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Bessel capacity of symmetric generalized Cantor sets

Kaoru HATANO (Shimane Univ.)

81. Introduction

In [10] M. Ohtsuka obtained a necessary and sufficient
condition for a symmetric generalized Cantor set to be of zerod«l
{or logarithmic)-capacity. In the non—-linear potential theory
metric properties of sets of zero Bessel capacity were
investigated and the Bessel capacity of Cantor sets of special
type was estimated in [8; §7]. In order to explain their
results, let us recall the definitions of Bessel capacity and
symmetric- generalized Cantor sets.

Let gy = gd(x) be the Bessel kernel of order «, 0 < o« <od,
on the n-dimensional Euclidean space Rn(n 2 1), whose Fodrier

—ol/2 et—n

transform is (1 + (j[z) . and h = h (x) = [x| be the

Riesz kernel, 0 < o < n. The Bessel capacity Bd p is defined as
follows: For a set A C.Rn,

- 3 P
Bx.p(A) = 1nf_If(x) dx,

the infimum being taken over all functions £ eL; such that

gd_*f(x) > 1 for all x € A.

For gx'p(A), we just replace qd>by qi' We shall always assune

that 1 < p <o0o and 0 < p £ n.
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Let {k. }J =1 be a sequence of integers and {ijj;o be a
sequence of positive numbers such that kj 2 2 and k3+1[ ‘f
(j20). Let§ , = (fj kj+1fj+1)/(k3+1 - 1) (j =0, 1,

) Let I be a closed interval of length f% in Rl. In the
first step, we remove from I (k —-1) open intervals each of the
same length Sl so that kl closed intervals I(l) (i =1, ..., kl)

) (1) o yfb )
each of length ﬂ remain. Set E = i=1 I,7%. Next in the
second step, we remove from each I(l) (k 1) open intervals
each of the same length 8} so that k2 closed intervals I(%f (j =

)
1,.... k,) each of length fz remain. We set E(2) = k/l 1 fﬁﬁ
IE%). We continue this process and obtain E(J), j > 1. We
: = NT g3 (J) - z(J) (J)
define E /\J 1B w?ere the set E', E X ... XE is
the product set of n E(J)'s in R™. We call the set E the n-

dimensional symmetric generalized Cantor set constructed by the
system k. I oy
Y [Oe152, 0 (4505]

The Cantor set E considered by Maz'ya and Khavin [8] is the
one constructed as above with kj = 2 for all j 2 1. For such a

Cantor set E, they proved the following theorem.
Theorem A. If &p < n, then

)
B (E) = 0 is equivalent to Z;_

o ) Z—Jn/(p-l)ﬁ(olp—n)/(p—l) = co
1P = -

and if {p = n, then

dep(E) = 0 is equivalent to 22j=1 Z—Jn/(p_l)(—log Qj) =00 .

In [5] we obtain upper and lower estimates for the Bessel

capacity of symmetric generalized Cantor sets. Namely, we have

Theoremn. Let E be the n-dimensional symmetric generalized
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Cantor set constructed by the systen [{kjfﬁll, {1%}?101 with ég

£ 1. If p < n, then

‘ k.)—n/(p—l)ﬂfq(p—n)/(p-l) y1-P

-1, J(&p~n)/(p-1) &
c +
o, Zijag Ry kg )

=0 -n/(p-1) ,{«p-n)/(p-1),1-p
$ By J(E) € Gy (ky .. k) a )

and if «p = n, then

cTH1 + (- log g + ZJ.=1(1< k) TP (- 10g )P

1%y

it -n/(p-1),_ i1-p
< By o(E) € C{Zj=1(k1...kj> (- log f)}°7P,
where the number C (2 1) depends only on n, p and .

Remark. (i) If the condition QO < 1 is dropped, then the
assertion is still valid for the case «p < n but in this case
the constant C also depends on QO‘ (ii) In case Xp < n,
since %x,p(A) is comparable to Bd'p(A) whenever diam A g:ro(<oo)

= H0~%P = ]
and gx'p(rA) =r qup(A), where rA = {rx; x € A} for r > 0,

the above result holds replaced B P by %x P for all QO (> 0).
(iii) In case p = 2, this theorem is a refinement of Ohtsuka's

result in [10], because if 0 < 2« < n, then Qx,z is comparable
to CZ&’ where C2°< denotes the Riesz capacity corresponding to
the Riesz kernel |x|20('_n and if 2« = n, then QXIZ(A) is

comparable to the logarithmic capacity of A, provided diam A <

L (< 1). Clearly, Theorem A is a corollary of this theorem.

In §2 and §3 we shall give an outline of the proof of our

theorem. As an application of our estimates in §4 we construct



a set which belongs to the (f,q)-fine topology ?;'q but not to
the («.,p)—-fine topology ?;,p . provided either 0 < gq <o/p < n
or 0 < Bqg =odp <nandg >por 0<Bg<Ap =n or g =«p =n
and q > p, and give its brief proof. (Incluéion relations among

these fine topologies have been obtained in [3; Theorenm B].)
2. The upper estimate

In this section we obtain the upper estimate. In the
sequel, for simplicity, let a = 1/(p-1) and d = n - op. We use
the following theorem obtained by Maz'ya and Khavin which is a

generalization of a Carleson's theorem ([4; §1V, Theorem 2]).

Theorem B ([8; Theorem 7.31). Let A be a Borel set in R

1/2

with diameter ¢ n and for r > 0, let ;kr) be the minimum

number of closed balls with radii < r which cover A. Then
n1/2

<ot e Ary) B lan P,
0

w
>
IA

where C depends only on n, p and «.

Remark. In this theorem we can replace the above,4(r) by
[ . L
a measurable function_A(r), where A is covered by at most ;ﬂr)

union of closed balls with radii g r.

; n
Now, let A = E. Then A(r) < (kl “'kj+1> for tj+1 < r <

t. (j=0, 1, ... ), where tj = nl/zﬂj/z, because E§3+1) can be

J
j+1) j+1°

covered by (kl“'k n
In the case where (p < n, by Theorem B we can obtain

closed balls with radii t

5~ % -an ,—ad, 1-p
B p(E) € Gl (k.. ky) /R



where the constant C depends only on n, p and &£, and in the
sequel the symbol C stands for a constant > 1, whose value nmay
vary from a line to the next. In the case where gp = n,

similarily we obtain
o0 —-an 1-p
B E) < C . k,o...k. - lo . .
£p(B) £ CL25 (ke k)7 (= Tog [)}
Thus the estimate from the above is proved.

23. The lower estimate

1

500 -an
<o for«p < n and Z‘j=1 (kl”'kj) (-log Qj)

<00 for op = n. For a Borel set A in Rn, we consider another

=0
To obtain the lower estimate, we may assume that Zj=

—an p,—ad
(kl“'kj) 0.
capacity'B; p defined by
(A) = sup V(R"),

bd,p

where the supremum is taken over all non-negative measures Y

such that Q(Rn‘\ A) = 0 and_jgz'p(x)dd(x) < 1. Here B(x, r)
denotes the open ball with éenter at x and radius r and
1
w:'p(x) - so{r‘d¢(a(x, r))13r tar.

Then it follows from [6; Theorem 1] (and also see [1] and [2])

that there exists a positive number C (> 1) such that

’ =P
(1) C bd’ (A) _<__B°L'p(A) < de’p(A)

for every Borel set A C R
The following lemma can be proved by using Fatou's lemma
and [7; Introduction, Corollary 1 of Lemma 0.1].

- 5 -



Lemnma. If non—-negative measures ;9 converge vaguely to PL

as j — oo, then for every x € Rn

- Ky u
llmlnfj—%ww&,p(x) 2 Wdlp(x).
= -n,-n}p . n .
Let uj = (kl"'kj) ‘% légg dx on R for j =1, 2,...,

where ﬂ% denotes the characteristic function of A and dx means

the n-dimensional Lebesgue measure. Then }S(Rn) = 1 and for x &
(J) s
qu we obtain
-n,-n_n
C(k,...k. .r, 0 < r g '
(1 3 % = 13
(2) A%(B(X. r)) g
: -n_n :
c(k1 kq) s, rq,s L r< rq's+1
(1 £ s <k -1, 124qg¢ J):
where Te,s = s[q + (s—l)Sq, since for Ty, s <r < Ty, s+1 (1 < s

<k -1 and 1 £ q@ £ J), the number of cubes composing the set

(] . . n n
E?L which meet B(x, r) is at most (6s) (kq+1“'kj) .

First, we assume «p < n and estimate Wiﬁp on E. For x ¢
E, by virtue of (2) we have
(3) WL% (x) < C{g'ad + (k. ...k )"ang"ad}.
o£Lip' T =T q=1'"1""""q g

Note that by our assumption the right side of (3) is convergent.
From the sedquence {ﬂj} we can extract a subsequence which

converges vaguely to some measure U with support in E and ijn)

= 1. Hence by the Lemma
(4) W‘L (x) < Cf —-ad + 2;“7 (k Kk )—agg—ad}
o P = Qo j=1'"71°°"7) -



) . . ciL _ ap W
for every x € E. Since jﬁ&'p(x)d(cpg(x) = C J’%L'p(x)dyix)
for ¢ > 0, it follows from (4) that

1, ~ad

- o ~an,-ad, (1-p) /p
(B) 2 G (4 +Zj=1(k1f..kj) 92 )

bd,P J

Thus on account of (1) we obtain the desired lower estimate in
case o/p < n. '

Next, we assume that «p = n. For x € E we can obtain

K; : ‘ o0 -an
Wil (%) £ CL1 + (=log o) + 20 (ky .. k) “(-log f).

Hence by an argument similar to the above, we can prove the

desired result. Thus the lower estimate is obtained.

Remark. We can obtain an integral estimate of the Bessel

capacity of symmetric generalized Cantor sets. Let }ﬁr) = (k1

n . o ias
"'kj+1) for tj+1 £ r < tj (j =0, 1,...) (for the deflnltlop
of tj see 82). Then we easily prove

n o
-1 d -a_-1 —na ,—ad
c j (rod(r))2r tar ;Z'j=1(k1...kj) A
ki
< cj (r? A(ry)) " ar
0

and hence

A
-1, ~ad d -a_-1 i1-p
VA +fo (A4 ey P < B (B)

nh L
< C{j (r34(r)) "3 "ar) 1 7P.
0

&4. Application
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Following N. G. Meyers [9], we shall say that a set E is

(o, p)-thin at x ¢ R® if

1 -

J (r9 , (EAB(x,r))}3r ldr < oo .

o ol P
We define the («(,p)-fine topology g;da(see, e.g.[3]) to be the
collection of all sets H < R™ such that RO\ H is (o p)-thin at
every point of H. In this section we construct sets stated in
the introduction by using the estimate of Bessel capacity of

Cantor sets.

 Proposition. Assume that (i) 0 < Bg <op < n or (ii) O
< Bqg=¢p <nand g > p or (iii) 0 < Bq < odp = n or (iv) @q = AP
= n and g > p. Then there exists a generalized Cantor set E

such that (R™ \UE) Vix,} € T

, Where x E.
g.a ™ &.p o€

To'prove the proposition, we construct a Cantor set of zero
B&'q—capacity which is not («(,p)-thin at each of its points.
In case (i), (ii) or (iii) let k., = 2 for j 2 1 and let ﬂ
{Z_n(j+jo)(j + )q 1}1/(n ¢Q) for j 2 0, where Jo is so chosen
that Zﬂ. < ﬁj (J ; 0) and_ﬁ < 1. Let E be a symmetrlc
generallzed Cantor set constructed by [{k. }J 1’ {f } —O We
have B6 (E) = 0 by the Theorem, since Z: (ZnQQn Bq) 1/(q—1)
0. Thus the set E is (8,q)-thin at every p01nt. Next we
show that E is not («.p)—-thin at each of its points. Since E N
B(x, r) contains some symmetric generalized Cantor sets for
every X € E and r > 0, by using the lower estimate of our

theorem we can prove that

j (r—dBo(,p(E A B(x, r))3r tdr =oo



The case (iv). Let k; = 2 for j 2 1 and let ‘% = exp{-
(j+jo)—12n(J+Jo)/(q_1)} for j 2 0, where j (2 0) is so chosen
. 1/2

that 2Qj+1 < [% for all j 2 0 and n f% < 1. Let E be a
symmetric generalized Cantor set constructed by the system
k.15,
[k,
every X € E

o
.} . . Then we can obtain B E) = 0 and for
(057! 8.q'E)

1

a -1 _
50{%X,p(3(\8(x’ r))}r “dr = oo.

Therefore in each case we have constructed a Cantor set with
desired properties. )
Finally, take a point X, € E and set H = (Rn\E)\j{xo}.
Then H T _, because B E) = 0, R®\H = E~{x.} and E
€ %a™ %p ga'®) h \i{xo)

\{xo} is not (¢l,p)—thin at Xy -
Remark. For the present I can not construct a set
contained in 2& p\\‘tb q in the case where 0 < 8q < Xp < n and

(n - 3q)/(q - 1) < (n ~«p)/(p — 1) by using symmetric

generalized Cantor sets.
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