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CONFIGURATION OF HERMAN RINGS AND DYNAMICAL SYSTEMS ON TREES
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ABSTRACT. The configurations of Herman rings of rational
functions are represented in terms of trees and "piecewise
linear" maps on them. Their properties are investigated.

A sufficient condition for trees to be such configurations
is obtained by means of surgery.

0. INTRODUCTION.- JULIA SETS AND HERMAN RINGS.
Let f(z) be a rational function with complex coefficients
of degree greater than one. Consider the dynamical system

f : C+C, where C = cU{«} is the Riemann sphere. We write

——P——
£ = Fo...of.
The Julia set of f is
Je = {zeC| {£"|nz0} iﬁéiguicontinuous in any neighborhood of z }.

The complement C-J is called the stable set and its connected

£
component a stable region. Every stable region is preperiodic
under f and every periodic stable region is one of five types-
attractive domain, superattractive domain, parabolic domain,
Siegel disk and Herman ring. (For details, see [B].)

We are particularly interested in the Herman ring. A
periodic stable region D of period p is a Herman ring, if £P
is conformally conjugate to an irrational rotation on a
concentric annulus, i.e. if there exist a conformal mapping
¢ :D>aA_ = {zec| r<|z|<1} with 0<r<1 and an irrational 6

€ R-Q such that
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) .
¢l Re l¢ where Re(z) = e2ﬂle-z.
The irrational ©6 1is called the rotation number. For the

definition of the Siegel disk, replace A_ by {zec] [z|<1}.

REMARK ON THE HERMAN RINGS.

1% The existence of Herman rings was provéd by Herman[H], by
means of Arnold's theorem or the "Newton's method". After that,
it was shown in [S] that a Herman ring can be constructed from a
couple of Siegel disks by "surgery". The converse procedure is
also possible. This method was used to prove that a rational

function of degree d has at most d-2 cycles of Herman rings.

2° Note that (super)attractive domains, parabolic domains and
Siegel disks are related to periodic points in them or on their
boundaries. That is to say, one éan deduce their existence from
the condition on the eigenvalues of a periodic point (not
completely in the case of Siegel disk). On the contrary, the
Herman ring has nothing to do with periodic points. So it is
réther difficult to know whether a rational function has a Herman

ring.

3° Configuratioﬁ. Suppose f has more than one Herman rings.
Choose an invariant curve from each of them so that f preserves
those oriented curves. There naturally arises a problem of the
cénfiguration, that is, how those curves are located. For
example, if thére ig a cycle of ﬁerman rings of period 2, there

are three possibilities (up to homeomorphism). See the figures
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below, in which the arrows denote the orientations of the

invariant curves.

(. (. (C).

Changing the orientatidns of both curves, (c) can be identified
with (a). However (a) and (b) cannot 1dent1f1ed by any means.

If there are three

Herman rings, there

still are two (:::)
possibilities apart <::)
from the orientations.

Furthermore, it was

observed in [S] that not only Herman rings themselves but
also their successive pre-images under f play an important
role in the surgery decomposing Herman rings into Siegel disks.

Now we come to the subject of this paper:

Problem 1. Describe the configuration of Herman rings and their
pre-images by something easier to handle.
Problem 2. Characterize the possible configurations for rational

functions.

It turns out that certain kind of trees are nice objects for

this purpose. (Compare with Douady-Hubbard's work on "Hubbard's



16

tree".) We may say, in some sense, we have succeeded in
extracting only a property concerning the configuration from some
"fractals".

All the proof of theorems and lemmas will be given in

another paper.

1. ANNULUS.
To define the trees, we need some terminologies about
annuli.

A open set A of C 1is an annulus, if its complement

r—)‘—“ﬁ

— connected
C-A has exactly two connected components, neither of which is a

point. Let X be a subset of. C and A an annulus (resp. Y
a simple closed curve). We say that A (resp. Y) separates X
if both components of C-A (resp. C-Y) intersect with X.
For an annulus A, there exist 0<r<1 and a conformal
mapping ¢A : A > {zec| r<|z|<1}. (See, for example, [Al.)
Here, r is unique and m(A) = -log r is called the modﬁlus of A.
Define for x,y € C,
A(x,y) = U s (3),
S_(A) separates {x,y}
e M(R) (r ey
where Sr(A) = ¢£1({|z|=r}). Notice that A(x,y) is also an
annulus separating {x,y} and does not depend on the choice of
¢A.
2. TREES.

Let f be a rational function which has Herman rings. A

critical point of f is a point at which f is not locally
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injective. Set

40 = {connected components of (Herman rings - the closure of the
orbits of critical points)},
A' = {connected components of £ ™(a) | A € AO' nz 0},

and B = the union of the boundaries of Herman rings. Note that
both AO and A' consist of disjoint annuli, and that for A €
A', £ : A » f(A) is a covering map.

An annulus A € A' is essential, if fn(A) separates B
for any n20. Finally, let A = {A€A'| A is essentiall.

Let us define for x,y € c

d(x,y) = I m(A(x,y)).
A€A

We have following lemmas.

LEMMA 1. For any x,y € C, d(x,y) < =.

LEMMA 2. d(x,y) d(y,x),

d(x,z)‘

LTAY

d(x,y) + d(y,z).

Hence, 4 1is a pseudo-metric on cC.
Now, we can give the definition of our main object. Define
Te = Clrus |
where x~~y if and only if d(x,y) = 0. Let ‘n denote the
natural érojection from C to Tf. The original pseudo-metric

d on C is projected to a metric d on Te-

LEMMA 3. Tf is a topologically finite tree.

Each annulus of A‘ is mapped to an arc by .

Let us define a map f, : Tf -+ T by

£
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fe(x) = me£ (a1 (%)),

-1 . —

_1(x) is the boundary of 7 '(x) in C.

where 09T

LEMMA 4. f* is well-defined.

It is natural to.consider the tree Tf together with the
map £, as a representation of the configuration of Herman rings
and their inverse images. Moreover, (Tf,f*) can be finitely
presented and is easy to compute (see §7). So it fits to our

aim.

3. PROPERTIES OF (Tf,f*).

Here are some terminologies necessary to state the
properties of (Tf,f*). ILet T be a tree. A branch at x is a
component of T-{x}. Let Bx denote the collection of the
branches at x. A point x of T 1is an end point if #Bx =1,
and a branch point if #Bx z 3.

A metric d on T 1is linear, if for any (simple) arc a
joining x and y, and any 2 € @, the equality d(x,y) = d(x,2z)

+ d(z,y) holds.

THEOREM 1., Write T = Tf, F=f,. Then (T,d,F) has following
properties.

(a) (T,d) is a topologically finite tree with a linear metric.
(b) F: T+ T is continuous.

(c) Thére exist a finite subset Sing(T,F) and a locally
constant map. DF : T-Sing(T,F) » N such that:

if T' 4is a connected component of T-Sing(T,F), then
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FIT.: T' » F(T') is a homeomorphism,

DF is equal to a constant n on T',

and d(F(x),F(y)) = n+d(x,y) for x,y € T'.
(d) There exist arcs Iij (i=1,...,2;j=0,...,pi) with disjoint
interiors such that:

Iij contain no branch point except at its end points;
F(Iij) = Iij+1' where Iipi = I,4i
. ~
i .

F II.. = ld_.

ij _

(e) T= U F (I,).
i,3,n20 J

(f) Every end point of T is an end point of an Iij'

A point of 8ing(T,F) 1is called a singular point and

maximal arcs satisfying (d) periodic intervals. Let

T(n) = U F_n(Iij). For any x and B € Bx’ we can define
i,3
DF(x,B) = 1lim DF(x').
Bax'»x

In the above Theorem, Sing(Tf,f*) = {branch points of TfHJ
U aIijLJn({critical points of f}) and Iiy "are the
i,J .
projections of Herman rings by w. Moreover if A € A, then Df,

on T(A) 1is equal to the degree of the covering f : A > £(A4),

where f denotes the original rational function.

4. HOW TO CONSTRUCT A RATIONAL FUNCTION REALIZING A TREE.

Let us investigate the converse problem, i.e. under what
condition a tree T and a map F can be those which are
obtained ffom a rational function according to §2. 1In other
words, we want to reproduce a rational function from a given

tree. Of course, the conditions(a)-(f) are necessary.

7
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Our plan is as follows:
Firsf, thicken all the segments of the tree to tubes with a
small common radius. Second, blow up all the singular points to
balls. Glueing the tubes and the balls, we get a topological
sphere. Next, define a mapping on the tubes so that if x, F(x)
# S8ing(T,F), it is a covering of degree DF(x) from the circle
corresponding to x to thaﬁ corresponding to F(x). Finally,
find a suitable mapping on each ball, so that one can get, by the
surgery in [S], a rational function with the desired configuration

of Herman rings.

1
./

The result will be given in 86. But before that, we need to

study‘how to define the mapping on the balls.

5. LOCAL MODEL FOR SINGULAR ORBITS.

Suppose (T,F) satisfies (a)-(f). Agree to add all the
branch points and all the end points of Iij to Sing(T,F). Let
X1 = Sing(T,F),»X = X1L)F(X1) and X, = {xeX1| x has a pre-

periodic orbit in X;}. Consider XXC and define Ex = {x}xC

CxxC for x e X.



A local model for singular orbits of (T,F) is (g,{pgl)
satisfying:
(g) g : X1XE + XXC is an analytic map such that
g(CX)C:CF(X); For x € X, pg (B € B ) are distinct points of

Cx'
(h) g(pB) = Pp(g)’ where F(B) 1is the branch at F(x)
containing  F(x') for x' € B sufficiently close to x.
(i) deg_ g = DF(x,B).

Pg

(3j) If x is an end point of an Iij and B € Bx contains

I.

iyr then Pg is the center of a Siegel disk of g with

rotation number GB.

(k) If alij = {x,x'} and B (resb. B') the branch at x
(resp. x') containing x (resp. x'), then SB = —GB..

(%) If x e X, and z € C, is a critical point of g in the

X

stable set, then 2z is preperiodic with respect to g.

The definitions of the stable set, Siegel disk, etc. for

ng*XE are similar to those for a single rational function on

C.

To examine these condition is, in general, not so easy.

21

However if we restrict our attention to rational functions of low

degree, then it becomes quite easy. See Example 3 in §7.

In [{S], a rational function with Herman rings is decomposed

into cyclic rational maps with Siegel disks. These cyclic maps

are nothing but the local model for singular orbits of the tree

obtained from the original function.

6. REALIZATION THEOREM.
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We have a partial answerlto Problem 2 in terms of our trees.

THEOREM 2. Suppose that (T,F) satisfies the conditions (a)-
(f), and that there are a local model for singular orbits of
(T,F). For any n 2 0, there exist a rational function f with

Herman rings and an isometry h : T(n) -+ Tén) satisfying

. F
p(n) p(n)
R
o) _Fxo ()
f
Moreover if all the singqular points of (T,F) are
préperiodic, the conclusion holds with T(n), Tén) replaced by
T, Tf.
The degree of f 1is given by

2(deg £ - 1) = #{critical points of g other than pB}.

This result is not completely satisfactory, but it is useful
enough to study the "rough" configuration of Herman rings. See
the next section. I hope that the theorem would be improved to

. conclude the complete realization in any case.

7. EXAMPLES.

Let us see some examples of trees and how the realization
theorem is applied. The trees shown below subject to the
following conventions:

-£> : a periodic interVal, where the number i indicates

its cyclic order and the arrow its orientation;

On (resp. =——, =), DF =1 (resp. 2, 3);
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o = T(a critical point of f), where f is supposed to be
the original rational function, and similarly

@

m(two critical points), etc.;

a fixed point;
Alphabets are the lengths of respective segments;
The maps F on the trees are the simplest piecewise linear

maps which send each periodic interval i to i+1.

EXAMPLE 1 and 2. The trees for the rational functions obtained

in the theorem 5 A) and B) of [S].

Graph of Fon T2
The tree T1 is supposed to be the simphst tree with periodic
intervals of period p.' For T2, from the graph of F, we have

2a = a + e, hence a = e.

EXAMPLE 3.

Fl) =F) = X,

11
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Let us determine the lengths a,b,...., For example, from

F 1
7\ e

3
/a\r—oia/’ d'-\t—> A .
e e ,

~~a-— e

we have a=>b and d=e +b + a. Similarly, 2b = c and

2c = a + e + d.  We immediately conclude that
a=Db=2e, c=x4e, d = 56 and e > 0 1is arbitrary.

It is easy to see that T3 and F satisfy the conditions (a)-

(f) under these relations.

Let us construct a local model for singular orbits of T
Define the end points i+ and i_ of a periodic interval i by

i_o—35>i+. We need the model at 9 points- 04,0_,1 1+.. and a.

+
Here is an example of the local model, where "at x, a » g"
means that pB = g, for the branch B8 at x containing the

segment a.

Point x g = gIE#:Cx+CF(X) a -+ g
2,.2
a g(z) = (z-1)°/2 a+> b-+1,c~+0
0, g(z) = e2™%.2(1-2) e+0,d~1
1+, 2+, 3+ g(z) = z e >+ 0
1., 2_ g(z) = 'ﬂle°z(1—z) e >+ 0, b,¢ + ®
0, 3_ g(z) = z e > 0, a,d » «

Here the 6 1is to be an irrational satisfying the Diophantine

condition.

12



Check the conditions (g)-(2). Then Theorem 2 gives us a
rational function £ whose tree is the T3. Counting its

critical points, we have deg f = 3.

EXAMPLE 4. 0=3 1 : 2
e a e b e

This,impossible, because- a = b and 2b =ze + a + e + b + e,
Qe |

hence e = 0. However, we can make it realizable by setting

DF = 3 on the segment b.

0=3 1 2
T e O 0 ]
4 e a e b e

Then a = b = 3e. Constructing a local model, one can show that

T is realized by a rational function of degree 5.

4
EXAMPLE 5. See the tree in the next page.

‘Although it looks complicated, T is proved to be realizable by

5
a rational function of degree 3. Try to find the lengths.
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