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0. Introduction. Twofold designs are balanced incomplete

block designs of index A=2; Although they have been somewhat
less popular than those of index A=1, there are, in our opinion,
several reasons why twofold designs deserve attention. For small
block sizes, their spectruﬁ is; roughly speaking, twice as large
as that of designs with X=1. Many problems that can either be
answered trivially, or; sometimes, cannot be posed at all for
designs with A=1, present a fascinating challenge for twofold
designs. And, of course, whether there exist symmetric twofold
designs (i.e. biplanes) for infinitely many orders remains one
of the foremost unsolved problems in combinatorial design the-~
ory.

In this article we are concerned with twofold designs with
block size k=3 (Chapter 1) and k=4 (Chapter 2). In each chapter,
we first survey briefly known results, and then discuss in more
detail some more recent results concerning twofold designs with
additional properties. At the same time, we will try to identify
problems that, to best of our knowledge, remain unsolved. Most
of the relevant definitions are given in the respective sec-

tions.



1. Twofold designs with block. size k=3.

1.1. Definitions and examples. A Steiner triple system, STS

(a twofold triple system, TTS) is a pair (V,B) where V is a set

consisting of v elements, and B is a collection of 3-element-sub-

sets of V called triples or blocks such that each 2-subset of V

is contained in exactly one (exactly two) triples of B. The num-
ber v is called the order of the system. A Steiner triple sys-
tem, and a twofold triple system of order v are abbreviated as
STS(v) and TTS(v), respectively. Another notation for STS(v) is
BIBD(v,3,1) or S(2,3,v), while for TTS(v) it is BIBD(v,3,2) or
82(2,3,v); however, the latter notation is sometimes understood
to represent a TTS with no repeated triples (see 1.10 below).
Examples. 1. TTS(3): V={1f,2,'3}, B={{>1,2,3}, {1,2,3}}
2. TTS(4): V={1,2,3,4}, B=({1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}
3..TTS(6): V={1,2;3,4;5;6}, B={ 123, 124, 135, 146, 156, 236,
245,'256, 345, 346} (here we omitted braces for simplicity).

- 1.2, Existence. (1) An STS(v) exists if and only if

‘the first one by Rev. T.P.Kirkman [16].

(2) A TTS(v) exists if and only if v = 0 or 1 (mod 3). Apparent-
ly the first proof of this was supplied by Bhattacharya in 1943
[2]; see also [11,13].

‘ We present here what is perhaps the simplest existence
proof for TTSs (sufficiency only; the necessity dis trivial). The
constructions of the following two lemmas are used quite often
for proving existence of TTSs with additional properties.

Lemma 1. If there exists a TTS(v) then there exists a



TTS(2v+1).
‘Proof. Let (V,B) be a TTS(v). Let X be a set, |X|=v+l,
VNX = @¢. Let F = {Fl,...,FV} be any 2-factorization of the com-

plete multigraph 2K_,; on X, and let a:V—>{1,2,...,v} be any

+1

bijection. Define, for aeV, C = {{a,x,y}: {x,y}sFa(a)}.'Then

(Vux, BU U C) is a TTS(2v+1). 0
acV

Lemma 2. If there exists a TTS(v) then thére exists a
TTS(2v+4).

Proof. Let (V,B) be a TTS(v). Take X, |X|=v+4, VNAX = @,
Let C' = {{i,i+1,i+3}: isc

say, X = Z }. Delete all pairs

+4- ZV+4
(considered as edges) that occur in triples of C' from the com-
plete multigraph 2Kv+4 on X. What remains is a regular graph G'
of degree 2v. Let F = {F1’°"?Fv} be any 2-factorization of G',
and let ao: —{1,2,...,v} be any bijection. If C, = {{a,x,y}:

{x,y}eF, )} for aeV then (VvUx,BUC'U\J C,) is a TTS(2v+4). D
acV

Theorem 1. A TTS(v) exists for all v= 0,1 (mod 3).
Proof. We use induction on v. The statement is true for
v=3,4,6 (see Examples 1,2,3 in 1.1). Let now v = 0,1 (mod 3),

v>9, and assume that a TTS(u) exists for all u<v (u

0,1(mod 3)

and ux3). If v = 1,3 (mod 6), let u=(v-1)/2; then u

1

0,1(mod 3)
and so, by induction hypothesis, there exists a TTS(u). Applying
Lemma 1 gives a TTS(v). If v =:0,4 (mod 6), let u=(v-4)/2; then

u = 0,1 (mod 3), uz3, and by induction hypothesis, there exists

a TTS(u). But now applying Lemma 2 gives a TTS(v). O

1.3. Enumeration. Let N2(v) be the number of nonisomorphic

TTS(v). The values of Nz(v) are known exactly only for v<10. We
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have N2(3) = N2(4) = N,(6) = 1, N2(7) =4, N,(9) = 36 [21,24],
N2(1O) = 960 [6,9,15]. The value of N2(12) is not known exact-

ly; we know N2(12)2574 [21]. In general, we have lim NZ(V) =

v-ro©o

v2 1n v, a result obtained easily from [26]. The exact asympto-

o+ =

ics for N2(V) is still unknown (as is, incidentally, the exact
asymptotics for the number of STSs).

1.4, Resolvability. If (V,B) is a design, a parallel class

in (V,B) is a set of blocks that partitions V. A resolution is

a set of parallel classes that partitions B. A resolvable design

is a design admitting a resolution.
" Theorem 2 [12]. A resolvable TTS(v) exists if and only if
v 2 0 (mod 3), v # 6.

A near-parallel class is a set of blocks that partitions

VN {x}, X an element. A near-resolution is a set of near-paral-

lel classes that partitions B. A near-resolvable design (some-

times also called an élmOSt resolvable design) is a design ad-
mitting a near-resolution.

"Theorem 3 [12]. A near-resolvable TTS(v) exists if and only
if v = 1 (mod 3),.

1.5. Embedding. A TTS(v) (V,B) is a subdesign of a TTS(w)
(W,C) if VEW and BCC. In such a case one also says that (V,B)
is embedded in (W,C).

Theorem 4 [32]. A TTS(v) can be embedded in a TTS(w) if and

only if w22v+1, w = 0,1 (mod 3).

1.6. Disjoint TTSs. Two TTSs (V,Bl), (V,B2) on the same set
are disjoint if B;A B, = §.
Theorem 5 [33]. The set of alllfgj‘three—element subsets

§£:



of a v—sét, v = 0,4 (mod 6), can be partitioned into (v-2)/2
pairwise disjoint TTS(v)'s.

Such a set of (v-2)/2 pairwise disjoint TTS(v)'s is usual-
ly called a large set of disjoint TTSs.

When v = 1,3 (mod 6), a large set of disjoint TTSs cannot
eiist. In this case, there exist at most (v-3)/2 pairwise dis-
joint TTSs (with né iepeated blocks). It follows from the known
resulfs on large sets of STSs [19] that such a set of (v-3)/2
pairwise disjoint TTSs exists for all v = 1,3 (mod 6), v27, ex-
cept possibly when v=141, 283, 501, 789, 1501, 2365.

1.7. TTS as the underlying design of a Mendelsohn and di-

rected triple system. A Mendelsohn triple system [directed

triple system, respectively] is a pair (V,B) where V is a v-set

and B is a collection of cyclic triples [of transitively direc-
ted triples, respectively] of elements of V such that each orde-
red pair of distinct elements of V is éontained in exactly one
cyclic [transitively directed] +triple of B. Here, a cyclic
'triple (a,b,c) contains the ordered pairs (a,b), (b,c) and (c,a)
while a transitively directed triple [a,b;C] contains the orde-
red pairs (a,b), (a,c) and (b,c). Alternatively, a Mendelsohn
triple system and a directed triple system, respectively, is a
decomposition of the complete symmetric directed graph into cyc-
lic, and into transitive tournaments on three vertices, respec-
tively.

It is known that a Mendelsohn triple system of order v

(MTS(v)) exists if and only if v 0,1 (mod 3), v # 6 [23], and
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a directed triple system of order v (DTS(v)) exists if and only
if v E‘O,l (mod 3) [23]. Cléarly, disregarding orientation or

direction in an MTS or in a DTS results in a TTS. What can one

say about the converse?

Theorem 6 [4,14]. Every TTS is direcfable (i.e., under-
lies a DTS).

In féct, a TTS is usually the underlying design of several
nonisomorphic DTSs. A TTS may be the underlying design of seve-
ral nonisomorphic MTSs, however, not every TTS can be oriented
into an MTS.

Theorem 7 [1]. For every v = 0,1 (mod 3), v> 6, there
exists a TTS(v) which is not orientable into an MTS.

On the other hand; it is quite easy to decide whether a gi-
ven TTS underlies an MTS (i.e. whether a TTS is orientable).

1.8. Indecomposable and simple TTSs. A TTS(v) is decompo-

sable if its set of blocks can be partitioned into two subsets
each of which is a set of blocks of an STS(v). Otherwise, it is

" indecomposable.

Trivially, any TTS(V) wiﬁh v Z 0,4 (mod 6) is indecompo-
sable.

Theorem 8 17 . Let v = 1,3 (mod 6). An indecomposable
TTS(v) exists if and only if v>7.

Proof. (i) There is no indecomposable TTS(v) for v=3 (tri-
vial) or v=7 [24]. (ii) Take TTS(4) (trivially indecomposable),
and use Theorem 4. a

It is easy to decide whether a TTS is decomposable: form

the block intersection graph of the TTS (its vertices are the

6
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triples; two vertices are adjacent if the corresponding triples
share a pair of elements). The TTS is decomposable if and only
if this graph is bipartite.

A TTS(v) is simple if it contains no nontrivial sub-TTS.

0,1 (mod 3).

1

Theorem 9. A simple TTS(v) exists for all v
" Proof. There exists a simple STS(v) for all v = 1,3 (mod 6)

[8]. Also, every STS(v), v>3, has an isomorphic disjoint mate
[34]. Take a simple STS(v), and an isomorphic disjoint copy of
it; this gives a simple TTS(v).

For v = 4 (mod 6), take a simple STS(v-1), and, on the same
set, a disjoinf maximal partial triple system whose leave (i.e.
the graph whose edges are the pairs not contained in any triple)
is a cycle of length v-1. Such a maximal partial triple system
always exists [6]. Add a new element «, and triples’{w;x,y}
where {x,y} is an edge of the (v-1)-cycle. This yields a simple
TTS(v). For v = 0 (mod 6), the proof is similar. | U

For v .= 1,3 (mod 6), the simple TTSs obtained in Theorem 9
are decomposable.

Problem 1. Simplify the proof of the existence of simple
TTSs.

Problem 2. Determine thespectrum for simple indecomposable
TTSs.

Problem 3. Are almost all TTSs simple?

Remark. It was conjectured in [28] that almost all STSs are
simple (a simple STS is sometimes called planar).

1.9. Element neighbourhoods in TTSs. Let (V,B) be a TTS(v).

For xeV, define the neighbourhood graph N(x) of x as follows:

~)
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N(x) = (VX,EX)>Where vV, = VA\{x}, E = {{u,v}: {u,v,x}eB}. A gi-

ven (multi)—graph G is an element neighbourhood (of a TTS) if
there exists a TTS and its element x that N(x) = G.
| An obvious necessary condition for G to be an element neigh-

bourhood of a TTS is that G must be 2-regular and |V(G)| = 0,2
(mod 3).

Theorem 10 [7]. Every 2-regular mutligraph on n vertices,
n = 0,2 (mod 3), is an element neighbourhood of a TTS, with
exactly two exceptions: CZLICS, CSL}CB.

1.10. Number of repeated blocks in TTSs. A TTS(v) (V,B)

may contain two blocks, say, b={x,y,z}, b’={x,y,z} identical as

~subsets of V; then b is a repeated block.

Let v = 0,1 (mod 3). Denote
R(v) = {t: 4 TTS(v) having exactly t repeated blocks}.

The set R(v) is called the spectrum for repeated blocks in TTSs.

We have R(3)={ 1}, R(4)={ 0} (trivial), R(6)={ 0} (cf.Example 1 of
1.1),R(7)={0,1,3,7} [24], R(9)=(0,1,2,3,4,6,12} [20,24],
R(10)={0,1,2,3,4,5,6,7,9}[5,9], R(12)={0,1,2,...,12,13,16}[31].
Denote bv=v(v—l)/6, sv=v(v—4)/6. The following theorem comple-~
tely determines the spectruﬁ for repeated blocks in TTSs.
Theorem 11 [18,31]. Let v>12. Then
'{0,1;.,.,bv-6,bv-4,bv} if v = 1,3 (mod 6)

R(v) = {0,1,...,8,-2,s_} if v = 0,4 (mod 12)

Hi

{0,1,...,8,-1} if v = 6,10(mod 12)
If we require, in addition, that the TTSs be indecomposable, we
may define by analogy the spectrum for repeated blocks in inde-

composable TTSs to be the set
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RI(V)={t::3indecomposable TTS(v) with exactly t repeated blocks}
We have trivially RI(v) = R(v) for v = 0,4 (mod 6), so we may

assume Vv = 1,3‘(mod 6). We have RI(3) = @, RI(7) = @, RI(9) =

IH

{0,1,2,4} [20]. In general, RI(v) SoR(v) for all v = 1,3 (mod 6)
as bV is never contained in RI(v). |

Denote L(v) = {0,1,...,bv—9,bv—8,bv—6}.

Theorem 12 [30]. Let v = 1,3 (mod 6), v>15. Then RI(v)=L(Vv).
(For V=13, there is one additional exception: 17¢RI(13) so that
RI(13)={0,1,...,15,16,18,20}.) |

Proof (an outline only). (i) Let Q be a 2-factorization of

2K and let g be the total number of 2-cycles in Q; then

v+1
teRI(v) implies t+qeRI(2v+1). Proof. If x is an element and P is

a set of pairs, we write x*P={{x,a,b}: {a,b}eP}. Let V={ai:

i=1,...,v}, [X|=v+l, VAX=p, W=VU X. Assume (V,B) is an indecom-
posable TTS(v) with t repeated triples, Q = {Q1"°"QV} a 2-fac-
v .
torization of 2K on X. Let ¢ = \U a.*Q.. Then (W,BUC) is an
, v+1 =1 11 g
indecomposable TTS(2v+1l) with t+q repeated triples.
(ii) If v = 1,3 (mod 6), se{0,1,...,v-2,v}, teRI(v) then
t+s(v+1)/2eRI(2v+1l). Proof. Let F = {Fl,...,Fv} be any l-facto-
rization of KV+1 on X, a any permutation of {1,2,...,v} fixing

exactly s letters. Then take in (i) QizFilJFia‘

(iii) If RI(v)=L(v) for v = 1,3 (mod 6), vz13, then RI(2v+l) =
LI(2v+1l) (follows directly from (ii)).

(iv) If v = 1,3 (mod 6), v=29, se{0,1,...,v-2,v},8¢c {0,1},
Ye{0,1,3,7}; teRI(v) then t+s(v+7)/2+8v+yeRI(2v+7). Proof. Si-
milar to (ii) but use a v—2v+7 construction for STSs as given,

e.z., in [29].
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(v) If v = 1,3 (mod 6), v215, RI(v) = L(v) then RI(2v+7) =
L(2v+7) (follows directly from (iv)).
(vi) RI(13)=L(13)\‘{17}; RI(v) = L(v) for v=15, 19, 21, 25, 27,
and 33. This is needed to start the induction; the proof of this
is tedious, lengthy and ugly. For details, see {30].
(vii) Induction on v, using (iii),(v),(vi). D
Problem 4. For which values of v does there exist a resol-
vable TTS(v) without repeated blocks? More generally, what is
the spectrum for repeated blocks in resolvable TTSs?
Problem 5 (cf.1.6). For which values of v does there exist
a set of (v-3)/2 ﬁairwise disjoint indecomposable TTS(v)'s

without repeated blocks?

2. Twofold designs with block size 4.

2.1, Definitions and examples; existence. A twofold four-

tuple system (TFS) is a pair (V;B) where V is a v-element set,
B is a collection of 4-element subsets of V called blocks such
that each 2-subset of V is contained in exactly two blocks of B.
Another notation: BIBD(v,4,2), 52(2,4,V).

" Examples.1.TFS(4): V={(1,2,3,4}, B=({1,2,3,4}, {1,2,3,4}}.
2. TFS(7): V={1,2;3,4,5;6,7}, B={ 1234, 1256, 1357, 1467, 2367,
2457, 3456}.
3. There exist exactly. 3 nonisomqrphic TFS(10)'s ([25]; cf.also
[101). u

' Theorem 13. A TFS(v) exists if and only if v = 1 (mod 3).

This was proved by Hanani in 1960 [11]; While the necessi-

ty is obvious, we present here a proof of sufficiency which is

7o
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quite different from Hanani's. It has the advantage that it en-
ables one to prove quite easily the existence of TFSs with an
additional property, provided this property is preserved by em-
bedding, and the existence of designs with this property can be
proved for sufficiently many small orders.

A design (V,B) is i-resolvable if its block set. B can be

partitioned into subsets Pl,..._,Pq called i-fold parallel clas-

ses such that each element of V occurs in exactly i blocks of

each Pj' A partially resolvable (v;kl,kzgx;m)—deSign is a pair-
wise balanced design of index A on v elements with block sizes
kl, k2 such that the blocks of size k1 can be partitioned into
m A-fold parallel classes.

We are interested here in a épecial case of PRPs: PRP
(v;3,4;2;m). We denote such a PRP simply by P(v,m). Thus a
P(v,m) is a PBD of index 2, with blocks of size 3 and 4 where
the bloqks of size 3 are partitioned into m 2-fold parallel
classes. We will consider just two values of m: m, = (v-4)/2,
m, = (v=-7)/2.

Lemma 3. P(v,m ) exists for all v = 0 (mod 12).

Proof. Let V = Z4s x Z3, and let the base blocks mod (4s,3)
be :

(1) {(0,0),(1,0),(2s,0),(2s+1,0)}

(2) 1(0,0),(r,1),(2s-r,1)}
r=1,2,...,s-1
{ (0,0),(1‘,2),(2S-—I’,2)}
(3) {(0,0),(r,1),(2s-1-r,1)}
r=1,2,...,s-2
{(O:O))(r32)}(2s_1_r,2)}

(4)(&) {(0,0),(Zs,l),(28+l,l)}, { (050),(—(8_1);2)7(832)}

4
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(b) {(0,0),(s,1),(2s,2)}, {(0,0),(~(s-1),1),(-(2s-1),2)}

(c) 1(0,0),(0,1),(0,2)} taken twice 0
Lemma 4. P(v,m ) exists for all v = 6 (mod 12).

be the

Proof. Let V = Z x {1,2}. Let Pi,P;,...,P

i
6s+3 3s+1
parallel classes of a Kirkman triple system of order 6s+3 on

. . ) ‘ . ' 1
Z6s+3 x {i}, i=1,2. Without loss of generality, let P1 be
{01,(2s+1)1,(4s+2)1} mod 6s+3. Let the base blocks of B modulo
6s+3 be:
(1) {05,(2s+1),5,,(s+1),}
(2) {02,11,(GS+3—1)1} i=1,2,...,3s+1

(3) {01,02,(2s+2)2}

{01,(2s+2-i)2,(2s+2+1)2} i=1,2,...,s
{0y,(s-1),,(3s+2+1),} i=1,2,..., (s-1)/2]
{0, (58+2-1),,(5s+3+1i),} i=1,2,...,[3s/2]
Let B also contain
(4) all triples of the parallel classes P%, Pé,...,PéS+1, and
P2, PZ,...,Pa 1. 0
Lemma 5. P(v,m2) exists for all v = 3 (mod 6).
" Proof. Let V = Z X Z,, and let the base blocks modulo

2s+1 37
(2s+1,3) De:
(1) {(0,0),(2,0),(8,0),(12,0)}
(2)(a) {(0,0),(0,1),(0,2)} taken twice
(b) {(0,0),(1,1),(4,2)}, {(0,0),(2,1),(6,2)}
£(5,0),(3,1),(8,2)}, {(6,0),(5,1),(0,2)}
(3) {(0,1),(4r-2,1),(2r-1,0)}) for r=1,2,3 once, and for
{(0,2),(4r,2), (2r,0)} .} r=4,5,...,s/2 twice

When s is odd, take also

/-
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(4) {(O,l),(2s,1),(s,0)}, {(0,2),(2s,2),(s,0)}.
[This works only if s=26.The cases 1SS$5 have to be considered
separately; see [27] for details.] , U
Theorem 14. Let (V,B) be a TFS(v). Then for w=3v+a,
ae{1,4,7}, there exists a TFS(w) (W,C) such that (V,B) is em-
bedded in (W,C). |
" Proof. This is well known for a=1. Let u = w - v. If a=4
then u = 2v+4 = 0 (mod 6); and by Lemmas 3 and 4, there exists
a P(u,v). If a=7 then u = 2v+7 = 3(mod 6), and then there exists
a P(u,v) by Lemma 5; In either case, let Pl’ P2,...,PV be the

2-fold parallel classes of this PRP.‘Let Q be the set of blocks

of size 4, If V = {al,...,av}, let D = {{ai,x,y,z}: {x,y,z}sPi,
ig{1l,...,v} , C = BUDUQ. Then (W,C) is a TFS(w) containing
(V,B). a

Theorem 15. A TFS(v) with no repeated blocks exists if and
only if v = 1 (mod 3), v>4. |

Proof. Necessity is obvious. For sufficiency, use induction.
The TFS(7) in Example 2 in 2.1 has no repeated blocks. Similar-
ly, none of the 3 nonisomorphic TFS(1l0)'s has repeated blocks.
Examples of TFS(13) and TFS(16) without repeated blocks can be
found in [22] and [3], respectively. An example of a TFS(19)
without repeated blocks is the following: V = 219, B =
{{o0,1,7,113, {0,2,13,14}, {0,4,6,9} mod 19}. Let v222, v = 1
(mod 3), and assume that a TFS(u) with no repeated blocks

4

Hi

exists for all u<v (uz4). Let u = (v-a)/3 where a=1 if v
(mod 9), a=4 if v = 7 (mod 9), and a=7 if v = 1 (mod 9). In

either case, u = 1 (mod 3), uz4, so there exists a TFS(u) with

/7
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no repeated blocks. Applying Theorem 14 with appropriate value
of a yields a TFS(v) with no repeated blocks. 0
blocks exists if and only if v = 1 (mod 3); v>4,

" Proof. Similar to that of Theorem 15. 0

Problem 6. Determine the spectrum for simple TFSs.

" Problem 7. Determine the spectrum for repeated blcoks in

TFSs.
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