ON TIME CHANGE OF SYMMETRIC MARKOV PROCESSES

熊大工学部 大島洋一 (Yoichi Oshima)

1. Introduction

Let X be a locally compact separable metric space and m be an everywhere dense positive Radon measure on X. Let (E,F) be an irreducible regular Dirichlet space on $L^2(X;m)$ and $M = (\Omega, \mathcal{B}, X_t, P_x)$ be its corresponding m-symmetric Markov process. We shall suppose that we are given a positive Radon measure μ charging not a set of zero capacity. Then there exists a positive continuous additive functinal (PCAF) $(A(t))_{t\geq 0}$ with associated smooth measure μ . Let $Y_t = X(A^{-1}(t))$ and (E^μ, F^μ) be the Dirichlet space of the μ -symmetric time changed Markov process $M^\mu = (\Omega, \mathcal{B}, Y_t, P_x)$. The purpose of this note is to characterize the extended Dirichlet space (E^μ, F^μ) of (E^μ, F^μ) .

If (E,F) is transient, then its extended Dirichlet space $(E,F_{\rm e})$ is a Hilbert space continuously embedded in an ${\tt L}^2({\tt X};{\tt gdm})$ for some strictly positive m-integrable function g. If M is recurrent in the sense of Harris, then $1 \in F_{\rm e}$ and E(1,1) = 0. We shall identify $F_{\rm e}$ and the quotient space of $F_{\rm e}$ by constant functions and define E naturally on it, then $(E,F_{\rm e})$ is a Hilbert space continuously embedded in an ${\tt L}^1({\tt X};{\tt gdm})$ for some positive integrable function g.

Let Y be the support of A, γ be the restriction operator to Y, $F_{X-Y} = \{u \in F_e : u = 0 \text{ q.e. on } Y\}$ and $F_e = F_{X-Y} + H^Y$ be the orthogonal decomposition. Then the main result is, for a suitable choise of the version, $F_e^\mu = \gamma H^Y$ and $E^\mu(\gamma u, \gamma u) = E(u, u)$ for all $u \in H^Y$. In the transient case, this result is proved in [3] and [7]. In the recurrent case, the proof in [7] is insufficient so that we shall restrict our attention in the recurrent case. In this note, we shall only summalize the results, the detailed proof will be appeared elsewhere.

2. Results

In the followings we shall suppose that M is recurrent in the sense of Harris, that is, $\int_0^\infty f(x_t) dt = \infty$ P_x - a.s. for all $f \ge 0$ such that $\int f(x) dm(x) > 0$, for each $x \in X$. Sufficient conditions for this is given in [4].

Let μ be the positive Radon measure satisfying the conditions of section 1, then there corresponds a PCAF (A(t)) $_{t\geqq0}$ in the sense

(2.1)
$$\langle \mu, f \rangle = \lim_{t \to 0} \frac{1}{t} E_{m} [\int_{0}^{t} f(X_{s}) dA(s)].$$

Let Y_{μ} be the support of μ and Y be the fine support of (A(t)), that is, Y_{μ} is the smallest closed set outside of which μ vanishes and $Y = \{x; P_{x}[A_{t}>0 \text{ for all } t>0] = 1\}$. Then, by [3; Lemma 5.5.1], $Y \subseteq Y_{\mu}$ and $\mu(Y_{\mu}-Y) = 0$. Moreover, by a similar method to [6;§5], we have

Lemma 1. M^{μ} is a μ -symmetric normal strong Markov process on Y.

Define $V_{tA}^{pq}f$ and $V_{At}^{qp}f$ by $V_{tA}^{pq}f(x) = E_x[\int_0^\infty e^{-pt-qA_t} f(X_t)dA_t]$ and $V_{At}^{qp}f = E_x[\int_0^\infty e^{-pt-qA_t} f(X_t)dt]$.

Let \mathcal{D} be the class of functions defined by

$$(2.2) \quad \mathcal{D} = \{ v_{tA}^{pq} f; p,q>0, f \in C_0(X) \} \cup \{ v_{At}^{qp} f; p,q>0, f \in C_0(X) \},$$

then we have

Lemma 2. (c.f. [6; §5]).

(i) $D \subset F$ and $\gamma D \subset F^{\mu}$.

(ii) $\mathcal D$ is E_1 -dense in F and $\gamma \mathcal D$ is E_1^μ -dense in F^μ , where $E_1(\cdot,\cdot)=E(\cdot,\cdot)+(\cdot,\cdot)$ and $E_1^\mu(\cdot,\cdot)=E(\cdot,\cdot)+(\cdot,\cdot)$ L²(μ). (iii) If $u\in \mathcal D$ then $Hu(x)\equiv E_x[u(X_\sigma)]\in F$ and

(2.3)
$$E(Hu,Hu,) = E^{\mu}(\gamma u,\gamma u),$$

where σ is the hitting time for Y.

Let (E,F) be the extended Dirichlet space of (E,F), that is, $u \in F_e$ if there exists an E-Cauchy sequence $\{u_n\} \subset F$ such that $\lim_{n \to \infty} u_n = u$ m-a.e. In this case $E(u,u) \equiv \lim_{n \to \infty} E(u_n,u_n)$. It is known that $1 \in F_e$ and E(1,1) = 0. If we identify F_e with the quotient space of F_e by the family of constant functions, then (E,F_e) is a Hilbert space and there exists an integrable function q > 0 and a linear functional $I(\cdot)$ such that

(2.4)
$$\int |u(x) - I(u)|g(x)dm(x) \le E(u,u)^{1/2}$$

for all $u \in F_e$. In particular, F_e is continuously embedded in $L^1(X:gdm)$. Any function of F_e has a quasi-continuous (q.c.) version. Hence we shall suppose that any function of F_e is q.c. Let $F_e = F_{X-Y} + H^Y$ be the orthogonal decomposition in §1, then we have

Lemma 3. If $u \in F_e$, then $Hu(x) = E_x[u(X_\sigma)]$ is the orthogonal projection of u on H^Y .

The main result of this note is the following

Theorem 4. $F_e^\mu = \gamma H^Y$ in the sense $\gamma H^Y \subset F_e^\mu$ and, conversely, for each $\phi \in F_e^\mu$ there exists $u \in H^Y$ such that $\gamma u = \phi$ μ -a.e. In this case,

$$E(u,u) = E(\phi,\phi)$$
.

Proof. We shall outline the proof. For the proof, we shall use the transient Dirichlet space (E^C,F^C) on $L^2(X;dm)$ defined by $F^C = F$ and $E^C(u,v) = E(u,v) + (u,v)$, where $L^2(m_C)$, where $m_C(\cdot) = m(\cdot \cap C)$ and C is a measurable set such that $0 < m(C) < \infty$. If $u \in \mathcal{H}^Y$, then, by Lemma 2, there exists an E-Cauchy sequence $\{u_n\} \subset \mathcal{D}$ such that $\lim_{n \to \infty} u_n = u$ m-a.e. Take the set C such that $\{u_n\}$ and u are bounded on C, then $\{u_n\}$ is an E^C -Cauchy sequence. Hence, by [3;Theorem 3.1.4], it contains a subsequence $\{u_n\}$ which converges q.e. to u. This implies that $\lim_{k \to \infty} \gamma u_n = \gamma u$ μ -a.e. By Lemma 2, since $\{\gamma u_n\}$ is an E^μ -Cauchy sequence of functions of F^μ , we have $\gamma u \in F^\mu_e$.

Suppose, conversely, that $\phi \in \mathcal{F}_e^\mu$. Then, by Lemma 2, there exists an \mathcal{E}^μ -Cauchy sequence $\{\gamma u_n\}$ of functions of $\gamma \mathcal{D}$ such that $\lim_{n \to \infty} \gamma u_n = \phi$ μ -a.e. In this case, since $\{Hu_n\}$ is an \mathcal{E} -Cauchy sequence of functions of \mathcal{H}^Y , it converges to some $u \in \mathcal{H}^Y$ in $(\mathcal{E},\mathcal{F}_e)$. Using (2.4), we can see that there exists a subsequence $\{Hu_n\}$ which converges to u m-a.e. and hence q.e. Thus

$$\gamma u = \lim_{k \to \infty} \gamma H u_{n_k} = \lim_{k \to \infty} \gamma u_{n_k} = \phi$$
 μ -a.e.

References

- [1] J. Azema, M. Kaplan-Duflo and D. Revuz, Classes recurrentes d'un processus de Markov, Seminaire de probabilités II,

 Lecture Notes in Math., 51, Springer, 1968.
- [2] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, 1968.
- [3] M. Fukushima, Dirichlet forms and Markov processes, Kodansha and North-Holland, 1980.
- [4] M. Fukushima, On recurrence criteria in the Dirichlet space theory, to appear in Stochastic Analysis.
- [5] Y. Oshima, Potential of recurrent symmetric Markov processes and its associated Dirichlet spaces, Functional analysis in Markov processes, Lecture Notes in Math., 923, Springer, 1982.

- [6] Y. Oshima, Some singular diffusion processes and their associated stochastic differential equations, Z. Wahrschein-lichkeitstheorie verw. Gebiete, 59 (1982), 249-276.
- [7] M. Silverstein, Symmetric Markov processes, Lecture Notes in Math., 426, Spriger, 1974.