Sharp's Conjecture

the case of local rings with dim nonCM \leq 1 or dim \leq 5

愛媛大·理 青山 陽一 (Yoichi Aoyama) 日大·文理 後藤 四郎 (Shiro Goto)

We continue to discuss a conjecture of Sharp on the existence of a dualizing complex from [2] and [3]. For terminologies, definitions and preliminaries, we refer the reader to [2], [3] and [4]. Throughout the note A denotes a d-dimensional local ring with the maximal ideal \underline{m} . In this note we show the following two theorems.

Theorem 1. If A has a dualizing complex and dim $nonCM(A) \le 1$, then A is a homomorphic image of a Gorenstein ring.

Theorem 2. If A has a dualizing complex and dim A \leq 5, then A is a homomorphic image of a Gorenstein ring.

In order to show Theorem 1, we make use of Faltings' Macaulay-fication ([6]) and the theory of unconditioned strong d-sequences ([7]). If we had Theorem 1, Theorem 2 can be proven by a similar method to that given in [2, §2] and [3, §3].

Now we recall Faltings' Macaulayfication theorem.

Satz 3([6, Satz 3]). Sei B lokaler Ring der Dimension n+1, nsein maximales Ideal, I = $(x_1, ..., x_n) \subset \underline{n}$ ein Ideal mit dim B/I = 1 und $y \in \underline{n}$ mit dim B/I+yB = 0.

Es gelte: i) B ist Quotient eines regulären Ringes.

- ii) Für alle minimalen $p \in Spek(B)$ ist dim B/p = n+1.
- iii) Für alle $\underline{p} \in Spek(B)$ mit $\underline{p} \not\supseteq I$ ist B_p Cohen-Macaulay-Ring.
- iv) $x_i \in (Ann H_I^j(B))^{2^n}$ für alle i und alle j < n . v) $x_i \in (Ann H_{\underline{n}}^j(B))^{2^n}$ für alle i und alle j < n .

Sei X die Aufblasung des Ideals I in Spek(B) und J = $\operatorname{I}^r \mathfrak{G}_{\operatorname{X}} + \operatorname{y} \mathfrak{G}_{\operatorname{X}}$ ein $\mathfrak{G}_{\operatorname{X}}$ - Ideal, welches die Faser von X über $\underline{\mathrm{n}}$ definiert.

Auf X gelte: vi) $JH_n^1(\Theta_X) = 0$. Sei Y die Aufblasung von X im Ideal J. Dann ist Y Cohen-Macaulay.

Now we assume that A has a dualizing complex and dim nonCM $(A) \leq 1$. We treat the case of Min(A) = Assh(A). We note that i) in Satz 3 can be replaced by that B has a dualizing complex ([6, Bemerkungen]). In this case we can take elements x_1, \dots, x_{d-1} , y from \underline{m} , for which \underline{ii}), \underline{iv}) v) and vi) in Satz 3 hold ([6, Bemerkung a) S.190] and [5]). Furthermore we may assume that r(in Satz 3) is no less than d-1 and that x_1, \dots, x_{d-1} form an unconditioned strong d-sequence in $A_{\rm p}$ for every minimal prime ideal \underline{p} of $I = (x_1, \dots, x_{d-1})$ ([7, 6.19]). Let $L = I^r(I^r + yA)$, $R = \underset{n \to 0}{\bigoplus} L^{n} \cong A[LT] \subseteq A[T] \text{ with an indeterminate } T \text{ and } N = \underline{m}R + R_{+}.$ Claim: $H_M^p(R)$ is finitely generated for $p \neq d+1$.

It is sufficient to see that $R_{\rm p}$ is Cohen-Macaulay for every

homogeneous prime ideal $P \neq N$. Put $p = P \cap A$. First suppose $p \neq m$. If $p \not\supseteq 1$, $R_p \cong A_p[T]$ is Cohen-Macaulay as so is A_p . If $p \supseteq 1$, $R_p \cong A_p[T]^n$ is Cohen-Macaulay as x_1, \ldots, x_{d-1} is an unconditioned strong d-sequence in A_p ([7, 4.1 and 7.10], cf. [3, 1.19]). Now let p = m. As $L^r = (x_1^{2r}, \ldots, x_{d-1}^{2r}, yx_1^r, \ldots, yx_{d-1}^r)$. L^{r-1} and $P \not\supseteq R_+$, we have $x_1^{2r} \not\in P$ for some i or $yx_j^r \not\in P$ for some j. Let $P \not\ni x_1^{2r}$. We put $f = x_1^{2r}$, $f = x_1^$

Hence we have Theorem 1 (cf. [2, Proof of 3.10] and [3, Proof of 4.11]).

We mention that the same theorem as Satz 3 (hence as Theorem 1) holds for a semi-local ring $(B,\underline{n}_1,\ldots,\underline{n}_t)$ if all $\underline{n}_1,\ldots,\underline{n}_t$ appear in the same degree term of a fundamental dualizing complex and every maximal chain of prime ideals has the same length.

Corollary to Theorem 1. If A has a dualizing complex and A is (S_{d-2}) , then A is a homomorphic image of a Gorenstein ring.

Now we prove Theorem 2. Let d = 5. (See [2, §2] or [3, §3] for the case of $d \le 4$.) Suppose that the assertion is false. Then, by [2, 2.1] or [3, 3.1], there is a 5-dimensional local ring A such that A has a dualizing complex, is not a homomorphic image

of a Gorenstein ring and is (S_2) . A is not (S_3) by Corollary above. Then $T(A) := \{ \underline{p} \in Spec(A) \mid depth A_p = 2 < dim A_p \}$ is not empty. Let I be an ideal such that V(I) = nonCM(A). As A is (S₂), height I \geq 3. There is an A-regular sequence a,b in I. We have $T(A) \subset Ass(A/(a,b))$. We put $s(A) = max \{ dim A_p \mid$ $\underline{p} \in T(A)$ } , $T_0(A) = \{ \underline{p} \in T(A) \mid \dim A_p = s(A) \}$ and $T_1(A) =$ $T(A) \longrightarrow T_{\Omega}(A)$. Consider all such local rings, and take a local ring A from them whose s(A) is the smallest. As A is (S_2) , $H_{\underline{p}A_D}^2(A_{\underline{p}})$ is of finite length for every \underline{p} in Spec(A) with dim $A_{\underline{p}} \geq 3$ Hence there is a non zero divisor $x \in \bigcap \{\underline{p} | \underline{p} \in T_0(A)\} \setminus \bigcup \{\underline{p} | \underline{p} \in T_1(A)\}$ such that $xH_{\underline{p}A_{\underline{p}}}^{2}(A_{\underline{p}}) = 0$ for every \underline{p} in $T_{\underline{0}}(A)$. Let C = $\operatorname{Hom}_{A/xA}(K_{A/xA},K_{A/xA}^{E})$. By the fact we mentioned before Corollary to Theorem 1, there exists a Gorenstein semi-local ring G such that $Max(G) = \{ \underline{n} \cap G \mid \underline{n} \in Max(C) \}$, every maximal chain of prime ideals in G has length 5, the length of a fundamental dualizing comlex of G is equal to 5 and C is a homomorphic image of G . Let B be the fibre product of A \rightarrow C and G \rightarrow C . We have an exact sequence of B-modules 0 \rightarrow B \rightarrow A \oplus G \rightarrow C \rightarrow 0 . By the same argument as in Proof of [2, 2.3] or [3, 3.2], it is known that B is a 5-dimensional local ring with the maximal ideal $\underline{m} \cap B$ and B has a dualizing complex. As A is a homomorphic image of B, B is not a homomorphic image of a Gorenstein ring and not (S_3) . B is (S_2) . Hence $T(B) \neq \emptyset$, and $s(B) \geq s(A)$ by the choice of A. Take P from $T_0(B)$. We have depth $B_p = 2$. If $C_p = 0$, $B_{p} \stackrel{\sim}{=} A_{p}$ as G is Gorenstein. Hence $PA \in T_{0}(A)$, a contradiction as PA \Rightarrow x . Therefore $C_p \neq 0$. Put dim $C_p = t$. Then dim B_p = dim A_p = dim G_p = t + 1 = s(B) \geq s(A) > 2 . From the exact

sequence $0 \to B_P \to A_P \oplus G_P \to C_P \to 0$, we have depth $A_P = 2$ as depth $B_P = 2$, depth $G_P = t+1 > 2$ and depth $C_P \ge 2$. Therefore $PA \in T_0(A)$ and S(B) = S(A). Hence $SH_{PA_P}^2(A_P) = 0$ and $SH_{PA_P}^2(A_P) \to SH_{PA_P}^2(A_P)$ is injective. It is known that $SH_{PA_P}^2(A_P) \to SH_{PA_P}^2(A_P)$ is injective. It is known that $SH_{PA_P}^2(A_P) \to SH_{PA_P}^2(A_P)$ is injective (cf. [1, Proposition 2]). From the exact sequence $SH_{PA_P}^2(C_P) \to SH_{PA_P}^2(C_P) \to SH_{PA_P}^2(C_P) \to SH_{PA_P}^2(C_P) \to SH_{PA_P}^2(A_P) \to SH_{PA_P}^2(A_P) \to SH_{PA_P}^2(C_P)$, we have $SH_{PB_P}^2(B_P) \to SH_{PB_P}^2(A_P) \to SH_{PA_P}^2(A_P) \to SH_{PB_P}^2(C_P)$, we proof is completed.

References

- [1] Y. Aoyama, On the depth and the projective dimension of the canonical module, Japan. J. Math. 6 (1980) 61-66.
- [2] 青山-後藤, Sharp 予想の特別な場合。 京大 数理研講究録 543, 13-52.
- [3] Y. Aoyama and S. Goto, Some special cases of a conjecture of Sharp, J. Math. Kyoto Univ. 26-4 (1986).
- [4] Y. Aoyama and S. Goto, A brief summary of the elements of the theory of dualizing complexes and Sharp's conjecture, to appear in "The Curves Seminar at Queen's IV".
- [5] G. Faltings, Über die Annulatoren lokaler Kohomologiegruppen, Arch. Math. 30 (1978) 473-476.
- [6] G. Faltings, Über Macaulayfizierung, Math. Ann. 238 (1978) 175-192.
- [7] S. Goto and K. Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, to appear.