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A Quantitave Version

of the Schneider-Lang Theorem

By Noriko HIRATA (£H HF)

Ochanomizu Univ.

§1. Introduction

We begin with the result of Hermite and Lindemann which
implies the transcendence of e and 7. Secondly, we refer to
the Gel'fond-Schneider theorem, that is the solution of the
seventh problem of Hilbert, settled in 1934. Next, we state
the Schneider-Lang theorem, and we show how this result con-
tains the Hermite-Lindemann theorem and the Gel'fond-Schneider
theorem. Finally, here, we give a.quantitative version of the

theorem of Schneider and Lang.
Let us recall the above theorems.

Theorem (Hermite-Lindemann). Let a be a non-zero algebra-

, [0
ic number, then € is a transcendental number.

Theorem (Gel'fond-Schneider). Let o and B be algebraic

numbers. Assume that o # 0, a # 1, and that B is not rational.
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Let log o be any determination of the logarithm of a-. Then

uB = exp(B log a) is a transcendental number.
Important examples of numbers whose transcendence follows
from these theorems are e" and 2/2. Gel'fond's proof was based

on the following ideas. If we suppose 1log a, = B log 0 with

an irrational algebraic number B and algebraic numbers aqr0

2
z z log m1‘ ”
(# 0, 1), then the two functions a; = e and ay =
z log a, zB log ay :
e = e take algebraic values at all integer
points. Moreover, their derivatives with respect to the
. . 14 . .

derivation operator Tog o az at all integer points are also

algebraic.

We can construct a non-zero polynomial P ¢ Z[X1,X2] such that

the function F(z) = P(a?,ag) vanishes at several integer

points with a high order, and after that we show that F has

more and more zeroes, finally, F = 0, which is a contadiction
VA z

to the algebraic independence of the two functions ) and ay

because B is not rational.
We now mention the following general result.
Theorem (Schneider-Lang). Let K be a number field _and

let f,l,---,fh be meromorphic functions. We assume that f1 and

f2 are algebraically independent over Q, and of order at most
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p1,p2 respectively. We assume further that the ring
d
K[f1,"‘,fh] is stable under the derivation F;+ Then the set

of complex numbers W, which are not poles of f1,';':fh and such

A

that fj(W) € K for 1 = 3 h  is finite with at most

(01 + 02)[K2Q] elements.

The order of an entire function f is

log log |f|R
log R

lim sup
R

and if a méromorphic function can be written as quotient of two
entire functions of order = p, then it is called a function of
order £ p.

We obtain the theorem of Hermite-Lindemann as a corollary
to this theorem by setting K = Q(a,e%), h = 2, £,(2z) = z, £,(2)
= e”, p; =0, p, = 1. Secondly, when K = Q(aj,a,,8), h = 2,
f1(z) = e?, f2(z) = eBz, Py = Py = 1, we deduce Gel'fond—
Schneider theorem from this theorem immediately.

This upper bound (p1 + pz)[K:Q] is sometimes the best

possible (the functions 2z and exp(z(z-1)--+(z-k+1)) take

integer values at k points).

The Gel'fond-Schneider theorem shows that if we take any :
distinct complex numbers Wypttt W with m > (p1 + pz)[K:Q]
then at least one value fi(wu) (1<ish, 1spsm) doesn't belong to

K. We deduce from this pfoperty that the sum
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h m
DI If,G0) - oy |
i=1 y=1 1 H 1H
is not zero where uiu are any algebraic numbers in K. Here, we

give a lower estimate to this sum in terms of heights H(aiu) of

Otlu-

§2. Statement of result

Theorem. Let K be a number field and let f1,"',fh be
meromorphic functions. We assume that f1 and f2 are algebrai-
cally independent over Q, and of order at most 01,02 respec-
tively. We assume further that the ring K[f1,-'°,fh] is stable

d
under the derivation dz- We take any distinct complex numbers

Wi,°**,W  which are not poles of f,,---,f ~with m >

(p, + p,)[k:Q]l and w, = 0. Suppose also that f£.,(0) € K
1 2 1 i

(1zish). We denote by 4 the maximum of the total degrees of A,

i

where g_z' fi = Ai(f‘l'...’fh)’ Al € K[X1f"',xh] for 1 £ i £ h.

Put & = [K:Q] and

2P(a-1)(8-1) (o, +p,)
K =
0 mfé(p1+p2)

Then for all K > Kor there exists an explicit number H0 such

that if we take any algebraic numbers aiu (1=2ish, 1susm) in K,

then we have

h m K
f. - . 2 -H
121 uZ1 | 1y) = ey exp! )
where H = max (H(aiu), HO)'
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Remark. We deduce from this theorem the following result
which is mentioned by D.W.Masser in [M]: For any ¢ > 0 there
exists a number mo(s) such that for all m > mo(g) we have

h m

X ) lfi(wu) - O

exp(-HY).
i=1 u=1 TH

l

[1\%

The above theorem gives to Masser's mo(g) an explicit wvalue,
namely

2%(d-1) (8-1) (0, +p,)

mo(e) = + 6(p1 + pz).

€
§3. Outline of the proof
We assume
h m K
(1) YooY |fi(w) - o, | < exp(-H")
i=1 p=1 1 M 1H

and we shall get a contradiction. Let 2 be a sufficiently
large integer. Without loss of generality we may assume H >>
HO where HO is sufficiently large with respect to 2.

Put

h 0,/ (p1+p,)
u =8, T =g/2 , L.o=gT 2 172

p1/ (oqy+0y)
] T

’ L2=/Q,

Step 1. Construction of algebraic numbers a(l1,A2,t,u)

We can write
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t £ £ - Q)\1l>\21t(f1'...'fh)

where Q is a polynomial with coefficients in K (0z)x,<L.,
A1'A2,t 1 1

O§A2<L2, 0zt), using the differential equations of fi (1=zizh).
Define

Q(A1IA2,t,u) = QA1,A2't(u1ul."1ahu)o

Then for 0st<T we get

: 1
t A A -=U
d 1 2 2
t f1 f2 (wu) - Q(A11121tlU) < e
dz
by the hypothesis (1).
Step 2. Construction of an auxiliary function F
We consider the linear system
Z z p}\ A Q-()\»I‘l}\zrtll-l) =0
Ay A 172
1 72
for 0 = A1< L1, 0 = Az < L2, 0 =t <T, 1T = usm of Tm

equations in L1L2 unknowns Py A This system has coefficients
172

in K and we get a non-trivial solution by the choice of L1 and
L,. Siegel's lemma gives that

< 1 T log T + O(T).

max log |p |
05A; <L, MAgh L
0§x2<L2
Put
A A
F=7 P, . T £,°(2).
X1 AZ 172
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Step 3. Upper bound of the order of zeroes at the origin

Liouville's theorem implies that fi(O) = 0y for all 1 s i
< h because fi(O) is algebraic. From this, we have

t
g—F(O) =)
A

T u(k1,A2,t,1) =0
dz

I p
A A
; Ay 172

for 0 = t < T, that means ordz_0 Fz T.

A

Let T, be the smallest integer such that there exists 1 = Mg

1

m with

Z Z p)\ A 0"()\11>\2iT1rU0) # 0.
A1 AZ 172

By the algebraic independence of f1 and f2, we can deduce from
the theorem of Brownawell and Masser ([B-M])

h-1
20,2
ord _, F s (@‘m)*

so we have

< (@’m? .
Step 4. Contradiction

We can estimate the derivatives of F:

t .
d 1
log |—— F(w )| < - 35U
dzt H 3

for'O§t<T1,1§u§m.

Then using the residue formula, we have

m
p-] +pz

log |F|, s (% - )T, log T, + O(T,)

1
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for r = 1 + max |w
1spsm

Put

Yy =1 I Py, ald Ay T,ug)
Xy Ay 12

which is not zero. As above we can estimate the T1th deriva-

tive of f:

T
! 1
log T, F(WUO) - y| < - 30
dz
Then we get '
dT1 dT1
vl s S Fw )| + |S= Fw ) -y
1 Ho 1 Ho
dz dz
T1 —%U
< T1 ]Flr + e ,
hence we obtain
. 1 m
log |y] s (1 + + - )T, log T, + O(T,).

2 P1+P5 1

However we get by the size inequality

: h
1 2 (d-1)
log |y| 2 - (8 - (1 + ¢+ ~=2)T, log T, + O(T;)
then we arrive at the contradiction:
2"(a-1) (6-1) (o +0,)
K =Ko T m-§(p,+p,) ’
(Q.E.D.)
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