of \mathbf{f} :

$$\log \left| \frac{d^{T_1}}{d^{T_1}} F(w_{\mu_0}) - \gamma \right| < -\frac{1}{3}U.$$

Then we get

$$|\gamma| \le \left| \frac{d^{T_1}}{dz^{T_1}} F(w_{\mu_0}) \right| + \left| \frac{d^{T_1}}{dz^{T_1}} F(w_{\mu_0}) - \gamma \right|$$

$$\le T_1^{T_1} |F|_r + e^{-\frac{1}{3}U},$$

hence we obtain

$$\log |\gamma| \le (1 + \frac{1}{\ell} - \frac{m}{\rho_1 + \rho_2})T_1 \log T_1 + O(T_1).$$

However we get by the size inequality

$$\log |\gamma| \ge -(\delta - 1)(1 + \frac{1}{\ell} + \frac{2^{h}(d-1)}{\kappa})T_{1} \log T_{1} + O(T_{1})$$

then we arrive at the contradiction:

$$\kappa \leq \kappa_0 = \frac{2^{h}(d-1)(\delta-1)(\rho_1+\rho_2)}{m-\delta(\rho_1+\rho_2)}.$$

(Q.E.D.)

References

- [B-M] W. D. Brownawell and D. W. Masser, Multiplicity estimates for analytic functions II, Duke Math. J., 47 (1980), 273-295.
- [M] D. W. Masser, Some recent results in transcendence theory, Astérisque 61 (1979), Soc. Math. France, 145-154.
- [W] M. Waldschmidt, Nombres transcendants, Lecture Notes in Math., 402, Springer-Verlag, Berlin/Heidelberg/New York, 1974.