On the Homology Groups of the Mapping Class Groups of Orientable Surfaces with Twisted Coefficients

By Shigeyuki MORITA

Department of Mathematics, Tokyo Institute of Technology

東京工業大学理学部森田茂之

- 1. Introduction. Let Σ_g be a closed orientable surface of genus g and let $M_g = \pi_0 \mathrm{Diff}_+ \Sigma_g$ be its mapping class group. Also let M_g ,* and M_g ,1 respectively be the mapping class groups of Σ_g relative to the base point $* \in \Sigma_g$ and an embedded disc $D^2 \subset \Sigma_g$. It is known that these groups are perfect for all $g \geq 3$ (see [2,3]) and Harer determined the second homology group of them in his fundamental paper [2]. The purpose of the present note is to announse our results on the homology groups of them with coefficients in the first homology group $H_1(\Sigma_g, \mathbf{Z})$ of Σ_g on which the mapping class groups act naturally.
- 2. Low dimensional homologies. First we consider the first homology. The results of our previous paper [7] imply

Theorem 1. (i)
$$H_1(M_q; H_1(\Sigma_q, \mathbb{Z})) \cong \mathbb{Z}/2g-2$$
 $(g \ge 2)$.

(ii)
$$H_1(M_{g,1}; H_1(\Sigma_{g}, \mathbb{Z})) \cong H_1(M_{g,*}; H_1(\Sigma_{g}, \mathbb{Z})) \cong \mathbb{Z}$$
 $(g \ge 2)$.

These groups are detected by the crossed homomorphism $f\colon {}^{M}_{g,} \star {}^{K} H_{1}(\Sigma_{g}, \mathbf{Z}) \to \mathbf{Z} \quad \text{defined in [7]. Next the second homology group is given by the following Theorem which is one of$

our main results.

Theorem 2. (i) $H_2(M; H_1(\Sigma_g, \mathbf{Z})) = 0$ for all $g \ge 12$, where M stands for any of M_g , M_g , * or M_g , (ii) $H_2(M; H_1(\Sigma_g, \mathbb{Q})) = 0$ for all $g \ge 9$, where M is the same as above.

Corollary 3. $H^2(M_q; H^1(\Sigma_q, \mathbb{Z})) \cong \mathbb{Z}/2g-2$ $(g \ge 9)$.

The group $H^2(M_g; H^1(\Sigma_g, \mathbb{Z}))$ has the following geometric meaning. Choose a generator $e \in H^2(M_g; H^1(\Sigma_g, \mathbb{Z}))$. To any oriented differentiable Σ_g -bundle $\pi \colon E \to X$, we have associated in [8] a family of Jacobian manifolds $\pi' \colon J' \to X$, which is a <u>flat</u> T^{2g} -bundle over X with structure group $H_1(\Sigma_g, \mathbb{Z}/2g-2) \rtimes \operatorname{Sp}(2g, \mathbb{Z})$, and a fibrewise embedding $j' \colon E \to J'$ which induces an isomorphism on the first integral homology on each fibre (topological version of Earle's embedding theorem [1]). We have

Proposition 4. (compare with [1], §8). Let $\pi\colon E\to X$ be an oriented Σ_g -bundle. Then the associated family of Jacobian manifolds $\pi'\colon J'\to X$ has a cross-section if and only if $h^*(\mathfrak{G})$ vanishes in $H^2(\pi_1(X);H^1(\Sigma_g,\mathbf{Z}))$ where $h\colon \pi_1(X)\to M_g$ is the holonomy homomorphism of the given Σ_g -bundle and $\pi_1(X)$ acts on $H^1(\Sigma_g,\mathbf{Z})$ naturally.

Corollary 5. The natural homomorphism $\pi\colon M_{g,\star}\to M_g$ induces an isomorphism $H_3(M_{g,\star},\mathbf{Z})\cong H_3(M_{g,\mathsf{Z}})$ for all $g\geq 10$.

(It is easy to show that the homomorphism $H_3(M_g, \star, \mathbb{Z}) \to H_3(M_g, \mathbb{Z})$ is surjective for all $g \ge 3$).

3. Outline of the proof of Theorem 2. The proof of Theorem 2 is based on Harer's method [2] of computing the second homology group of the mapping class groups which is in turn based on the paper [5] of Hatcher and Thurston. As in [2], let X_2 be the (slightly modified) Hatcher-Thurston complex of the compact surface Σ_g - \mathring{D}^2 with one boundary component. It is simply connected and the mapping class group $M_{g,1}$ acts naturally on it cellularly. Harer defines an $M_{g,1}$ -subcomplex $Y_2 \subset X_2$, which is still simply connected and the number of two-cells in its $M_{g,1}$ -orbit is reduced drastically to six. Then he adds two types of three-cells to Y_2 to obtain Y_3 and he uses the standard technique of spectral sequences to deduce his result mentioned above.

We start with Harer's complex Y_3 (with a slight modification of the definition of one of the three-cells because the boundary of his original three-cell is not contained in Y_2). We add five more types of three-cells to Y_3 to obtain Y_3 and then compute the standard spectral sequence which converges to $H_{\star}(Y_3' \times_M K; H_1(\Sigma_g, \mathbb{Z}))$ where K is a contructible $M_{g,1}$ -complex. We first construct enough cycles whose homology classes generate $H_2(Y_3' \times_M K; H_1(\Sigma_g, \mathbb{Z}))$ and then prove that these cycles are all homologous to zero in $H_2(M_{g,1}; H_1(\Sigma_g, \mathbb{Z}))$. The necessary computations for that are very complicated and lengthy compared with the corresponding ones in the case of constant coefficients. The condition $g \ge 12$ in the statement of Theorem 2 reflects this situation. Details will be given in [9].

4. Non trivialities of higher homology groups. Harer's stability theorem [3] and Proposition 3-1 of [6] imply

Proposition 6. (i) The homology group $H_k(M_g; H_1(\Sigma_g, \mathbb{Q}))$ is independent of g in the range $g \ge 3(k+1)$.

(ii) For each prime number p, the homology group $H_k(M_g; H_1(\Sigma_g, \mathbb{Z}/p))$ is independent of g provided $g \ge 3(k+1)+1$ and p does not livide 2g-2.

Remark 7. (i) In the above statements we understand all the nomology groups to be abstract vector spaces over $\mathbb Q$ or $\mathbb Z/p$. There seems to be no canonical isomorphisms between them. One reason for this is the fact that the Gysin homomorphism (see pelow) is an <u>unstable</u> operation, namely it depends essentially on the genus.

(ii) The statement (i) in the above Proposition does not nold if we replace $H_1(\Sigma_q, \mathbb{Q})$ by $H_1(\Sigma_q, \mathbb{Z})$ (see Theorem 1, (i)).

Now we consider the cohomology group $H^*(M_g; H^1(\Sigma_g, \mathbb{Q}))$ instead of homology because it is more convenient for the statement of our non-triviality result. As in [6], let $e \in H^2(M_g, \star, \mathbb{Z})$ be the Euler class of the central extension $0 \to \mathbb{Z} \to M_g, 1 \to M_g, \star \to 1$. We define a cohomology class $e_i \in H^{2i}(M_g, \mathbb{Z})$ by setting $e_i = \tau_\star(e^{i+1})$ where $\pi_\star\colon H^{2i+2}(M_g, \star, \mathbb{Z}) \to H^{2i}(M_g, \mathbb{Z})$ is the Gysin homomorphism induced from the projection $\pi\colon M_g, \star \to M_g$. We call e_i the e_i -th characteristic class of oriented surface bundles. We also use the same letter e_i for the cohomology class $\tau^\star(e_i) \in H^{2i}(M_g, \star, \mathbb{Z})$. Making an essential use of Harer's stability theorem [3], we have proved in [6]

Theorem 8. The homomorphism

$$Q[e,e_1,e_2,\ldots] \longrightarrow H^*(M_{g,*},Q)$$

is injective up to degree $\frac{1}{3}$ g.

Now as was shown in [6] (Proposition 3-1), the Hochschild-Serre spectral sequence $\{E_r^{p,q},d_r\}$ for the <u>rational</u> cohomology group of the extension $1 \to \pi_1(\Sigma_g) \to M_g$, $\star \to M_g \to 1$ collapses so that we have $E_\infty^{p,q} = E_2^{p,q} = H^p(M_q; H^q(\Sigma_q, \mathbb{Q}))$. Hence if we set

$$K_n(q) = Ker (\pi_*: H_n(M_{q,*}, \Phi) \rightarrow H_{n-2}(M_{q}, \Phi)),$$

then we have a short exact sequence

$$0 \rightarrow E_{\infty}^{n,0} = H^{n}(M_{g}, \mathbb{Q}) \xrightarrow{\pi^{*}} K_{n}(g) \xrightarrow{q} E_{\infty}^{n-1,1} = H^{n-1}(M_{g}; H^{1}(\Sigma_{g}, \mathbb{Q})) \rightarrow 0.$$

Now for each natural number i, the cohomology class

$$(2g-2)e^{i+1} + ee_i \in H^{2i+2}(M_{q,*}, \mathbb{Q})$$

is contained in $K_{2i+2}(g)$. Hence we can define an element $v_i \in H^{2i+1}(M_q; H^1(\Sigma_q, \mathbb{Q}))$ by

$$v_i = q((2g-2)e^{i+1} + ee_i).$$

The cup product of v_i with any element of $H^*(M_g, \mathbb{Q})$ belongs to $H^*(M_g; H^1(\Sigma_g, \mathbb{Q}))$ so that we have a homomorphism

$$\mathbb{Q}[e_1,e_2,\ldots] < v_1,v_2,\ldots > + H*(M_q;H^1(\Sigma_q,\mathbb{Q})),$$

where the left hand side stands for the free $\mathbb{Q}[e_1,e_2,\ldots]$ -module with basis v_1,v_2,\ldots . With these definitions and notations, we have the following non-triviality result.

Theorem 9. The homomorphism

$$\mathbb{Q}[e_1, e_2, \dots] < v_1, v_2, \dots > + H*(M_g; H^1(\Sigma_g, \mathbb{Q}))$$

is injective up to degree $\frac{1}{3}g - 1$.

The result of Harer-Zagier [4] implies that the above homomorphism is far from being surjective. However it seems to be reasonable to make the following

Conjecture 10. The homomorphism in Theorem 9 is an isomorphism in the same range.

We can also formulate similar statements to Theorem 9 and Conjecture for the group $M_{g,\star}$, but here we omit them. Details will appear elsewhere.

References

- [1] C.J.Earle: Families of Riemann surfaces and Jacobi varieties.

 Ann. of Math., 107, 255-286 (1978).
- [2] J. Harer: The second homology group of the mapping class group of an orientable surface. Invent. Math., 72, 221-239 (1983).
- [3] ____: Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math., 121, 215-249 (1985).
- [4] J. Harer and D. Zagier: The Euler characteristic of the moduli space of curves. preprint.
- [5] A. Hatcher and W. Thurston: A presentation for the mapping class group of a closed orientable surface. Topology, 19, 221-237 (1980).
- [6] S. Morita: Characteristic classes of surface bundles. preprint.
- [7] ___: Family of Jacobian manifolds and characteristic classes of surface bundles. preprint
- [8] ___: Family of Jacobian manifolds and characteristic classes of surface bundles II. in preparation, see also Proc. Japan Acad. 61A, 112-115 (1985).
- [9] ____: The second homology group of the mapping class groups of orientable surfaces with twisted coefficients. in preparation.