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NOTES ON ZERO SETS OF CONVOLUTION POTENTIALS ON THE LINE

Mamoru Kanda ( #¥ W %i)

Institute of Mathematics, University of Tsukuba

[o] It is important in potential theory that every bounded potential
ELF’ of a finite signed measure YU never vanishes everywhere unless U = 0.
For an important‘class of potentials including Newton potentials and Riesz
potentials,‘?everywhereﬂ can be replaced with “everywhere outside a set of
Lebesgue measure 0” . In general we can not replace it with “everywhere

outside an open set” . Indeed there exist examples of Newton potentials

<

- _ »
ou(x) (= )Ix-ylz—du(dy)), U;a signed measure, such that Ul vanishes outside

supp(u) ,but £ 0. On the other hand, we have the following:

(*) let u be a bounded Riesz potential Uu(x) (=\j|x-y|a_du(dy), 0<o<2
in case d4d>2, 0<0<l in case d=1 ) of a finite signed measure U . Then u

never vanishes everywhere on an open set outside supp(p) unless u=0 .

The fact (*) 1is a direct consequence from the anti-locality of the fractional
o '
power /s of Laplacian, which was proved by Segal-Goodman [{] for a special
class and later extended to a larger class of operators including [&a by M. Murata

[4J. So it would be natural to consider the problem below:

(**) let U be a potential kernel of ‘an operator of Lévy—Khintchin type
without the diffusion *&rm Can we characterize“a class of sets” for each
signed measure I so that UM never vanishes everywhere on a set of “the class”

unless U =072
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Unfortunately the stage of our iesearch’is very far from the solution.
So we shall restrict the object in this note to the simplest class of operators
on the line, of the form: Au(x) =wL4ﬁ[ u(x+y) - u(x) ] n(dy), where n(dy) is
the measure on R-{0} such that(filyVl+|yl§n(dy)<W, In 81 we shall give
few elementary facts connected with the problem (¥¥) for potentials of A .
In 82 we shall consider the one-sided stable generator A, , that is, the
measure n(dy) is yl+qdy for y>0 and O for y 0. For the potential
kernel U of the one-sided stable generator A+, if a bounded.potetial Uy
of -a finite signed measure U ~vanishes on an interval (a,b) outside supp(l),
then the restriction of W to [b,®) is O . This result follows from (*)
by a simple observation, but we shall give an elementary proo& in 82 without
using the result (%) . Our result has been proved by Y. Ishikawa 21 by

different method in case Ul belongs to Cz. In 83 we shall add a few

remarks connected with the problem (*%).

[1] Consider the Lévy-Khintchin operator A, of the form;

Aiu(x) = J\R—{O}[ u(x+y) - u(x) ] ni_(dY) ’

where n+(dY) is a measure (called the Lévy measure) on R-{O}such that

Q)(lyl/l+|y|)§i(dy)<w and supp(ni)C'R#. We set
Au(x) =j R;{o}[ u(x+y) - u(x) 1] {n+(dy) + n_(dy) }.

In case n_(dy) = n+(—dy) , We write As instead of A .  We assume that

e +
there exist bounded continuous densities pE(O,x)Eypt(—x), péo,x)z'pt(—x) and
pi(o,x)z pi(—x) relative to Lebesgue measure for the semi-groups of A+ , A

and AS respectively, such that
o U »
U+(x) —‘L}pt( x)dt, U(x) J pt( x)dt and Us(x) —tf pt( x)dt
&

-

¢



are locally integrable. Note that U+(x)=U_(—x) if n+(dy)=n_(—dy) and
' I
Us(x)=Us(—x) o For example, in case n+(dy)=y dy for y>0, = 0 for y<o0,
o- . -
then U _(x) = const.]xl . for x<0 , = 0 for x20 and Us(x) = const.[x[u 1 .

We call these potential kernels the stable kernels and call Uiﬂ, U;ﬂ and Usgu

stable potentials. Hereafter we write UU instead of U#u for a signed measure

. Put

MU = {1 ; a signed measure of compact support such that

UM is bounded }
We define MU and MU analogously. The following proposition is wvalid
, . s .

for a larger class of potentials than those mentioned above.

PROPOSITION 1.1 Assume that the maximum principle holds for U

UA(x) whenever A is a ( nonnegative)

(that is, SUPXERUX(X7 = SUPye supp (M)

measure of compact support). = Then, for each He MU ;, UU never vanishes

everywhere on supp(i) unless U = 0 .

Tﬁcgﬁ1the author could not find the published proof, the proposition
would be known. The author’s proof is based on delicate facts derived from
the duality theory of Markov processes. So the proof is omitted here.

The author does not know whether the condition the maximum principle” is

necessary or not.

Remark 1.1 The stable kernel satisfies the maximum principle.

See Blumenthal-Gettor [[1, p.264 (1.23).

ir

Remark 1.2 In Prop. 1.1 we can not replace supp(u)" withna proper

: 8 .
open subset of the interior of supp(l) in general. Indeed, if we choose

3
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different open intervals Il and I2 with the same center and let

Usul and Usu2 be the equilibrium poténtials for Il and 12 respectively,

then U, - UG, = 0 on the smaller interval, but {ul—'uz)(D) = 0 for
. -1
every open set D in a larger interval whenever Us(x) = const.lx!a .
The following simple proposition would give us an insight into our

problem (*%*), We suppose n+(dy) =-n_(~dy) in the proposition below.

PROPOSITION 1.2 For every . Ue MU ( ue My ), u,u (resp. U_U )

+
vanishes everywhere on the right infinite component (resp. the left infinite

component ) of the complément of supp(ld) , and the following statements

are equivalent to each other: i) for each u¢ MU v U+u never vanishes
v + '

everywhere on an.open set which is left to supp(l) unless yu = 0;

iy for each e MU , if U+u vanishes everywhere on an interval (a,b)
+

in the compl€ment of supp(M), then the restriction ul of U to

; [bim)
[b, ®) is the zero measure; 1ii) for each ueiMU , U_Y¥ never vanishes
everywhere on an open set which is right to supp(i) unless U = 0 ;

ii) for each u¢ MU , if U.U vanishes everywhere on an interval (a,b)

in the complément of supp(H), then u| 0.

(—ml a] =
- c ik - +

PROOF. 1In our case U U= Uj?hby definition and U =0 onR.

So the first assertion is trivial. The equivalence between i) and
ii) also follows easily, because U+u = 0 on an open set Q left to
] » N (-4 3 R

supp (4) if and only if U U = O on an open set Q right to supp(U),

: : ~

where ’ﬁ(dy) = H(=dy) and Q = -Q. For the proof of the equivalence

between i) and i), we have only to note that U+u(x) = Qdu[[b'w))(x)

for xé¢& (a,b).
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: ¢
Remark 1.3. It is open whether the statement i) ( equivalently i),
ii) and ii{ ) is equivalent to the statement: 1iii) for each ¢ MU '
' S

Usu never vanishes on an open set in the complement of supp(u).

[2] In this section we study the stable potentials. We use

synbols n+(dy) and U+(x) . but here n+(dy) = n_(-dy) = y-l-ady for

y>0, =0 for y<0 and U+(x) = U_(~x) = const.!xla -1 for x<0,

0 for =x20 . For the stable kernel, Us(x) = const. ( U+(x) + U_(x))

const.lxlu-l. Now we shll prove

THEOREM. For ueiMU ( ue.MU ), if U+u (resp. U_1 ) vanishes
. -

on an open interval (a,b) in the complément of supp(i), then the

restriction ul of # to I[b,®) is the zero measure (resp.

[b ) M (a1

=0).

PROOF. By Prop.l.2 it is sufficient to prove that U+u never
vanishes on an open set which is left to supp(y) unless U =0 . We

introduce an operator 2
Bu(x) = JR_{O}[ u(x+ty) - u(x) 1l n (dy) - n_(ay) 1 .
Define the symbols a(&), a(§) and b(f) as follows:
a® = J ooy L1 1n_(an),

2® = Jrfo} 1 *¥o11t n_(ay) - 0 (@y) 1 = 2imma(e),

b(€)

]

2iIma(g) for § >0, = -2iIma(§) for & <O.
Then A u(x) = (ljzn)jR e a() W(E) a& and  Bux) = (J/zvr)fR
e'ixga(g) %(E) d¢ for each smooth function. u of compact support, where

o = )

L eTumay.  set Buo = (112“’JR ) A a .
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We extend the definition domain of A+ ’ A and B to a certain class
of disﬁributions as usual. ( We do not mention the class precisely,
because our proof does not enter the delicate situation about the
domain.) Assume that _U_i}; vanishes on an interval <(a,b) which is
left to supp (}«‘-) for J,te MU+ . By translation we may assume that b = 0
and supp (/}A)C [0, Po). Consider a function W defined by ?f(x) = ‘0 for
x<0 and "1\1)(x) = U_'_}t(x) for x320 . Since A+u(x) =0 on (a,0) and

supp(n+)C [0,0), we see that Al(x) =0 on (a,0). Set F(x) =
20

A (x) - B"ﬁ/(x) ( in distribution sense ). Then F(x) = (2i,'7:)J T1X3
-
4 2
Ima(;) ?1/(3) d} ( in distribution sense ). The function f('}) = Ima(;)'u(})
is a tempered function ( that is, £ is continuous and |£(3)| = Of 1;&6)

for some real § ). Indeed £ is bounded continuous. Further £(0) =

FaS
Ima (0)U(0) = 0, and so 1 (Z)f(}) is also a tempered function.

(=0,0)

Hence /\\l(z) = j e-iZEl (2)£(2) 42 is holomorphic in '{ Im z < 0‘5
J R (-»,0) Z 3 y) P

. _aiey = -ixj . .
and llma’0 V(x-it) J R e 1(_00’0) (;)f(}) d; in the convergence
of tempered distributions. Therefore F never vanishes on an open set
unless F is identically zero. But F(x) = 0 on (a,0). This is
proved as follows. Note that Ima(g) = —Ima(—}) . Then we can easily
show that b(3) = const. [3f* = const. 2Rea(j). Hence it holds that

o -ixg ~ o ~
Bu(x) = const. (121) \)R e 2Rea(}) u@3) 43 = jR_{m[ u(x+y) - u(x) 1
[ n+(dy) +n_(dy) 1 . Since ’ﬁ(x) = 0 for =x<0, the last term equals
to A_;ﬁ(x) for x<0 and Z-‘;_u(x) = A?J/(x) = 0 for xe(a,0). As mentioned
before, —il'i/(x) =0 on (a,0), we see that F =0 on (a,0). Consequently
A

F is identically zero, and so Ima(})u(3) = 0 for 3c(-,0). Therefore

N ~
'?11(';) = 0 for ¥O. Since 'u(}) is bouded continuous and K vanishes
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‘ . ~
on (-°,0), we can prove by the same procedure that u is identically
zZero. As a result U+u(x) = 0 for =x¢l0,»). Since supp (W) C [0,%),
it follows from Prop. 1.1 that U = O. The proof is finished.

l-l—ain

'\

Remark 2.1. Let Au(x) = J (—c,c)—{O}[ u(xfy) - u(x) ]]y
where O0< c{®, and consider the potential kernel U corresponding to A .
The analogouS'result(to Theoreu9"If U4 vanishes on (a,b) outside supp (i),

»
then ul- = 0 would not be valid in general. Indeed, let u
(a,a+c) i

be a non-constant smooth function which vanishes near infinity. Then

u=Uf for f& -Au. We could choose u so that u vanishes on

(—b,q); where g = inf(x; xesupp(f)).

[3] In this section'we shall add few remarks connected with
the problem (**). The following problem is open as far as the author
knows: 1is it true that each potential Ul never vanishes everywhere
on the complédment of supp(M) unless U =20 7?. As mentioned in the
introduction, it is true for Riesz p§tentials except Newtonian‘potentials.
It is not true for Newtonian potentials. From the observation in Remark
- 2.1 it might be doubtful even for potentials corresponding to non-local
operators. However it is interesting to determine the class of potentials
for which the above statement is true. For most kernelg in potential
theory there corresponds a operator A such that AUE % -f. ~ So the problem
below is closely connected with the problem (**). Consider the situation:
We are given a function u on a domain D which belongs to the definition

domain of a given operator A. Can we guess the zero set Z of u when

we know u = Au = 0 on a subdomain Q ? If A has the anti—locality,
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then Z = ﬁ . If the unique continuation theorem holds for A, then
Int( x; Au(x) = 0 )C Z. Segal-Goodman [{] and Murata [4] proved the
anti-locality for the fractional power of Laplacian. The study of

the unique continuation theorem has been well developed for differential
operators. However, unfortunately,we do not know for what class of
operators of Lévy—Khintchin type the anti—local.property holds and

the unique continuation theorem is wvalid. Of course we can not expect
pURCIES

the result of the form above ( i.e. Z=D etc. ﬁ The zero set would closely
aepend on the Lévy measure of the operator. One way to attack our
problem would be in Sato’s theory of Pseudo-differential oPerators%}ij
Indeed Ishikawa’s proof on the anti-locality for A+ ( one-sided stable

generator) is based on the theory.

References

[1] Blumenthal, R.M., and Getoor, R.K.: Markov processes and Potential Theory.
New York: Academic Press 1968

[2] Ishikawa, Y., Antilocality and one-sided antilocality for stable generators
on the line, Tsukuba J. Math. Vol. 10 No. 1 (1986), 1-9

[3] Liess, 0., Antilocality of complex powers of elliptic differential operators
with analytic coefficients, Ann. Nor. Sup. Pisa 9 (1982), 1-26.

[4] Murata, M., Antilocality of certain functions of the Laplace operator,
J. Math. Soc. Japan vol. 25, NO. 4 (1973), 556-563.

[5] Sato, M., Kawai, T. and Kashiwara, M., Hyperfunctions and pseudodifferential
equations, Lecture Notes in Math. 287, 265-529, Springer-Verlag,
Berlin, 1973.

[6] Segal, I.E., and Goodman, R.W. : Anti-locality of certain Lorentz-invariant
operators, J. Math. and Mech., 14, No. 4 (1965), 629-638



