137

Note on central extensions and Leopoldt's conjecture

金沢大理 古田孝臣 (Yoshiomi Furuta)

Introduction

Let k be an algebraic number field of finite degree, and & be a prime number. Throughout this paper, we always assume

(*)
$$\sqrt{-1} \in k$$
 when $\ell = 2$.

We denote by G(K/k) the Galois group of a Galois extension K/k. Denote by $k^{(2)}$ the maximal 2-extension of k unramified outside 2. Then it is well-known that Leopoldt's conjecture for k and 2 is equivalent to $H^{-3}(G(k^{(2)}/k),\mathbb{Z})$ = 0. This is connected with a certain problem of central extensions through the relationship between the structure of the Galois group of a central extension and (the dual of) Schur's multiplicator $H^{-3}(G,\mathbb{Z})$ (Theorem 4). The problem is reduced in Section 3 to a simpler case (Theorem 8).

§1. Leopoldt's conjecture and abundant central extensions.

For any pro-finite group G and a natural number n, the cohomology group $H^{-n}(G,\mathbb{Z})$ of minus dimension is defined by

$$H^{-n}(G,\mathbb{Z}) \simeq \underline{\lim} H^{-n}(G/U_1,\mathbb{Z}),$$

where U_{λ} runs over open subgroups of G of finite index, and lim is of the deflation map. Then we have $H^{-n}(G,\mathbb{Z}) \simeq H^n(G,\mathbb{Z})^{\wedge}$. Hence $H^{-3}(G,\mathbb{Z}) \simeq H^3(G,\mathbb{Z})^{\wedge} \simeq H^2(G,\mathbb{Q}/\mathbb{Z})^{\wedge}$, which is called (the dual of) Schur's multiplicator of G.

For a tower of Galois extensions $M\supset K\supset k$, denote by $K_{M/k}^*$ the genus field of K/k in M, which is by definition, the composite of K and the maximal abelian extension of K in M. Denote by $K_{M/k}^*$ the maximal central extension of K/k in M, namely the maximal extension in M whose Galois group over K is contained in the center of the Gaois group over K. Then we have the following theorem (Cf. Heider [3, §2], Furuta [1,Theorem 5]).

THEOREM 1.

$$G(\mathring{K}_{M/k}/K_{M/k}^*) = \frac{H^{-3}(G(K/k), \mathbb{Z})}{\operatorname{Def}_{G(M/k)} \to G(K/k)} H^{-3}(G(M/k), \mathbb{Z})}.$$

We call M abundant for K/k when $G(K_{M/k}/K_{M/k}) \simeq H^{-3}(G(K/k), \mathbb{Z})$, namely $Def_{G(M/k)} \to G(K/k)$ $H^{-3}(G(M/k), \mathbb{Z}) = 0$.

For a Galois extension M/k, it follows from Theorem 1 and the definition of cohomology groups of pro-finite groups that $H^{-3}(G(M/k),\mathbb{Z})=0$ if and only if M is abundant for any finite Galois extension K over k contained in M.

Now denote by \bar{k} the algebraic closure of $k\,.$ Then it is well-known that

$$(1.1) H-3(G(\overline{k}/k), \mathbb{Z}) = 0.$$

(Cf. Serre [9, Theorem 4], Heider [3, §5], Yamashita [10, Theorem 3], Miyake [8]). Hence \overline{k} is abundant for any Galois extension K/k, and we have

THEOREM 2.
$$G(K_{\overline{k}/k}/K^*_{\overline{k}/k}) \simeq H^{-3}(G(K/k), \mathbb{Z})$$
.

Now we are interested how small the abundant extension for K/k, whose existence is guaranteed as above, can be chosen, and especially in the following problem:

PROBLEM For any Calois extension K/k, does there exist an abundant extension M for K/k such that only hrime divisors ramified in K/k are ramified in M/K?

The above problem is closely related to Leopoldt's conjecture e.g. as follows.

We assume always (*) as in Introduction, and denote by $k^{\,(\,\text{L}\,)} \quad \text{the maximal L-extension unramified outside} \quad \text{L. Then the}$

following theorem is well-known (Cf. Heider [4, Satz 6, Bemerkung], Heider [5, Satz 11], Iwasawa [6], Kuz'min [7, Theorem 7.2]).

THEOREM 3. Under the assumption (*), Leopoldt's conjecture for L is true for k if and only if $H^{-3}(G(k^{(L)}/k),\mathbb{Z}) = 0.$

By the remark after Theorem 1, we have

THEOREM 4. Under the assumption (*), Leopoldt's conjecture for L is true for k if and only if $k^{(L)}$ is abundant for any Galois extension of finite degree over k contained in $k^{(L)}$.

§2. Central extensions for a sequence of fields.

Let K/k be an 1-extension of finite degree. Then there is a sequence of extensions $k = K_0 \subset K_1 \subset \cdots \subset K_t = K$ such that K_{i+1}/K_i is cyclic of degree 1 and each K_i is normal over k. Denote by \hat{K}_i the maximal central extension of K_i/k in M. At first we reduce the structure of $G(\hat{K}_{M/k}/K_{M/k}^*)$ to that of $G(\hat{K}_{i+1}/\hat{K}_i)$.

Let $M \supset L \supset K \supset k$ be a tower of Galois extensions over

k, and assume that M is abelian over K. Put G = G(L/k), H = G(K/k), A = G(M/K) and B = G(M/L). Then A and B are H-module and G-module respectively by means of conjugation. Let I_G and I_H be the augmentation ideals of the group rings $\mathbb{Z}[G]$ and $\mathbb{Z}[H]$ respectively. Denote by $L^{(i)}$ and $K^{(i)}$ be the extensions of L and K in M corresponding to I_G^i B and I_H^i A respectively. Note that $L^{(1)} = L_{M/k}^{(1)}$ and $K^{(1)} = K_{M/k}^{(1)}$.

Let H_0 = H/[H,H], where [H,H] is the commutator subgroup of H. For $\tau \in H$ and a $\in A$, denote by $\overline{\tau}$ and \overline{a} the class of H_0 and A/B which contain τ and a respectively. Set

$$R(H,A,B) = \langle \prod (\bar{\tau} \otimes \bar{a}_{\bar{\tau}}) \in H_0 \otimes (A/B) ; \prod a_{\bar{\tau}}^{\tau-1} = 1 \rangle$$

where \otimes stands for the tensor product over $\mathbb Z$ by means of the exponential map.

Theorem 5. Notation being as above, we assume that G(L/K) is contained in the center of G(K/k). Then we have

(1)
$$K^{(i+1)} \supset L^{(i)} \supset K^{(i)}$$

(2)
$$G(\hat{L}_{M/k}/\hat{K}_{M/k}) \simeq \frac{H_0 \otimes (A/B)}{R(H,A,B)}$$

Froof. (1) Put $G_1 = G(L/K)$. Then $H = G/G_1$. Since A is abelian, we have $b^{g_1} = b$ for $b \in B$ and $g_1 \in G_1$. Hence we can treate B as H-module, and we have $I_G^iB = I_H^iB$. Then

 $I_H^i A \supset I_H^i B = I_G^i B$. Hence $K^{(i)} \subset L^{(i)}$. Moreover we have $K_{M/k} \supset K_{L/k} = L$ by assumption. Hence $I_H A \subset B$. This implies $I_H^{i+1} A \subset I_H^i B = I_G^i B$, which means $K^{(i+1)} \supset L^{(i)}$.

(2) For a \in A, let $\tilde{\mathbf{a}}$ be the class of A mod. \mathbf{I}_{H}^{A} which contains a. Let ϕ be a homomorphism of $\mathbf{H}_{0} \otimes (\mathbf{A}/\mathbf{I}_{H}^{A})$ to $\mathbf{I}_{H}^{A}/\mathbf{I}_{H}^{2}$ defined by

$$\phi(\bar{\tau} \otimes \bar{a}) = a^{\tau-1} \mod I_H^2 A$$

for $\tau \in H$ and a $\in A$. Then ϕ is well-defined and surjective by Furuta and Yamashita [2, Lemma 2]. Moreover [2, Theorem] implies

(2.1)
$$\operatorname{Ker} \phi = \langle \prod (\bar{\tau} \otimes \tilde{a}_{\bar{\tau}}) \in H_0 \otimes A/I_{H}A ; \prod a_{\bar{\tau}}^{\tau-1} = 1 \rangle.$$

Hence

$$G(K_{M/k}^{(2)}/\hat{K}_{M/k}) \simeq I_H A / I_H^2 A \simeq \frac{H_0 \otimes (A/I_H A)}{Ker \phi}$$

and

$$\mathsf{G}(\mathsf{K}_{\mathsf{M}/\mathsf{k}}^{(2)}/\mathring{\mathsf{L}}_{\mathsf{M}/\mathsf{k}}^{\wedge}) \simeq \mathsf{I}_{\mathsf{H}}^{\mathsf{B}/\mathsf{I}_{\mathsf{H}}^{2}\mathsf{A}} \simeq \frac{\mathsf{H}_{\mathsf{0}} \otimes (\mathsf{B}/\mathsf{I}_{\mathsf{H}}^{\mathsf{A}})}{(\mathsf{Ker} \ \phi) \cap (\mathsf{H}_{\mathsf{0}} \otimes (\mathsf{B}/\mathsf{I}_{\mathsf{H}}^{\mathsf{A}}))} \ .$$

A canonical exact sequence $0 \to B/I_HA \xrightarrow{i} A/I_HA \xrightarrow{\pi} A/B \to 0$ implies an exact sequence

$$H_0 \otimes (B/I_HA) \xrightarrow{id \otimes i} H_0 \otimes (A/I_HA) \xrightarrow{id \otimes \pi} H_0 \otimes (A/B) \longrightarrow 0.$$

Put $_{\kappa}$ = id \otimes π and let $_{\phi}$ ' be the restriction of $_{\phi}$ to H $_{0}$ \otimes (B/I $_{H}A)$. Then we have the following diagram of exact sequences

We define a homomorphism $\varphi_{A/B}$ of $H_0 \otimes (A/B)$ to $I_H A/I_H B$ by $\varphi_{A/B} \circ \kappa = j \circ \varphi$. Then $\varphi_{A/B}$ is well-defined and surjective. Moreover we have $\ker \varphi_{A/B} = \kappa(\ker(j \circ \phi)) = \kappa \phi^{-1}(\operatorname{Im} i'') = \kappa((\ker \phi)(\operatorname{Im} i')) = \kappa(\ker \phi)$. Therefor it follows from (2.1) and the definition of κ that $\ker \varphi_{A/B} = R(H,A,B)$. Hence $G(\mathring{L}_{M/k}/\mathring{K}_{M/k}) \simeq I_H A/I_H B \simeq \frac{H_0 \otimes (A/B)}{\ker \varphi_{A/B}} = \frac{H_0 \otimes (A/B)}{R(H,A,B)}$, which is to be proved.

Let $M\supset L\supset K\supset k$ be a tower of Galois extensions over k, and assume that G(L/K) is contained in the center of G(L/k). Let K' be the maximal abelian extension of k contained in K, and M' be the maximal abelian extension of K in M. For $\tau \in G(K/k)$ and $\alpha \in G(M'/K)$, let $\bar{\tau}$ and $\bar{\alpha}$ be elements of G(K'/k) and G(L/K) whose extensions are τ and α respectively. Set

(2.2)
$$R(M,L,K,k) = \langle \prod (\bar{\tau} \otimes \bar{a}_{\bar{\tau}}) \in G(K'/k) \otimes G(L/K); \prod a_{\bar{\tau}}^{\tau-1} = 1,$$

$$\tau \in G(K/k), a_{\bar{\tau}} \in G(M'/K) \rangle.$$

Then we have

THEOREM 6. Let $M\supset L\supset K\supset k$ be a tower of Galois extensions over k. Assume that G(L/K) is cyclic and contained in the center of G(L/k). Then

$$G(\stackrel{\wedge}{L}_{M/k}/\stackrel{\wedge}{K}_{M/k}) \cong \frac{G(K'/k) \otimes G(L/K)}{R(M,L,K,k)}$$
.

Froof. We apply Theorem 5 by setting A = G(M'/K), B = G(M'/L), G = G(L/k) and H = G(K/k). Then R(M,L,K,k) = R(H,A,B) and $\hat{K}_{M/k} = \hat{K}_{M'/k}$ since $\hat{K}_{M/k}$ is abelian over K. Moreover $\hat{L}_{M/k}/K$ is abelian, for oviousely $G(\hat{L}_{M/k}/L)$ is contained in the center of $G(\hat{L}_{M/k}/K)$ and L/K is cyclic. Hence $\hat{L}_{M/k} = \hat{L}_{M'/k}$. Thus Theorem 5 implies the theorem.

Let $M\supset L\supset K\supset k_1\supset k$ be a tower of Galois extensions over k, and assume that G(L/K) is cyclic and contained in the center of G(L/k). For $\tau_1\in G(K/k_1)$, let $\bar{\tau}_1$ be the class of $G(K/k_1)$ mod. $[G(K/k_1),G(K/k_1)]$ which contains τ_1 , and let $\bar{\tau}_1$ be the class of G(K/k) mod. [G(K/k),G(K/k)] which containes τ_1 . We define a homomorphism $\lambda_{k_1\longrightarrow k}$ of $R(M,L,K,k_1)$ to R(M,L,K,k) by

$$\lambda_{k_1 \longrightarrow k} (\bar{\tau}_1 \otimes \bar{a}) = \bar{\tau}_1 \otimes \bar{a},$$

where a \in G(M'/K) = G(M/K)/[G(M/K),G(M,K)] and \bar{a} is an element of G(L/K) whose extension to M' is equal to a, M' being as above the maximal abelian extension of K in M. Then

since L/K is cyclic, we have

(2.2')
$$R(M,L,K,k) = \langle \overline{\tau} \otimes \overline{a} \in G(K'/k) \otimes G(L/K) ; a^{\tau-1} = 1$$

$$\tau \in G(K/k), a \in G(M'/K) >.$$

This implies immediately

Theorem 7. Let $M\supset L\supset K\supset k$ be a tower of Galois extensions over k, and assume that G(L/K) is cyclic and contained in the center of G(L/k). For $\tau\in G(K/k)$, denote by K_{τ} the intermediate field of K/k invariant by τ . Then we have

$$R(M,L,K,k) = \overline{\left| \begin{array}{c} | \\ \tau \in G(K/k) \end{array} \right|} \lambda_{K_{\tau} \to k} R(M,L,K,K_{\tau}).$$

In the product, it is enough that τ runs only over representatives of G(K/k) mod.[G(K/k),G(K,k)].

$\S 3$. Reduction to extensions of type (1,1).

In order to prove Theorem 8, we prepare the following lemma.

LEMMA . Let K_1/k be a cyclic extension of degree 1. Let K_2/k be a cyclic extension of degree a hower of 1, and F be the extension of k of degree 1 contained in K_2 . Fut L = K_1K_2 , and suhhose $K_1 \cap K_2 = k$. If M is a Galois extension of k which contains L and abundant for K_1F/k , then M is also abundant for L/k.

Proof. Put $L_1=K_1F$. Let $\overset{\circ}{L}_1$ and L_1^* be the maximal central and the genus field for L_1/k in M respectively. Since L_1/k is of type $(\mbox{$\ell$},\mbox{$\ell$})$, the order of $\mbox{$H^{-3}$}(G(L_1/k),\mbox{$\mathbb{Z}$})$ is equal to $\mbox{$\ell$}$. Hence $(\overset{\circ}{L}_1:L_1^*)=\mbox{ℓ}$. Moreover L_1^* is the genus field for L/k in M, since the both L_1 and L are abelian over k. By the definition of $\overset{\circ}{L}_1$, it is clear that $G(\overset{\circ}{L}_1/L_1)$ and hence $G(\overset{\circ}{L}_1/L)$ is contained in the center of $G(\overset{\circ}{L}_1/k)$. Moreover $\overset{\circ}{L}_1$ is non-abelian over k. Hence $\overset{\circ}{L}_1$ is a non-abelian central extension for L/k. Since $\mbox{$H^{-3}$}(G(L/k),\mbox{$\mathbb{Z}$})$ is of order $\mbox{$\ell$}$, the extension $\overset{\circ}{L}_1$ must be the maximal central extension for L/k. In M. This means that M is abundant for L/k.

THEOREM 8. Let 1 be a rational hrime, and \mathbf{k}_0 be an algebraic number field of finite degree satisfying (*). then Leoholdt's conjecture is true for any algebraic number field \mathbf{k} of finite degree which contains \mathbf{k}_0 and for 1 if and only if the following condition (#) is satisfied:

(#) Let k be any algebraic number field of finite degree which contains k_0 . Let L be any abelian extension of k which is of type (l,l) and unramified outside l. Then there always exsists an abundant extension M for L/k such that M is also unramified outside l.

Proof. The necessity of (#) is trivial by Theorem 4.

Thus we prove the sufficienty. Let $k^{(\ell)}$ be as above the maximal ℓ -extension of k unramified outside ℓ , and K be a Galois extension of finite degree over k which is contained in $k^{(\ell)}$. To prove the theorem it is enough by Theorem 4 to show that $k^{(\ell)}$ is abundant for K/k. Since K/k is an ℓ -extension, there is a sequence $k = K_0 \subset K_1 \subset \cdots \subset K_t = K$ such that each K_i is normal over k, $(K_i : K_{i-1}) = \ell$, and $G(K_i/K_{i-1})$ is contained in the center of $G(K_i/k)$. Let \bar{k} be the algebraic closure of k, and let k be as in k

We prove first the following equality

(2.3) $R(k^{(\ell)}, K_i, K_{i-1}, k) = R(\bar{k}, K_i, K_{i-1}, k)$ for $i = 2, 3, \dots, t$.

For $\tau \in G(K_{i-1}/k)$, let K_{τ} be the intermediate field of K_{i-1}/k which is invariant by τ . Let M be any one of $k^{(\ell)}$ or \bar{k} . Then the maximal central extension $\hat{K}_{i-1},M/K_{\tau}$ of K_{i-1}/K_{τ} in M is abelian over K_{τ} . Because $G(\hat{K}_{i-1},M/K_{\tau}/K_{i-1})$ is contained in the center of $G(\hat{K}_{i-1},M/K_{\tau}/K_{\tau})$ and K_{i-1}/K_{τ} is cyclic. In the same manner, K_{i} is abelian over K_{τ} . Therefor $K_{i}^{*},M/K_{\tau}$ and $\hat{K}_{i-1},M/K_{\tau}$ are both the maximal abelian extension over K_{τ} contained in M. Hence $K_{i}^{*},M/K_{\tau} = \hat{K}_{i-1},M/K_{\tau}$. Then Theorem 6 implies

$$G(\hat{K}_{i,M/K_{\tau}}/K_{i,M/K_{\tau}}^{*}) = G(\hat{K}_{i,M/K_{\tau}}/\hat{K}_{i-1,M/K_{\tau}})$$

$$= \frac{G(K_{i-1}/K_{\tau}) \otimes G(K_{i}/K_{i-1})}{R(M, K_{i}, K_{i-1}, K_{\tau})}$$

On the other hand Theorem 7 implies

$$R(M, K_{i}, K_{i-1}, k) = \overline{\prod_{\tau \in G(K_{i-1}/k)} \lambda_{K_{\tau} \to k}} R(M, K_{i}, K_{i-1}, K_{\tau}).$$

Therefor in order to prove (2.3) it is enough to show

$$(2.4) \qquad \qquad \frac{G(\hat{K}_{i,k}(\ell)/K_{\tau}^{/K^*_{i,k}(\ell)/K_{\tau}}) \simeq G(\hat{K}_{i,k}/K_{\tau}^{/K^*_{i,k}/K_{\tau}}).}$$

Now if K_i is cyclic over K_{τ} , then $K_{i,M/K_{\tau}} = K_{i,M/K_{\tau}}^*$ in both cases $M = k^{(\ell)}$ and $M = \bar{k}$. Hence (2.4) is trivial. Suppose that K_i is non-cyclic over K_{τ} . Then there is an intermediate field F_1 of K_i/K_{τ} such that $(F_1:K_{\tau})=\ell$, $K_i=F_1K_{i-1}$ and $F_1\cap K_{i-1}=K_{\tau}$. Let F_2 be the intermediate field of K_{i-1}/K_{τ} which is of degree ℓ over K_{τ} . Then F_1F_2 is of type (ℓ , ℓ) over K_{τ} . Since ℓ is the maximal ℓ -extension over ℓ is abundant for ℓ is abundant for ℓ by the assumtion (#) of the theorem. Similarly, ℓ is also abundant for ℓ by (1.1). Therefor it follows from Lemma that both ℓ and ℓ are abundant for ℓ calculated as ℓ which implies (2.4) and hence (2.3).

Next we prove that (2.3) implies Leopoldt's conjecture to be tru for k and ℓ . Now it follows from (2.3) and Theorem 6 that

$$G(\hat{K}_{i,k}(\ell)/k/\hat{K}_{i-1,k}(\ell)/k) \simeq G(\hat{K}_{i,\bar{k}/k}/\hat{K}_{i-1,\bar{k}/k})$$
 for $i = 2, \dots, t$. Hence we have

$$\frac{\mathsf{t}}{\mathsf{i}} = 2 \quad (\overset{\wedge}{\mathsf{K}}_{\mathsf{i},\mathsf{k}}(\mathfrak{d})_{/\mathsf{k}} : \overset{\wedge}{\mathsf{K}}_{\mathsf{i}-1,\mathsf{k}}(\mathfrak{d})_{/\mathsf{k}}) = \frac{\mathsf{t}}{\mathsf{i}} = 2 \quad (\overset{\wedge}{\mathsf{K}}_{\mathsf{i},\bar{\mathsf{k}}/\mathsf{k}} : \overset{\wedge}{\mathsf{K}}_{\mathsf{i}-1,\bar{\mathsf{k}}/\mathsf{k}}),$$

which implies

$$(2.5) \qquad (\hat{K}_{k}(2))_{/k} : \hat{K}_{1,k}(2)_{/k}) = (\hat{K}_{\overline{k}/k} : \hat{K}_{1,\overline{k}/k}).$$

Let A_k and $A_k^{(\ell)}$ be the maximal abelian extension of k in \bar{k} and in $k^{(\ell)}$ respectively. Then we have $\hat{K}_{1,k}^{(\ell)/k} = K_{1,k}^{*}(\ell)/k$ = $A_k^{(\ell)}$ and $\hat{K}_{1,\bar{k}/k} = K_{1,\bar{k}/k}^{*} = A_k$, for K_1 is cyclic over k. Hence (2.5) implies

$$(2.6) \qquad (\hat{K}_{k}(1))_{/k} : A_{k}^{(1)}) = (\hat{K}_{\overline{k}/k} : A_{k}).$$

Let K' be the maximal abelian extension over k contained in K. Then since $K_{k}^{*}(\ell)/k = KA_{k}^{(\ell)}$ and $K_{\overline{k}/k} = KA_{k}$, we have $G(K_{k}^{*}(\ell)/k)/k = G(K/K')$ and $G(K_{\overline{k}/k}^{*}/A_{k}) \simeq G(K/K')$. Hence (2.6) implies

$$(\mathring{K}_{k}(\ell)_{/k} : \mathring{K}_{k}^{*}(\ell)_{/k}) = (\mathring{K}_{\overline{k}/k} : \mathring{K}_{\overline{k}/k}^{*}).$$

The right hand side is equal to the order of $H^{-3}(G(K/k),\mathbb{Z})$ since \bar{k} is abundant for K/k. This implies by Theorem 1 that $k^{(1)}$ is also abundant for K/k, which is to be proved.

Remark. When L/k is abelian of type (ℓ,ℓ), Schur's multiplicator $H^{-3}(G(L/k),\mathbb{Z})$ is cyclic of order ℓ . Therefor the existence of an abundant extension M for L/k in (#) is equivalent to the existence of a Galois extension L and an abelian extension L^* over k satisfying the following condition:

(i)
$$\stackrel{\wedge}{L}$$
 is non-abelian over k, $\stackrel{\wedge}{L} \supset L^*$, and $\stackrel{\wedge}{(L)} ; L^*) = \ell$,

- (ii) G(L/L) is contained in the center of G(L/k),
- (iii) $\stackrel{\wedge}{L}/L$ is unramified outside 1.

References

- [1] Y. Furuta, Supplementary notes on Galois groups of central extensions of algebraic number fields, Sci. Rep. Kanazawa Univ., 29(1984), 9-14.
- [2] Y. Furuta and H. Yamashita, Representation modules and the augmentation ideal of a finite group, Sci. Rep. Kanazawa Univ., 27(1982), 1-3.
- [3] F.-P. Heider, Strahlknoten und Geschlechterkörper mod.m, J. reine angew. Math., 320(1980), 52-67.
- [4] ______, Zahlentheoretische Knoten unendlicher Erweiterungen, Arch. Math., 37(1981), 341-352.
- [5] ______, Kapitulationsproblem und Knotentheorie, Manuscripta Math., 46(1984), 229-272.
- [6] K. Iwasawa, On Leopoldt's conjecture (in Japanese), Lecture
 Notes on Algebraic Number Theory, Sūrikaiseki-kenkyujo,
 kyoto, 1984.
- [7] L. V. Kuz'min, Homology of profinite groups, Schur multpliers, and class field theory, Math. USSR Izvestija, 3(1969),1149-1181.
- [8] K. Miyake, Central extensions and Schur's muktiplicators of Galois groups, Nagoya Math. J., 90(1983), 137-144.

- [9] J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic Number Field ed. by A. Frölich, Academic Press, 1977.
- [10] H. Yamashita, On nilpotent factors of maximum abelian extensions of algebraic number fields, Sci. Rep. Kanazawa Univ., 28(1983), 1-5.

Department of mathematics
Kanazawa University
Kanazawa 920
Japan