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DIMENSION AND ENTROPY OF REGULAR CURVES

Michel MENDES FRANCE
§1 - INTRODUCTION

There does not exist a unique definition of the
dimension. EBach definition has to be adapted to the object
one wants to study. This could be one of the many lessons,
Mandelbrot bhas taught us. The topological dimension, the
Hausdorff dimension, the Kolmogoroff and Bouligand dimen-
sion, etc..., all have different definitions. Their value
may coincide in special cases, but in genersal, they do not.

My topic deals with the dimension attached to infinite
plane rectifiable curves. "Fractal” curves are thus excluded.
I will also introduce the concept of entropy and I will show
that the entropy increases with the dimension. Thus the dimen-
sion measures the complexity of the curve. This last state-
ment is another general idea which is beautifully illustrated
in the books of Mandelbrot [31].

§2 - THE DIMENSION OF A CURVE

Let A be an infinite straight line. The disc Dy cente-
red on 0 with radius R intersects A. As R goes to infinity

length (AnDp) ~ 2R

Let £ be the half plane above A

n
area (ZnDg) ~ — RZ
2

The exponent of R in the two formulas reflects the
dimension of both A and %. This simple observation leads us
to the following definition.



Let T' be an infinite rectifiable curve the length
of which is finite in every bounded region of the plane. (Such
s curve tends to infinity). By definition

log length (I'nDp)

dim (T) = lim
Roo log R

Actually this definition may well be criticized. The
limit may not exist. If such is the case, we would the comnsider

.
- log length (T'nDg)
dim (I') = lim sup
Ro log R .
( 1)
log length (I'nDp)
dim (') = lim inf
R-o log R

Now, if the curve is extremely slow to approach the
roint at infinity, both ratios may be larger than 2, the dimen-
sion of the plane. This shows that our definition is unreasona-
ble. We thus must modify our definition.

Let €>0 and let I'(e) be the s-magnification of T

2¢
- log area (I'(s)nR)
dim (') = lim lim sup
e-0 Rro log R
( ()
log area (I'(e)nR)
dim (') = lim 1lim inf ;
§-0 R log R




Then quite obviously
1 ¢ dim (') ¢ dim (T') < 2.

Furthermore, for all o and ® such that 1 ¢ « ¢ B <2
there exists a curve I' such that

dim (I') = « and  dim (I) = 8.

Examples : Let x>0. The spiral p=& has dimension

1
min{ s _>
1+o

and the spiral ¢ = exp & has dimension 1.

For further examples see Mendes France and Tenenbaum
[4] and Dekking and Mendes France [11.

§3 - RESOLVABLE CURVES

Let 8>0 and let I'y be the starting portion of ' with
length s.

We denote by I'gj(e) the e¢-magnification of T.

We say that T is resolvable if there exists a positive
€ such that '
area I'g(g)
lim inf —m > 0
S-@ s

The inequality then stands for all positive &. A resolvable curve
cannot "bunch up” too much.

If 0<®<1 the spiral p=9“ is not resolvable whereas
for apl it is resolvable.



If I' is resolvable, then for all €>0
C;(e) length (I'nR) ¢ area (I'(e)nR) ¢ Ca(e) lemgth (I'nR)

where 0 < C;3(e) < Cg(e), hence its dimension is given by formu-
la (1) .

.
— log length (I'nDy)
dim T = lim sup

< R-o log R

log length (I'nDg)
dim I = lim inf .
R log R

If T is not resolvable, we only have an inequality

log length (I'nDg)

dimT' ¢ lim sup
R log R

log length (I'nDR)

dim T ¢ lim inf
R log R

Nonresolvable curves are thus more complicated to study.
They are in fact more complex as will now be shown with the help
of entropy.

§4 - ENTROPY OF FINITE CURVES

In this paragraph we shall define the entropy of finite
curves. It is only in paragraph 6 that we shall extend the
definition to infinite curves.



Let 1 = (') be the set of straight lines which inter-
sect T.

0 X

A straight line is determined by the two parameters &
and p.

>
0 \\ X
A
We identify the two couples (p,8+w) and (-¢,8) thus

generating a Mobius manifold. A straight line A in the x,¥

plane is hence represented as a point on the Mébius manifold
and conversely. '

The set €1 of straight lines which intersect I" is repre-
sented by a set N (we keep the same notation) of points on the
manifold. Let p be the uniform normalized measure on 1. Q is
thus endowed with a probabiliiy measure p ; p())=1.

Let pp, be the probability that a line A intersects T
in exactly m points (mpl)

Pn = P {a€0 / card (AnT) = n}.

Hence



A remarkable result of Steinhaus [51,[6] states that
the expectation of the number of intersection points is

2 length (I') / C

where C (the perimeter of P) is the length of the boundary of
the convex hull of T.

In other words
-
T np, = 2 length () / C .

Note that if I is a finite straight segment then
2 length‘(r) =C ;
for all other curves
2 length (I') > C,
-an observation which we shall use later.
The entropy S(I') of T is by definition
® 1
S(r) = & py log —
n=1 Pn
where as usual O.e=0. If I' is a finite straight segment then

obviously S(I')=0. Small entropy means simple curves and large
entropy means complex curves.

Theorem 1 -
2 length (I') 8
S(r) < log +
C ef-1

where
2 length (T')
g = log > 0
2 length (IN-C




We shall prove this result but before notice that
a/(e'-l) is comprised between 0 and 1 and hence plays no impor-
tant role. We should think of S(I') as the metric entropy of T

2 length (T')
and log as the topological entropy S (I').

C

Proof - We maximize

) 1
Z pp log —
1 Pn
with the two contraints
o ]
Zpp=1 and Z np, = 2 length (I')/C.
1 1

The Lagrange technique introduces the auxiliary func-

tion
® 1 « ®
U=2%py, log — - Z pPp - 8 I 8P,
1 Pan 1 1

where o and @ are two unknown constants.

Solving
U

—_ =0

3pn

we obtain

where a and p are two constants which are determined by the
two contraints. We obtain ’

a = ef-1
and
2 length (T')
B = log
2 length (I')-C
Hence
C C
Pn = a - )n
2 length (I')-C 2 length (')



and
2 length (') 8
SmMax = St = log ' + . QED
C eP-1

§5 - THE TEMPERATURE OF A CURVE

Before considering infinite curves we wish to comment
on the previous computation. When physicists want to define
equilibrium of a gas, they are led to a similar extremal pro-
blem in which their parameter p is identified with the inverse
temperature of the gas (actually s=1/kT where k is the Boltzmann
constant which fixes the scale of temperature). Choosing k=1,
and mimicking physics, we define our p as being inverse tempe-
rature of the curve T

T =

2 length (r) 1
[log ] @

2 length (r)-C

Note that T>0 as a temperature should be. At this point
we identify the length of I' with its volume V. The pressure P
is chosen to be 1/C (the higher the pressure, the smaller C
and the more I' is confined in a small region). Our formula (4)

now reads
oV -1
[log —— ]

2V - -
} 4

~
"

or
1 1
PV = - T -
21 - exp (- )
T

When T decreases to zero, PV tends to 1/2. But the equa-
lity PV = 1/2 is equivalent to length (I')/C = 1/2, hence T' is a
finite segment, the entropy of which is 0. This is known as
Nernst law. At zero temperature all curves freeze to straight
segments !

We now let T increare to infinity :

1 1
1 —exp (- =) ~ —
T
so
1
PV A — T.
2



We recognize the Boyle-Mariotte law which in our context
shows that at high tempersatures all curves bshave like perfect
gases | '

For further discussion see Dupain, Kamae, Mendes France
[2].

§6 -~ ENTROPY OF AN INFINITE CURVE

We close the parenthesis concerning elementary thermo-
dynamics and go back to the definition of the entropy.

Let T be an infinite curve and let I'y be a finite sec-
tion of I with length s. The entropy of I'y is S(I'y) which was
defined in paragraph 4.

It is convenient to normalize S(I'y) and to consider
the ratio ‘
S(I'g)71log s.

By definition, the upper (resp. lower) entropy of T is

_ S(Ts)
h (I') = 1lim sup
S0 log s
¢ |
S(Ts)
h (') = 1lim inf

Soo log s

We consider also the topological entropies

- ST(rs)
H () = lim sup
< S log s
ST(rs)
H (') = lim inf
S-o log s
L

Our theorem implies

0 ¢ h(r) < h(r) < H(r) < 1.



10

Furthermore, for all m®,s 0gaegpg 1l there exists
a I' such that
h(I) = « and h(I') = p.

For example, the spiral p = % has entropy
h(r) = _— .

The spiral ¢ = exp & has entropy 0 and ¢ = log & has entropy 1.

A zero entropy curve should be considered as determi-
nistic and a one entropy curve should be considered as chsotic
(p = exp ©® corresponds to biological growth, maximal order,
whereas p = log © may be linked with the shape of whirls like
in a turbulent flow...)

Theorem 2 - For all infinite curves T

1 —
1 - — < ()
dim (')
1
1 - \ < H(D)
dim (T)
If I' is resolvable
- 1 -
h(r ¢ 1 - —_— = H(T)
dim (I
1
(') < 1 - — = H(I).
dim ()

The theorem underlines the fact that increasing the
entropy will (often) augment the dimension. Were our inequali-
ties equalities, the above statement would be made more precise.

Proof - Let C; denote the permeter of Iy.

log length (I'nDy) log s
dim (T') ¢ lim sup = lim suap — .
R-ao log R LEY log Cg

/o
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Now
— log 2s/Cg 1 1
H() = lim sup =1 - g s » 1 -~ ——m .
. S- log 2s lim sap — dim (')
Soo log Cs

The same calculation holds with the lower 1limit.

Suppose now I' is resolvable. Then

_ - 1 1
h(r) ¢ H() =1 - sy s = 1 -
lim sup — dim (T)
S+ log Cs
and similarity
1
)¢l - —m . QED
dim (T)

resolvable)
Corollary 1 - All one dimensional Xcurves are deterministic.

Indeed, if dim (I') = 1 then h (T) = O.

Corollary 2 - If a curve T has upper entropy h (I') strictly
larger than 1/2, -then T is nonresolvble.

Indeed, if T were resolvable, then

1 _ 1

- <h(MHMgl - ——

2 dim (")
hence dim (I') > 2. Absurd.

TEis last corollary will serve us as & conclusion. To
say that h(I') > 172 is to say that T is chaotic (or at least
half way towards chaos). Non resolvability expresses the fact
that the curve is "pinched” onto itself. One is never sure on

which branch of the curve one is. Our corollary thus states that
"chaos brings confusion”.

A very banal statement indeed !

7/
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