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ON RESOLVENTS OF FUNCTION-KERNELS

Ochanomizu Univ.
HISAKO WATANABE
§0. Introduction ( R ey F)

in potent;a} theory necessary and sufficient conditions have
been studied for kernels G satisfying the domination principle

to be resolventi kKernels. Here we mean that G is a resolvent

-3

kernel if there exists a family {Gp$n . of Kernels such that
G, -G, = (a - )G Gq for every n, a9 > O

and

Tim G = G,
=0

)
=
£
9!

The compositio 0t Kernels Gp, Go or the convergence lim Gn

. n-0

of kernels {Gp} igs a suitable one far respective Kernels.

For exampie, we can refer to [103, [33, 81 for measure
kerneis, [41, [71 for convoliution kernels and [31, [81, EQE,faﬁ
diffusion kernels. Necessary and sufficient conditions obtained
in these papers are 'the dominated convergence properties’ or
‘regularities’,

In this paper we shall congider the same problems with
regspect to Borel measurablie funcition-kKernels G satisfying the

domination principle.

Pl

et X bhe & Jocally compact Hawdorff space with a countable
base, Denole by R{G)Y be the class of all positive measures U

with compact support suech that GU are locally bounded and let &



be a positive Raden measure on X such that EK £ B(GY n B(G) for
every compact set K. Here £K is the restriction of & to K. We

define the composition GIGZ relative to & of two Borel

measurable functions Gl’ G? by

(G,G,y{(x, v) = JG](X, z)G, (7, vYdE(Z)

172
and the convergence lim G = G by
p20
(0.1 lim JIG (x, yrydp{xidvi(y) = JJG(X, yirdu{xyxdv(y)
p>0 77 P

for every M € RB(G) and v € B(G). We shall say that G is a &-

resolvent kernel if there exists a family {Gp}p>0 of Borel

measurable function-kernels such that {Gp}p>0 satisfies (0.1)

and

Jj(Gp(x, ) = G (x, ¥)dpGOduy)
= (q - p)IJ(Gqu)(X, v)dR(x)du(y)

for every M € B(G) and v ¢ B(G).
Further we shall say that G possesses the £-dominated
convergence property if it has the following property:

Let un, u be nonnegative Borel measurable functions on X X X
and b be a positive real number. 1f

jJ(Gun)(x, vidpu(xidv(y) + Jjun(x, yiapdxydv(y)

= bIJG(x, yIydp(x)dv(y}

and
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lim [IU (x, VHdpx)yduvi(y) = Iju(x, yiydpixydv(y)
n-=>0 n

for every U € RB(G) and every v ¢ R(G),

then

lim JJ(Gun)(x,'y)dp<x)dv(y) = JJ(Gu)(x, yIydu(xiddvi{y)

N>

for every M € R(G) and every v € B(G).

In §3 and &4 we shall prove that G is a £-resolvent kernel if

only if both G and G possess the £-dominated convergence

property. To construct a &-resolvent family {Gp}, we shall use
the methods similar to that in [8].

Further we shall show in §5 that if G and E possess the
dominated convergence préperty, then do they the &£-dominated
convergence property for each measure £ and G is a &-resocolvent
kernel for each measure &.

Finally, in §6 we shall assume that G is a continuous
function-KkKernel and we shall canétruct the &-resolvent of

function-kernels with some degree of continuity. For this

-

purpose we define a capacity YP

Q with respect to a compact set E

and a measure ¥ € B(G). Under the same assumptions in §4 we

shall show that there exists a &-resolvent family {Gp}p>0

associated with G having the further property:
There exists a negligible set N such that for each y £ X\N

and each compact set E with E X {y} = (X X X)\A', the function x

g Gp(x, ¥) is YF—qudsi continuous.

b
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Here A' = {{(x, ¥); G(x, y) = #+w},

§1. Borel measurable function-kernels
Let X be a locally compact Hausdor ff spacee with a couniable

base and G be a PBorel measurable function-kernel on X, it.e., a

Borel measurable mapping from X X X into R+ U {+®} such that G

is locally bounded outside the diagonal set. The adjoint kernel
5 of G is defined by
é(x, y) = G(x, v).

We note that é is also a Borel measurable function-kernel.

Now we dennte by M' the set of all positive Radon measures on
X. TFor p e M* the potential GH is defined by

oo = [6x, yranm
and the classes of measures are defined as follows:
+

M=

o M+; supp{M) is compacty},

m

S

e ws anan < vy,
B(GY = {un e M;; Gi is locally bounded},

(G = {u e M;; Gi is finite and continuous)}.

A Borel measurable set B is said to be G-negligible or simply

negligible if p(Gy = 0 for every U = E(G). Obviously a Borel

set B is G-negligible 1f and only if it is G-negligible. When a
property holds on a set F except on a G-negligible set, we say

that it holds G-n.e. en F (simply n.e. on F).
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In this paper we shall assume that a Borel measurable
function-kernel G has the following property:

(p) For every compact set K there exist measures A £ R(G) and
A' € RB(G) such that

GA 2 1 on K, GA' 2 1 on K.
Furthermore we shall assume that G satisfies the domination

principle, i.e., .
(d) Gp £ Gv on supp(M) for p e $(G) and v = M; > GM £ Gy on X.

The following properties aon a Borel measurable function-
kernel are well-known.

Proposition A ([4, Theorem 23). A Boren measurable function-

kernel G satisfies the domination principle if and only if G
satisfies the domination principle.
Lemma 1.1. A Borel measurable set B is G-negligible if and

only if HM(B) = 0 for every M ¢ R(G). Furthermore B is G-

negligible if and only if Hw(B) = O for every B ¢ B(E).
Let £ be a nonnegafive Borel measurashle function on X. If
f has the following properily {(sg), f is called G-supermedian.
(s) n e E(G)$ ve M, GH S Gv + f on supp(i) =
G £ Gv + f on XK.

Since G satisfies the domination principle, GA is G-supermedian

for each A = M;n

Now we denote by EK the restriction of & ¢ M to a subset ¥

of X and define a class of measures by

in
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ilG)“= {€ € M+: £ e B(G) n B(G) for every compact set K.

K
Further, we denote by J the class of all nonnegative Borel
measurable functions on X. For f = J, set

Sf = {x € X; f£(x) > 0}.

lemma 1.2. Let & be a measure in fiG) and u be G-
supermedian. If £ € J is locally bounded on X and G(f£) £ G(g&)

+ U n.e. on Sf for g € J, then the same ineguality holds

everywhere.

§2. The space L(G, G)
Let u be a Borel measurable function on X X X. To simplyfy

the notations we write
Jjudpdv
instead of
Jju(x, yydpdv(yd,
if it is well-defined.

Now we define L{(G, G) to be the class of all Borel measurable

functions u on X X X satisfying

inuldpdv { +w

for every B € RB(G) and every v e B(G). Let u, v e L(G, G). If
Ijudpdv = ijdpdv for every M € R(G) and every v € RB(G),
then we say that u and v are G-eguivalent and write

u =v in L{(G, Q).
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Similarly, if

[ [uanay

R(G), we write

J’Jrud Hdw

A

. o
for every M ¢ B(G) and every v

m

u s v in LG, G).

The class L{(G, G) is an ordered vector space under the G-
equivalence.

Using Lemma 1.1, we can easily show the following lenmma.

Lemma 2.1. For u € L(G, G) the following asgertioné are

equivalent:
(i) w = 0 (resp. uw 2 0) in L(é, @,
{ii> For every M € B(é) y = ju(x, y)ydu(x) is equal to 0
(resp. nonnegative) n.e. on X.
(iii) TFor every v € E(G) x = Ju(x, v)dvw(y) is equal to O
(resp. nonnegative) n.e. on X.
Let {un} (resp. {up}) be a family of L(é, G) and“u € L(é, G).

1f

1im Ijundudv = Jjududv

N0

{(resp. lim jju dudy = j]udhdv)
ps0 7 P

faor every 4 £ EB(G) and every v ¢ R(G), we sav that {un} (resp.

~

{up}) converges to u in L{(G, G) and write

G-1lim u_ = u {resp. G-lim u_ = ul.
n-2o p20
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v

Similarly we shall define with respect to G. For example the

space L{(G, G) is the class of all Borel measurable functions u

on X X X satisfying

jJiuidpdv { +®

for every M € RB{(G) and every v € R(G). The equality

u = v in L(G, &

means that -

Ijudﬁdv = JJVdeV

for every H € B(G) and every v € R{G).

§3. E-resolvent kernels
In this section we shall fix a measure Ee?liﬂi)é
Let u, v be nonnegative Borel measurable functions on X X X.

The composition uv of u and v relative to £ is defined by

(uv)(x, y) = Ju(x, Zyvi(z, yI)ds(z).

Furthermore un is inductively defined by

ul(x, vy = u(x, vy},
Wiz, ¥ = ju(x, z)un—}(zg vYdE(2).
We note that
u” (%, y) = Jun_l(x, ziulz, y)rds(zy.

Moreover we have

N hVavs

(uv) (x, y)y = (vu){(x, v).



35

A Borel measurable function-kernel G is said to be a &-

resolvent kKernel, when there exists a family of Borel measurable

function-kernels {Gp}p> < L{(G, G) with the following

0
properties:
(rp) G, - Gy = (a - p)GpGé in L(G, G) for every p, q > 0,
(r.) G-lim G_ = G.

2
p=0

The family (Gp} is called a &-resolvent family associated with

G.

The reguirement {(r.,) implies that Gp = G in L(G, &) for 0 <

1
p < q. It is easy to see that

(3.1) G - G = pGG_ = pG_ G in L{G, Q)
for each p > 0.

N

Remark 3.1. If G is a &~resolvent kernel, so is G. In fact,

since GG = G G_ in LG, G), it follows that
P a g p

H

s - s G s 4 - G Y3 ;
Gp(x ¥ Gq(x_ y) p(y X) Gq(v X))

"

(g - p)(Gqu)(y, X)

NN

(q - p)(GpG

Q){X’ ¥)

4

in LG, G).
A E-resolvent family has the following property.

Lemma 3.1. If {Gp}p)0 is a &-resolvent family associated

with G, then for each p > 0,



(3.2) JJpG(pGp)mdydv 50  (m - ®

for B € B(G) and v € R(G) and

m
(3.3) pG = G-lim ¥ p“G;,

m=® n=]
Definition 3.1. Let £ ¢ L(G). A Borel measurable function-
kernel G is said to possess the £-dominated convergence
property, if they have the following property:

1f nonnegative Borel measurable functions un; u €
LG, G) satisfy Gun + un £ bG for some b € R+ in L(G, G) and
{un} converges to u in L{G, G}, then {Gun} converges to Gu in

L(é, G).
Lemma 3.2. If G satisfies (3.1) and possesses the &-
dominated convergence properiy, then (3.2) and (3.3) also.hold.
By the same methods as that in the proof of Proposition 2.7.3

in [8] we can prove the following theorem.

Theorem 3.1. Suppose that G is a &-resolvent kernel. Then G

A4

- and G possess the E-dominated convergence property.

84. The construction of a £-resolvent
LLet ¥ be a Borel measurable subset of X X X. We denote by
B(F) the Banach lattice of all bounded Borel measuvrable
functions u on F.with the usual order and the norm
ful = sup {lu(x. yv)!; (x, v) € F}.

For v € X we define

10
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‘F_=(x g X; (x, v) ¢ F}.
Y

Let H be a closed sublattice of B(H) and denote by H the
class of all nonnegative functions u in H.
The following lemma can be proved hy the usual methods. (cf.
[9, X.T101).
Lemmna 4.1. Let w be a function in H such that w & 1 on
F. Suppose that a positive bounded linear operator V on H has

the following propertiy:

+ +
(D) Whenever for u, ve H, v X, b € R

(Vuj(+, v3> & (Nvi(+, ¥y + bw(*, ¥) on {x ¢ Fy; wix, v) > 0},
the same inequality holds on Fv'

Then there exists unigquely a family {Vp}p> of positive hounded

)
linear aperators on H such that

(4.1 V- V_ = pVV_ = pv V.
) p - Pl T P

In this section we shall fix & ¢ IJG), The following lemma
is importiant, |

Lemma 4.2. Let X be a compact subset of X and F be a Borel
measurable subset of K X K. Further, let v be a nonnegative
bounded Borel measurable funciion on F. Then, for p > 0, there

exists uniguely u € B(F) such that
(4.2 DJG(K, z)XF(z, yviu(z, yv)d&(z) + u(x, y) = v(x,v)

for each (x, yv) € ¥, EHspecially, if x = v(x, v) is G-

supermedian on Fy for each v £ K, then u is nonnegative on F.

Proof, We define an operator V on B(F) by

11
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(V) {x, y) = [G(X, z)XF(z, yyf(z, yryds(z).

Then V is a positive bounded linear operator on B{(F). Moreover
by the assumption (p) there is A € B(G) such that G\ 2 1 oh K.
Put w(x, ¥) = GA(x) for (x, y) € ¥. Then w satisfies (D) in

Lemma 4.1. Therefore, there exists a family {Vp}p> of positive

0
bhounded linear operators on B(F) satisfying (4.1). Set

U= v - pvpv.

Then u € B(F) and with (4.1)

pJG(X, z)XF(z, yviu(z, vyd&(z) + ui{x, v)

pVu) (x, y) + ul(x, v)

pV{(v - pvpv)(x, ¥Y) + v(xX, y) - p(va)(x, ¥

vix, ¥) .
Thus we see that u satisfies (4.2). Next, to show the

uniqueness of u, let u' be an another function satisfyving (4.2)

and set
. j u(x, y) (x, y) € F
ul(x, ¥) =
| l 0 otherwise,
J u'(x, vy (x, vy & F
Ug(x_, y) = l V
L0 otherwise.
Then
(4.3) pGu1 + u1 = pGu2 + ug on F.
Put £ = u, - u,. Noting that pGf + £ = pGf + £ , we have

PGETI (-, ¥) S P(GE (-, ¥y)  on (x & F; T, vy > 0

for each v € K. From Lemma 1.2 it follows that

ey
o



p(GET)(+, y) S p(Gf )(*, ¥) on X,
whence
pGu, s pGu, on F.
Conseguently, by (4.3)
u1 2 u2 on F.

Similarly we obtain u, = u2 on F and hence uw = u' on F.

1
Therefore the unigueness of u has been shown. Finally, assume

that x = u(x, y) is G-supermedian on Fy for each v € K. Then,
for a fixed peint v = K,

pJG(x, zyiglz, yru(z, yYd&E(z) § v{(x, v)

on {x € K: XF(X. y)u+(x, ¥v)y > 0}, From Lemma 1.2 it follows

that

pJG(x, z)XF(z, yviulz, v)¥d&(z) 5 v(x, y) for every X € Fy.
By (4.3) we see that u must be nonnegative on F, which completes

the proof.

Next, we shall show our main theorem.

AYd f
Theorem 4.1. Suppose that G and G possess the £-dominated
convergence property. Then G is a &-resolvent kernel.
Proof. The proof is divided into several steps.

(1Y Let {Un} be an exhaustion of X i.e., a family of

retatively compact open sets satisfying

33
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Set Kn = ﬁq and denote by &n the restriction of £ to Kn’ Note
that En e R(@). Put
Fn = {(x, y) = Kn X Kn; G{x, ¥) £ n}.

We shall fix p > 0. Since x = G(x, ¥} is G-supermedian and

(%, ¥v) = G{x, ¥v) is bounded on Fr, by Lemma 4.2 there exists a
i1

nonnegative bounded Borel measurable function u'1 on Fn such that

. s p . e
pJG(x, z)un(Z’ y)AF (z, yyd&{(z) + un(x, y) G(x,¥y) on Fn.

n
Setting un = O outside Fn’ we exiend un to a nonnegative bounded
Borel measurable function on X X X. By lLemma 1.2 we obtain
(4.4) pJG(X, z)un(z, vidE(z) + u (%, ¥ £ G(x, ¥> on X X X,
(IIY We shall show that {u_} is decreasing on F_ for a
n n2m m
fixed m. indeed, we fix y € X and set v = un - u From

n+l’

(4.5) pGun + un = pGun+1 + u

"
[op]
o
=]
xy

=

n+1

it follows that

paviYCe, ¥ £ pGv IC+, ¥) on {x € X; v (x, y) > 0}.

By Lemma 1.2 we obtain

PGV (+, y) £ pGv (+, ¥) on X

and hence pGun = pGun+1 on X X X. Consequently, by (4.5) we

have

is decreasing on F

=m wmt

Thus we see that {u_}
n n

(ITI) Now we define

14



$X
im u_(x, ¥) if (x, v) € W F
nw n m=1 m
Gp(x, ¥y) = -
0 othervise.
4]
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If x ¥ y, then (x, vy € L} Fm' Further {from (4.4) it follows

that

(4.6) Gp(x, ¥y £ G(x, v) for every X, vy € X.

Noting that G-1lim u_ = Gp, we deduce from E~-dominated
n-2wo CoE

convergence property

G-1im Gu_ = GG
11> p

whence by (4.6)

ijGGpdﬁdv + Jijdudv

lim {JIpGundpdv + Jjundpdv}

N

v

n-oe

JJGdﬂdv.

On the other hand from (4.4) the opposite inequaliiy holds.

Hence we have
4.7y - pGGp + Gp = in L{G, G3.
(IV)Y We shall prove

(4.8) GG = G G in L{G, Q).
P P

NS
Since G satisfies the domination principle and has the &£-
dominated convergence proberiy, by the aboeve considerations

(111>, there exists a family {Gé}p> of nonnegative Borel

0

measurable functions on X X X such that

15h

lim JJG(X, y)XF (x, yIydu(xydviy>
: n

(13-
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(4.9) PGG) + G: = G in L(G, ©
and
(4.10) G,(x. ¥) & Gex, v) for every x, y < X.

Consequently
7 Oo N
pIJdedp = ¥ [[pna*ndvdp for u & B(G) and v ¢ B(G),
: n=1 p
whence

m AV
pjjedpdv = % JanG%ndpdv.

n=1

Therefore, with (4.7) we obtain

= = ! ! i AG, ,
pGGp + Gp G pGGp + Gp in L( G)

(4.11) pJG(X, z){JGp(z, yydu(y) }dE(z) + ij(x, yidv(y?}

= pJG(X, z){jGﬁ(z, yYdu(y) }dE(z) + JGﬁ(x, yydv(y)

n.e. on X. Denote by N the negligible set of all points x at

which (4.11) does not hold and set
h{(z) = IGD(Z, yirdui{y) - IG%(Z, v dv(y).
Then, by (4.6) and (4.10) h is locally bounded and

(4.12) pf@(x, 2)h (z)d€(z) + hT 0
= pfs(x, Z)h T (2)dE(z) + h™ ()

holds for every x € X\N. Here h+(x) = max {(hi(x), 0} and h (x) =

max {-h(x), 0}. From Lemma 1.2 we deduce

ij(X, ZzYh(z)d&(z) = O for all x € X

16



and hence by (4.12)
hix) = 0 for all x € X\N.

Thus we obtain
Gp = Gg in LG, G).
Therefore, {from (4.9) it follows that

GG = G G in L(G, Q).

(V) We shall show that (Gp} satisfies (rl), In fact, for p,

g > 0 we have, by (4.7) and (IV)

i
i

G (GG G (G - G )
pq q( p) q a b

in LG, G) and

1}
il

) (G - G )G
DQ(GQG.Gp P q)Jp

whence
G - = - ) G . 3 ', s .
$) G (g D G. J;- in LG G)

Y. Let

(VI) Finally we shall show that {Gp} satisfies (r2

g B(G). If p > g, then by (rl) we have

G.u 32 G n.e. on X.
1Y a

We define

{lxm {G]/np)(x) if it exists

h(x) = }n“m
L0 otherwise.

Then h is Borel measurable on X and 0 £ b & G n.e. on X. Let

e B(G). Noting that

17

G - Gp - quGp in L(G, (),

43

al —_ 5] {1 - - —
quG q&q;p G Gq quGp



44

4 3 yd&E ¢ = M
fjiGlfnp)(z)qu(z, vide{(zrydv(y) jjcljn(qu)dﬁdv

A

JJG{qu)dydv = ijdpdv { +>,
we obtain, by (V)

I(Jh(z)qu(z, yvid&{(z)yidviy) = lim qu(G}/np)(z)Gq(z,y>d2(z}dv(y)

n-=>®

tim (g - lin}JJG , G odpdy = lim J[(G - G Ydudv
N 1/n7q nom * 1/n g

I(h - éqp}dv.
Consequently, by (4.7) we have
j(gu - hldv = JJ(EM(Z) - h(z))qu(z, vIdE{zZrdvu(y)
for all v & RB(G), whence
5p<y> - h(y) = j(ép(z) - h(z))‘qu(zs y)d&(z) n.e. on X.
Therefore we have, for every v £ RB(G)

0= J(Gp - h)dv = IJ(Gp(z) - h(z))an(z, v dE{z)Ydv(y)

N ) ) .
ff(Gy(z) - h{z})(qu)“(z, vIdE(z)dv(y)

< IIGp(z)(qu}n(z, yIYAE(Z)dv(y)
Since JJG(qu)ndpdv > 0 by Lemma 3.2, it follows that

J(Gp - h)dv = 0 for all v € R(G).

Therefore, we have

tim JJGpdﬂdv = 1im Jjgl/ndUdv = jhdv
20 >0

JJGdudv,

which proves (r,}). Thus we have completed the proof of Theorem

£

18
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§5. The dominated convergence property
In this secticon we shall study the relation of the
dominated convergence property and E£-~dominated convergence
property.
Definition 5.1. We say that a Borel measurable function-
kernel G possesses the dominated convergence property, if G has

the following property:

+ +
e M T 5
u 0 \nL»M . G\n

LTS

Gy, “n 2 v vaguely,

N

jGAdvn - fGAdv for all A & BG).

Lemma b.1. Supane that G possesses the dominated convergence
property, then it also possesses the E-dominated convergence
property for any £ ¢ F(G).

Proof. Let un,u be nonnegative Borel measurable functions in

L.{G, G such that

(5.1) Gu + u_ S bG for some b € R" in LG, @

and {un} converges to u in L{(G, G). Let & ¢ £G) and v «

B{(G). The ineguality

n

£
(5.2) JG(X, zyu, (7, yIdv(y)di(z) + Ju (x, vydv(y) £ bGv(xX)

holds n.e. on X by (5.1). We denote by N the negligible set of
all points x at which (5.2) does not hold and put
Jun(z, yidu{y) Z € K\N

I
h (z) = 4
Lo z < N.

19
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Since hn = bGv on X, hn is locally bounded on X and

(5.3) JG(X, z)hﬁ(z)d&(z) S bGv(x)
holds on {x € X; hn(x) > 3}. By Lemma 1.2 we see that (5.3)

holds on X. Denote by An {resp. A) the measure hn(')i (resp.

{Iu(-, y)dv(y) }E) with density hn(-) (resp. fu(-, yrydui(y)).
Then, by (5.3) we have

Gkn(x) = JG(X, z)hn(z>d§(z} S bGu(x)y for all x € X.
Let f ¢ CO(X)+. Noting that f£ € B(G) and {un} converges to u

in L(G, G), we obtain

lim jfdkn 1im If(z)hn(z)di(z)

n-w n-=>o

= lim ff(z){fun<z, yYdv(y) }dE(z)

n-n

H

Jf<z>{ju(z, vydu(y) }dE(z) = [fdA.
This shows that {An} converges vaguely to A. Since G satisfies
the dominated convergence property, it follows that

1im IGM(Z)dAn(Z) = JGp(Z)dA(Z)

n-w
for évery H € B(G) and hence

4
lim jJ(Gun)dpdv = JJ(Gu)dpdv

N2

for every H = B(G), Thus we sec that {Gun} converges to Gu in

L(G, G). This completes the proof.



Using Lemma 5.1 and Theorem 4.1 we obtain

S

Theorem 5.1. Suppose that both G and G possess the dominated
convergence property, for each £ € Z(G) G is a £-resolvent

Kernel.

§6. Continuous function-kernels

A Borel measurable funétiﬂn—kernel G is said to be a
continuous function-kernel on X, if G is continuous in the
extended sense and strictly positive on the diagonal set A of X
x X.

The following lemma is well-known.

Proposition B (cf. [11, Proposition 2}). Suppose that a
continuous function-kernel G satisfies the domination principle
and has the following property (n):

{(n) No non-empty open set is negligible.

Then for each compact set K there is X\ ¢ E(G) such that
Gx 21 on K.

Remark 6.1. By Propositions A and B we see that, if a

continuous function-kernel! G satisfies the domination principle

and has the properiy (n), then it has the praperty (p»).

Avs
Fal

et £ be a compact subset of X and ¥ be a measure in B(Q®)

such that

¥

Gu 1 en E.
Set

S(G) = {lim GA 3 A € B(G), GX_ 8 GA_ ).
n-=o

For a subset B of E we define
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n.e. on E}.

TE(B) = inf (Judp; u e S(G), u 2 Xq

u

Here we use the convention inf ¢ = +w,

Then Yﬁ(B) = 0 if and only if B is negligible.

Further a Borel measurable function f on E is said to be Yﬁ—

quasi continuous if for each € > 0 there exists a closed set R,
= K such that the restriction of f to E8 is continuous and

TE(E\ES) < €, We note that the Yﬁ—quasi continuity does not

M
depend on the choice of u.
Lemma 6.1. Suppose that a continuous function-kernel G

satisfies the domination principle and has the property (n).

s

L.et E be a compact set and P be a measure in B(G) such that Gp 2

1. Further, let A € B(G). Then G\ is Yg—quasi continuous on E.
Using l.emma 6.1, we can prove the following theorem.

Theorem 6.1. Let G be a continuous function-kernel satisfying

(n) and the domination principle. Suppose that both G and G
possess the E-dominated convergence properrty for a & ¢ f(G)e

Then there exists a f-resolvent family {Gp} of G satisfying

p>0
the following property:
(L.QC) There exists a negligible set N such that for each vy €

XN and each compact set E with E X {(y} < (X X X)\A', Gp(*, y)

. E . \
is Tﬂ—qua51 continuous on E.
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