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Wave Forms for I g(p)
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§ 1. Introduction.

Let H be the upper half plane and G=SLx(R). We fix a prime num-
ber p through this paper. Let T =TI g(p) and x a Dirichlet character
modulo p satisfying x (-1)=1. We regard x as a character of T ((p)

by x (g)l=x (d) (9=[%’€1). Let A denote the Laplace-Beltrami operator
c,d

in L2(F \H,x) and 0CA (<A <A g< o oo , the spectra of A in
L2g(I" \H,x ).

The purpose of this note is to investigate the relevance of the
space W(1/4) of wave forms having a minimal principal eigenvalue 1/4
to Selberg's type zeta function. For its sake, we use Selberg's trace
formula theory [81. Selberg [9]1 conjugated there are no exceptional
eigenvalues of A in L245(T \\H,k ) for congruence subgroups and prin-

cipal characters. If it is true, 1/4 is a possible minimal eigenvalue
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for such cases. The zeta function z(s,x ) over all primitive hyper-.
bolic conjugate classes of I' which is defined in (4.5) was first ap-!
peared in Selberg [81. For cocompact subgroups, it was studied iﬁ
Huber [41. In Ishikawa-Tanigawa [6], they saw that such a zeta func-:
tion which is slightly modified with signature is continued as
meromorphic on the whole plane and its residue at zero gives the
dimension of the space of cusp forms of weight one for T g(p).

We give a view of Eisenstein series and its constant terms in
8§ 2, and a definition of wave forms in § 3. In § 4, we consider the
trace formula for a certain kernel K¥; with a parameter s (Re(s)>1),
which is defined in (4.3). Continuing each term of the trace formula
as a meromorphic function of s, we get an analytic continuation of
z(s,x ) in Theorem 1. In 8§ 5, we give the sketch of the proof of
Theorem 1. Moreover, the dimension formula of W(1/4) becomes remained
as a residue at zero. It turns out in Theorem 2 that its dimension
depends only on the residue of z(s,x ) at zero and the number of [ -

inequivalent cusps.

§ 2. Eisenstein series.
There are two I' -inequivalent cusps in ' which are represented
by o and 0. Denote by I' , the stabilizer of a cusp « in ', then
= 1,1’1 . = 1,0 .
I oo {i[o'lj.nez}. Eo{t [np.l_ ; ne 7.
Fix elements 0 o« =1, 0'0=]r¢% ;‘l/ﬁp] € G such that 0Og (o0 )=k  and

O¢ "IT , 0¢c=T 00 (K € {0 ,0}). The Eisenstein series E, (z,t,x ) at-
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tached to a cusp « is defined by

(2.1) Ex (Z,t,x )= 2 (Imagg-lgzdt ¥ (g,
ge T 4, \T

where t is a complex variable with Re(t)>1. We can write them as
(2.2) L(2t, ¥ ) Eoo (Z,t, % )=% T ¥ (dyts1 cpz+al 2t

(c,d)€ ZX Z, d= 0(mod p)

(2.3) L(2t,x ) Eglz,t,x ) =L =’ x (a)yt/pti azebl 2t .

(a,b)e ZX Z,
Note that if x is a principal character, L(2t,x ) = L(2t,%)
=z (2t) (1-p~2%),

Lemma 1. The constant term of the Fourier expansion of

Eg (0 pz,t,x ) is given in the form
(2.4) § o pybemg 4 (toxovl-t,

where & , , 1is Kronecker's delta. The matrix of the constant terms

can be expressed as follows:

p-1 ,pt-pl-t

M(t, x )= (2t-1) (p2t_)-1 if y is principal,
i 0. A(2t-1,7 )]
M(t,x )=p-t A2t, %) if x is not principal.

AQt-1.x), g

N (2t,x)

-

where A (t)=n ~(t/2)D (£/2)Z (£), A (t,x )=(p/n Yt/2D (t/2)LCt,x ).

Above formulae follow from (2.2) and (2.3) immediately. The
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functional equation of A (t) or A (t,x ) gives
(2.6) MCOt, x IMCI-t, x )=1.
By the general theory of Eisenstein series [7], it is known that
there is a functional equation
(2.7) t[Eoo (z,t,x )}, Eglz,t,x )1
=M(t,x ) Y[Eoo (z,1-t,x ), Eglz,1-t,x )1,

and Ex (z,t,x ) can be continued as meromorphic to the whole t-plane.

§ 3. wave forms.

Let L2(I" \H,x ) be the space of automorphic functions f with
respect to I' , x such that f is square integrable over I" \H, and
L20(F N\ H,x ) the space of f in L2(I" \H,x ) satisfying the cuspidal
condition:

(3.1) I ol floxz) dx=0, for almost all y (z=x+iy).

Let W(A ) denote the subspace in LQb(F N H,x ) satisfying

g 2 a2
(3.2) A f=2A f, (A=-y2(m *??2”‘

Then L25(I" \ H, x ) decomposes into the direct sum of W(A i) whose
dimension is of finite ([21), where {A j} (0<A (<A 2<A g{eeeoee ) is the
set of all eigenvalues of A in L2p(I" \H,x ). It follows from Lemma
1 that the discrete part of the orthcomplement of L2p(I’ \ H,x )
appears only when x 1is a principal character. In such a case, it
coincides with C which is spanned by the constant functions in

L2(" \H,x ).
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§ 4. Selberg's trace formula.

We introduce a point pair G-invariant kernel function of (a)-(b)
type in the sense of [8]. For a complex number s with Re(s)>1, put
(4.1) Kg(z,z')=d(s) | yy' | (S+t1)/2,/ | (z-Z')/2i| St]

d(s)=% Bl,$H-1.
since the integral operator in C® (H) determined by kg(z,z') is G-
invariant, its eigenvalue depends only on the spectrum A of A so0
we use hg(A ) for it. By a direct calculation, we have

Lemma 2. Selberg's transformation is given as follows,

=25 S5+ S—_j
(4.2) hg(A ) =2 B(I+1r,§ ir)

where r satisfies the equation A =(1/4)+r2.

By the aid of the Eisenstein series, we define

(4.3) K*s5(z,2')=Kg(z,2"')~Hs(Z,2")
Ks(z,z') = % Ks(z,9z2')x (9)
ge I' /{1
Hs(z,z') = X .?% J hs(t-t2)E, (z,t,x JE, (z',t,x )d! t!|

K € {0 ,0} Re(t)=1/2"
By the same argument as in [5,8 431, K¥5(z,z') is bounded for all
(z,z')€ HX H, and the integral operator K*g5 with kernel K¥5(z,z') is
completely continuous and iS zero operator on the continuous part
LQC(F N H,x ) of the orthcomplement of L20(F NH,x ). So we can
regard K*¥; as an operator on L2g(I" \H,x )® 6 C where & =1 or 0, ac-

cording to x =principal or not. Let dj denote dim W(A j). We have
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(4.4) § * hg(0)+ £ dj- hg(A )= [ K*g(z,z)dz
i=1 T \H

It follows from the general theory [8] that the series above in
(4.4) converges absolutely and uniformly in any compact subset for
Re(s)>1. By Stirling's formula for I' -functions, it will also con-
verge absolutely and uniformly in any compact subset including no

poles of hg(A j)'s and of 6 * hg(0) for whole s-plane. Then we have

[oge]
Lemma 3. 8§ * hg(0) + Zdj* hg(A {) can be continued as a

i=1

meromorphic function of the whole s-plane with simple poles at

{* 2irj-2k; k20, k€ Z, iz 1)J§ {1-2k; k=2 0, ke Z)} where A j
=(1/4)+r;2,

The integral in (4.4) will be decomposed into the sum of I' -
conjugate classes. Let A(fl,s), A(Ej,s) or A(k ,s) denote the con-
tribution from the identity, elliptic conjugate classes of order i
and 2i or cusp k¥ to its integral respectively.

Definition. For Re(s)>1, we define

(4.5) z(s,x )

)
=% » 1og(N(g))(N(gm)1/2_N(gm)-1/2)-l(N(gm)1/2+N(gm)-1/2)—5x (gM)
ge P m=1

where P denotes a set of primitive hyperbolic conjugate classes of

', N(g) a norm A 2 of g (A being an eigenvalue of g with | A | >1).



31

Theorem 1. (1) For Re(s)>0, we canh rewrite Selberg's trace

formula as

[ege]
+ 25 s+l s5-1 D St+ir,S-i
(4.6) & + 2 B(“i“"I*)+2 ?1 25 B(E+1r’f ir)
1=

=A(X] ,5)+A(Ep,s)+A(E3,s)+25z(s, x )+A(00 ,5)+A(D,s).

The expressions of A(xl,s), A(Ep,s), A(E3,s) and A(x ,s) are given in

(5.2), (5.4), (5.5), (5.10) and (5.11).

(2) A(xl,s), A(Ez,s), A(E3,s) and A(x ,s) can be continued as

o

meromorphic function in the whole s-plane. Then Selberg's type zeta

function z(s,x ) can be continued as meromorphic i he whole s-

plane.

§ 5. The sketch of proof of Theorem 1.

First we will calculate the diagonal integral of K*¥;. In § § 5.1
-5.4, we will assume Re(s)>1. For g€ I' , put
(5.1) Alg,s)= [ P (g)\H ks(z,92) dz x (9),
where I' (9) denotes a normalizer of g in I' .

5.1 Center.

(5.2) Al ,s)=d(s) v( \ H)=sB(%, I;S)(pn )/12,

where v(I" \NH)=xn (p+1)/3 is a volume of a fundamental domain of T .

5.2 Elliptic.

Lemma 4. For an elliptic element g, we have
i

[ (g): {1131

(5.3) A(g,s)=B(.1_.-1-%§)

1 Fp(1,145,145, 1455 ¢ 2;T 2yx (9,

2
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where Fy denotes the hypergeometric function of two invariants, & ,

¥ eigenvalues of g.

Let Ep, E3 be conjugate classes of order 4 or 3, 6 in I' . It is
known that | E~2| =2 if p=1 mod 4, | E2l =1 if p=2 and | Eol =0
otherwise, and | Eg| =4 if p=1 mod 3, | Eg! =2 if p=3 and | E3zl =0
otherwise. Therefore the elliptic contributions A(Ep,s), A(E3,s) from

Eo and E3 are given as

(5.4) A(Ep,s)= % Bl 1ts)a p(2). p o (2
(5.5) A(E3,s)= 5 B(L, LS F (1,145,135 14550 18 )0 p(3) - B 5 (3)
where w =(-1+/=-3)/ 2,
2 if pP=1 mod 4 2 if P=1 mod 3
apl2)= /) if p=2 v ap®={1  if p=3 ,
0 if pP=3 mod 4 0 if P=2 mod 3

By (2= {1 if x (9=1 (g€ Ep), B y (3)={ 2 if x (9)=1 (g¢ Eg).

-1 if x (g)=-1 1 if x (9=w ,w

5.3 Hyperbolic. ' does not have any hyperbolic elements leav-

ing a cusp fixed. We get the following lemma in the same way as [5,
§ 5.21. |
Lemma 5.
(5.6) A(g,5)=25 1o9(A g2) x (9)
X (N(g)1/2-N(g)=1/2)-1(N(g) 1/24N(g)~1/2)"-5
where A g>1 is an eigenvalue of a generator of I (g9).

Therefore the hyperbolic contribution becomes

(5.7) 25 z(s,x ).
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5.4 Parabolic and Eisenstein series. The divergence part of the

sum of A(g,s) over I' o and T' g is Jjust canceled by that of Hg. Take

¢>>0 and Dy={z; 0S xS 1, 0S yS Y}.

Lemma 6.
(5.8) z I ks(z,9z)dz=109(Y)+L -o3 (g_)+o(1) (Y—> 00 )
ge T' y / {£1} OxDy 2
g* |

where v denotes Euler's constant and ¥ the digamma function.
For simplicity, we use hg*(r) for hg(A ) (X =(1/4)+r2), By the

same calculation as in [71, we get

Lemma 7.
1
(5.9) - I 47 ].8 hs*(r) E (z,t,x ) Ex (2,t,x ) dr dz
Ox Dy

=—1og(\n-4lr hstbimye ¢ (D

: _
tin J .23 hs®(M{ 2 my » (£, x0m" ¢ 5 (£, x )¥dr+o(1)

u € {0 ,0} (t=(1/2)+ir, Y=>00)
Combining Lemma 6, 7 with Lemma 1, we obtain

(i) 1f x is principal, then

: -1y ($)+L hs()
(5.10) Alk ,s) %;+log(n ) 2¢>(2)+4 hs($)

1 ; L
-z § & hs*(r)(1-pT142i0-lar- 557 [ hg* () (Lrirddr
i
-7 J .8 hg*(r)A(r)dr,
where A(r)=£LLLli2lLl+§%§.
Z (1+ir)

(ii) If x is not principal, then

(5. ,s)=1_ -3 -1y (s
11) ACk ,5) ) +log(n ) 2log(p) 2¢’(l)
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hs*(r)d)(%+ir)dr

[e o]

(o]

2 hsx(r){L'(nzir,x Y 4L (1+42ir, ¥ Jyqr
L(1+2ir,x ) L(1+2ir, %)

—

N
:F‘ar’

Remark 1. For Re(s)>0, let define Dirichlet series by

[o0]
(5.12) 1(s)=-2 A (m)n~l(n+n-1)-s
n=1
[o2e]
1(s,x )=-Z A (m)n~l(n+n=1)=Sy (n)
n=1 -

where A (n)=0 when n is not a power of a prime and A (n)=109(q) when

n is a power of a prime q. For Re(s)>0, the integrals above can be

expressed as follows:

‘ .
27 [ .8 hg*(r)(1-p-1+2iry-lgr

o0
=-109(p)-25% A (pM)p~N(pN+p~N)-5,
n=1
1
-7 [ % hg*(r)A(ridr=-1 hs(i.)-zsﬂl(s).

C 3= @ he*(r(LiU#2ir, ¥ )L (1+2ir. F yar
L(142ir,x ) L(1+2ir,%)

=-25(1(s,x )+1(s, % )).

5.5 Each term of A(X .s) which is expressed by the beta func-
tion, the digamma function or the hypergeometric function will be
continued as meromorphic in the whole s-plane. The integrands in
(5.10), (5.11) are evaluated as

» (Lrir)=0Clogl r1 ), A(r)=0(log(2(1+1 ri M),

L' (1+2ir, ¥ )=0(log(2p(1+! rl )))
L(1+2ir, ¥ )

10
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when I rli tends to infinity, so all terms of A(x ,s) which are
expressed by the integrals are holomorphic in the half plane Re(s)>0.
Moreover they will be also continued as meromorphic in the whole s-
plane. Then z(s,x ) becomes a meromorphic function there.

The end of the sketch of proof of Theorem 1.

Remark 2. Since A(%,s)'s are holomorphic in the half plane
Re(s)>0, z(s,Xx ) has only possible simple poles in (0,11. Such a pole
occurs at s=1 only when x 1is principal. Especially, if z(s,x ) has
no poles in (0,1), +there are no exceptional eigenfunctions in

§ 6. The dimension formula of W(1/4).

Theorem 2. The dimension of W(1/4) is given by the following
formula:
. L 1
(6.1) dim W(1/4)=7 Res z(s,x )+73(1+8 ).
5=0 .

where & =1 when x is principal and § =0 when ¥ is not principal.

Proof. The left hand side of (4.5) has a simple pole at 0
with residue 4+ dim W(1/4). In its right hand side, A(xl,s), A(Ej,s)
are regular at zero, but A(x ,s). has a simple pole there with residue

1+8 . Therefore we get (6.1).

11
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