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Note on central extensions and Leopoldt’s conjecture

ﬁin& HmHzE | Yoshiomi Furuta )

Introduction
Let k be an algebraic number field of finite degree, and

92 be a prime number. Throughout this paper, we always assume

(x) /-1 € k when @ = 2.

We denote by G(K/k) the Galois group of a Galois
extension K/k. Denote by k(l) the maximal gf-extension of k
unramified outside 4. Then it is well-known that Leopoldt’s
conjecture for k and ¢ is equivalent to H—S(G(k(l)/k),Z)
= 0 . This is connected with a certain préblem of central
eXtensions through the relationship between the structure of the
Galois group of a central extension and {the dual of) Schur’s
multiplicator H_3(G,Zj (Theorem 4 ). The problem is reducedkin

Section 3 to a simpler case (Theorem 8).



138

81. Leopoldt’s conjecture and abundant central extensions.

For any pro-finite group G and a natural number n, the

cohomology group H_n(G,Z) of minus dimension is defined by
H°(G,Z) ~ lim H "(G/U,,Z),

where Ul runs over open subgroups of G ofkfinite index, and
lim is of the deflation map. Then we have H ®(G,Z) ~ H™G,Z)".
Hence H_S(G,Z) e H3(G,Z)A a HZ(G,Q/Z)A, which is called (the
dual of) Schur’s multiplicator of G. .

: For a tower of Galois extensions M 5 K o k, denote by
K;/k the genus field of. K/k inv M, which is by definition,

the composite of K and the maximal abelian extension of k in

A ~ ’
M. Denote by K /k the maximal central extension of K/k in

M
M, namely the maximal extension in M whose Galois group over
K is contained in the center of the Gaois group over k. Then
we have the following theorem (Cf. Heider [3, §2], Furuta

[1,Theorem 5]).

THEOREM 1.

13 (a(K/k),Z) .
Defq m/k) - a(ksk) B (GOM/K),Z)

G(ﬁ /KX ) =
M/k’"M/k’ T

A
We call M oqéundent for K/k when G(KM/k/KMjk) o

H 3 (G(K/K),2), namely Defgiy/) o a(xsk) B (G(M/K),Z) = 0,
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For a Galois extension M/k, it follows from Theorem 1 and
the definition of cohomology groups of pro-finite groups that
H_3(G(M/k),z) = 0 if and only if M is abundant for any finite
Galois extension K over k —contained in M.

Now denote by k the algebraic closure of k. Then it is

well-known that
(1.1) 13 (6(k/k),Z) = O.
(Cf. Serre [9, Theorem 4]}, Heider [3, 8§51, Yamashita [10,

Theorem 3], Miyake [8]). Hence Kk is abundant for any Galois

extension K/k, and we have

A
THEOREM 2. G(Kg /K g ) = B 3(6(K/K),Z).

Now we are interested how small the abundant extension for
K/k, whose existence is guaranteed as above, can be chosen, and

especially in the following problem:

PROBLEM Fo4 eny ®%eloios extenoion K/k, doeo {there exiol on
ebundont extenrnoion M for XK/k ouck thaet only Arime diviosors

remified in K/k ere remified i M/K ?

- The above problem is closely related to Leopoldt’s

conjecture e.g. as follows.

We assume always (%) as in Introduction, and denote by

k%) the maximal ¢-extension unramified outside 4. Then the
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following theorem is well-known (Cf. Heider [4, Satz 6,
Bemerkung], Heider [5, Satz 11}, Iwasawa [6], Kuz’min [7,

Theorem 7.2]).

THEOREM 3. Under the eoosumpbtion (%), Leoroltdt’'as

conjecture for L io ftaue for k (f end only iF

13 ek k) ,2) = 0.
By the remark after Theorem 1, we have

THEOREM 4. 4nder the eooumption (%), Leoroldt’a
conjecture for Qo (o true for k Lf end onty (f k(l) io
ebundant for eny ¥Yaelfoios extenoion of finite depree over k

conteined in k(l).

§2. Central extensions for a sequence of fields.

Let K/k be an f-extension of finite degree. Then there
is a sequence of extensions k = K0 c K1 C crrC Kt = K such

that Ki+1/Ki is cyclic of degree § and each Ki is normal
A

over k. Denote by Ki the maximal central extension of‘ Ki/k

. . : A x

in M. At first we reduce the structure of G(KM/k/KM/k) to

A A
that of G(Ki+1/Ki)’;

Let M oL >K >k be a tower of Galois extensions over



k, and assume that M is abelian over K. Put G = G(L/k), H
= G(K/k), A = G(M/K) and B = G(M/L). Then A and B are -
H-module and G-module respectively by means of conjugation. Let

I and I be the augmentation ideals of the group rings Z[G]

G H
and Z[H] respectively. Denote by L(l) and K<l) be the

extensions of L and K in M corresponding to IéB and I;A

(1y _ A (1) _ 2%
L = LM/k and K = KM/k'

Let H0 = H/[H,H], where [H,H] is the commutator subgroup

of H. For t € H and a € A, denote by < and a the class

respectively. Note that

of H0 and A/B which contain Tt and a respectively. Set

R(H,A,B) = <TT(X ® 3_)e Hy ® (A/B) ;TT aZ™' = 1>
T T

where ® stands for the tensor product over Z by means of the

exponential map.

Theorem 5. WNofotion beinpg @o above, we adoume thaet G(L/K)

Lo contained in the center of G(K/k). Then we Leve
(1) gD 5 () 5 (D)
A A Hy ® (A/B)
0
(2) GLy i/ Emy) = R A D)

Proof. (1) Put G1 = G(L/XK). Then H = G/G15 Since A

. , g
is abelian, we have b 1 = b for b e B and g, € Gl' Hence

i

HB. Then

we can treate B as H-module, and we have IéB =1
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A

IéA > IﬁB = IéB. Hence K(l) c L(l). Moreover we have KM/k )

A .
KL/k = L by assumption. Hence IjA c B. This implies Ié+1A

i

c IHB = IéB, which means K(l+1) o L(l)

{(2) For a € A, let da be the class of A mod.IHA which
contains a. Let ¢ be a homomorphism of HO 8)(A/IHA) to
2 .
IHA/IHA defined by
T ® a) = at-l mod.IﬁA

for T € H and a € A. Then ¢ is well-defined and surjective

by Furuta and Yamashita [2, Lemma 2]. Moreover [2, Theorem]
implies

(2.1) Ker ¢ = <TT(T @ &_)e Hy @ A/I A ;TTa®™ ! = 15 .

T T
. Hence
Hy & (A/I;A)
(2) % . 2, . _0 H
G(Kyy/Byyp) = Igp/Iyh = —gor—

and
2) A 2 Hy ® (B/IyA)
G(Kyyy/Lyyk) = IgB/Igh = (ger $In(H, @ (B/IgA)) .

4

A canonical exact sequence 0 — B/IHA i, A/IHA I, A/B — 0

implies an exact sequence

H, @ (B/Iya) 2481,y o (a/15a) 148X, 5 @ (o/B) —— 0.

Put x = id ® x and let ¢’ Dbe the restriction of ¢ to
HO G}(B/IHA). Then we have the following diagram of exact

sequences
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0
, o’ l,
0 —> Ker ¢’ — Hy ® (B/IgA) £ I.B/I2A — 0
li’ ll, ’
0 —» Ker ¢ — Hy @ (A/IzA) —2s T A/I2A — 0
lx LI
Hy ® (A/B) I A/IyB
L !
0 0

We define a homomorphism ®A/B of HO ® (A/B) +to IHA/IHB by
Pp/BoK = jee@. Then ®A/B is well-defined and surjective.
Moreover we have Ker @p/B = x(Ker(j-e¢)) = K¢_1(Im i’y =
k((Ker ¢)(Im i’)) = kx{(Ker ¢). Therefor it follows from (2.1)
and the definition of «x that Ker ®a/B R(H,A,B). Hence

Hy ® (A/B) Hy ® (A/B)

A A

to be proved.

Let M o> L oK >k be a tower of Galois extensions over
k, and assume that G(L/K) is contained in the center of
G(L/k). Let K’ be thé makimal abelian extension of k\
contained in K, and M’ be the maximal abeiian extension of K
in M. For <t € G(K/k) and a € G(M’/K), let T and a be
elements of G(K'/k) and G(L/K) whose extensions are <t and
a respectively. Set

(2.2) R(M,L,K,k) = <TT(T ® &_ )e G(K’'/k) @ G(L/K); TTa®™! = 1,
T T

v € G(K/k), a_ € G(M"/K)>.
T

Then we have
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THEOREM 6. 2ef M o L D K ok e e tower of ¥Yaloio

extenoiono over k. dooume £het G(L/K) {0 cyclic and

contaeined in the cenfer of G(L/k). Then
A o > _G(X'/k) @ G(L/K)
G(Ly,/Bm/i) = ®(M,5,K,K)

Proof. We apply Theorem 5 by setting A = G(M’/K), B =

G(M’/L), G = G(L/k) and H = G(K/k). Then R(M,L,K,k) =

A A

= KM’/k since K is abelian over K.

A
R(H,A,B) and K M/k

M/k
A

A
LM/k/K is abelian, for oviousely G(LM/k/L) is

Moreover

A
- contained in the center of G(LM/k/K) and L/K 1is cyclic.

A A

Hence LM/k = LM’/k . Thus Theorem 5 implies the theoremn.

Let M o> L oK o k1 > k be a tower of Galois extensions

over k, and assume that G(L/K) 1is cyclic and contained in the

center of G(L/k). For T, € G(K/kl), let ;1 be the class of

G(K/kl) mod. [G(K/kl),G(K/kl)] which contains Ty and let ;1
be the class of G(K/k) mod.[G(XK/k),G(K/k)] which containes Ty -

We define a homomorphism Ay of R(M,L,K,kl) to

1—>k

R(M,L,K,k) by
lkl__' k(;]_@ 5.) = ;1® 5.,

where a € G(M’/K) = G(M/K)/[G(M/K),G(M,K)] and a is an

element of G(L/K) whose extension to M’ 1is equaql to a, M’

’

being as above the maximal abelian extension of K in M. Then



since L/K 1is cyclic, we have

(2.2’) R(M,L,K,k) = (; @ a € G(K’/k) @G(L/K) . at..]_ =1
T € G(K/k), a € G(M’/K) >.

This implies immediately

Theorem 7. fef M o L oK ok e o tower of %aloio
externoions over k, axd_aaaume t£et G(L/K) io cyclic and
contained in the center of G(L/k). For <t € G(K/k), denote 6y
Kt the intermediate field of K/k inverient 6y <t. Then we

Aave

R(M,L,K,k) = |
t € G(K/k)

AKt*kR(M’L’K’Kt)'

Fn the Aroduct, il io enouph Lthat T auns onily ovear

reprredgentetives of G(K/k) mod.[G(K/k),G(K,k)].

§3. Reduction to extensions of type (2,%).

In order to prove Theorem 8, we preparé/the following lemma.

LEMMA . ¢gef Kl/k te @ cyclic extenoion of degree L.
tet Ko/k te a cyclic extension of degree @ ﬁowé4 of &, end F
te the extenoion of k of desree L conteined in K, . Put L
= KyKy; , and oufifcoe K{ nKy = k. Ff M iog e Yalois exteraion
of k whickd corteins L ond abundant for K F/k, thern M io

eloo cbundent for L/k.



146

A ,
Pro0f. Put L, = KyF. Let L; and L; be the maximal
central and the genus field for Ll/k in M respectively.

Since L;/k 1is of type (&,%), the order of H-3(G(L1/k),Z) is

A .
equal to 4. Hence (L1 : L;) = 4. Moreover L; is the genus

field for L/k in M, since the both L1 and L are abelian

A A
over k. By the definition of L it i1s clear that G(LI/LI)

1!

A A
and hence G(Ll/L) is contained in the center of G(Ll/k).
A . A
Moreover L1 is non-abelian over k. Hence L1 is a

non-abelian central extension for L/k. Since H—3(G(L/k),Z)

A
is of order ¢, the extension Ll must be the maximal central

extension for L/k in M. This means that M is abundant for

L/k.

THEOREM 8. fef {1 fe @ 4at£oéa£ Arine, onrd k0 te an
elgebreic nunber field of finite depree oeltiofying (X). fhen
feoroldt’ o conjecture io trvue for aeny algsebreic nunber field
k of Ffinite depree which containo k0 aend for & L(Ff end onty
LF the fottowing condition (#) (o gaetiofied:

(#) 2et k e ony elpebraic number field of finite degpree
whkich contaeins ky. tLet L ¢6e any otelion extension of Kk
whick io of tyre (L,8) end urremified oufoide L. Then
there elweyo exsioto an ebtundent extenoion M for L/k

such that M i[9 elfoo unremified outoide L.

Pro0f. The necessity of (#) is trivial by Theorem 4.
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k(i) be as above the

Thus we prove the sufficienty. Let
maximal g-extension of k unramified outside ¢, and K be a
Galois extension of finite degree over k which is contained in
k(l). To prove the theorem it is enough by Theorem 4 to show
that k(%) is abundant for K/k. Since K/k is an
J-extension, there is a sequence k = KO c K1 c -+ C Kt = K
such that each Ki is normal over Kk, (Ki : Ki—I) = ¢, and
G(Ki/Ki—l) is contained in the center of 'G(Ki/k). Let k Dbe
the algebraic closure of k, and let R be as in (2.2).

We prove first the following equality

(2.3) R(k‘Y), K., K, ;, k) = R(K, K;, K, _

1’ k)
fOI‘ i = 2, 3, * t'

For <t € G(Ki_llk), let Kt be the intermediate field of

K;_,/k which is invariant by t. Let M be any one of k()
A
or k. Then the maximal central extension K. of
3 . 3 A
Ki—l/Kt in M is abelian over Kt' Because G(Ki—l,M/Kt/Ki—l)
A
is contained in the center of G(Ki—l,M/Kt/Kt) and Ki—l/Kt is
cyclic. In the same manner, Ki is abelian over ~Kt. Therefor
X A . . .
Ki,M/Kt and Ki#l,M/KI are both the maximal abelian extension
. . X A
over Kt contained in M. Hence Ki,M/Kt = Ki—l,M/Kt . Then
Theorem 6 implies
A X A A
G(K; myx 7Ki,m/k ) T 5 Mk /%51, My )
T T T T
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_ G(Ki_l/Kt) & G(K,/K; _4)
- R(M, K., K. ,, K )
i i-1 T

On the other hand Theorem 7 implies

R(M, K,, K; ., k) = T A
B M T € G(K;_,/k) Kk

R(M, Kyp K5 ;) K_).

Therefor in order to prove (2.3) it is enough to show
(2.4) (K /k* ) = G(K /KX o
2.4 G(K ~ G(K. K:
i’k(.Q.)/Kt i,k('ﬂ')/Kt l,E/K_c 1,R/Kt).
. . . A X .
Now if Ki is cyclic over Kt, then Ki,M/Kt = Ki,M/Kt in both
cases M = k(l) and M = k. Hence (2.4) 1is trivial. Suppose
that Ki is non-cyclic over Kt. Then there is an intermediate
field F1 of Ki/Kt such that (F1 : Kt) = g, Ki = FlKi—l and

FinK; 4 = K. Let F, be the intermediate field of Kiél/Kt‘
which is of degree ¢ over Kt. Then F1F2 is of type (48,4)

L (L)

over Kt. Since is the maximal g¢-extension over K_c ’

k(l) is abundant for Fle/Kt by the assumtion (#) of the

theorem. Similarly, k is also abundant for F\F,/K_ by

(1.1). Therefor it follows from Lemma that both k%) and K

are abundant for VKi/Kt y which implies (2.4) and hence (2.3).
Next we prove that (2.3) implies Leopoldt’s conjecture to

be tru for k and &. Now it follows from (2.3) and Theorem

6 that

A . A A A
G(K; () /Ky g k() ) = GUEy gy /K5 Rk

for i=2, «-++ ,t. Hence we have
t A A ‘ t A A
o K@ et By k(W) = T Ky ket Ko ki)
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which implies

A A

A
b= Ky F Ky Rk )

A
(2.5) (K ¢

Let Ak and Aél) be the maximal abelian extension of k in

A
kK and in k(l) respectively. Then we have K

K* = A(l) and ﬁ = K* = A for K is cyclic
(2) ). ~ Tk 1,k/k = *1,k/k T % 1 y
1,k /k
over k. Hence (2.5) implies
(2.6) (K, Al o (% CAL).
k(0 Rk E/k * %k
Let K’ ©be the maximal abelian extension over k contained in
. X — (2) _
K. Then since K = KA and K = KA we have
(0 k K/k Kk We B

a (k¥ /al®)y o G(R/K’) and G(XKE, /A.) ~ G(K/K’). Hence

k(i)/k k k/k’ 'k

(2.6) implies

3

A %
(K K ) = (kg, : Kz, ).
K (2) k/k © “k/k

The right hand side is equal to the order of H—s(G(K/k),Z)

since k is abundant for K/k. This implies by Theorem 1 that

k(l) is also abundant for K/k, which is to be proved.

Remark. When L/k is abelian of type (2,2), Schur’s

multiplicator H_3(G(L/k),2) is cyclic of order 4. Therefor

the existence of an abundant extension- M for L/k in (#) is

A
equivalent to the existence of a Galois extension L and an

. X . . .
abelian extension L over k satisfying the following

condition:
A A i A %
(i) L is non-abelian over k, L oL, and (L ; L") = &,
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A A
(ii) G(L/L) is contained in the center of G(L/k),
A
{(iii) L/L is unramified outside ¢§.
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