
132

Exponential Speedup by Vector Operations

Kazuo Iwama
Kyoto Sangyo University

1. lntroduction.

To find elementary facilities for parallel computation has been one of the central research goals
in the computational complexity theory. A variety of such facilities are known including versatile
shared memory in PRAMs $[3,4]$, sophisticated nondeterminism called alternation [1], unbounded
fan-in logic gates of combinatorial circuits [2] and so on. All of them were proved to have the same
power that gives us the speedup from poly-space to poly-time. Among others, one of the most
interesting ones was presented in $[5,7]$ that showed the shift operation for integer (or Bool) vectors
gives us the same speedup. In the current paper we present another, similar in a sense, vector
operation which allows more speedup, namely, from exp-time to poly-time. The operation, called
matrixization, essentially builds a vector of length m^{2} from a vector oflength m by copying.

Surprisingly small attention has been paid to the models which achieve the settled exponential
speedup. (The poly-space to poly-time speedup needs the unproved assumption that
$PTIME\neq PSPACE.)$ The only model achieving the exponential speedup, to the author’s best
knowledge, is nondeterministic PRAMs in [3]. Our vector operation seems better in its simplicity
and irreducibility than that model which includes unusually complicated communication facilities
depending on the coexistence ofnondeterminism and parallelism.

Two supplementary but not less important results in this paper are as follows. It is shown that
the vector machines (VMs in short) can be simulated by PRAMs with virtually no time loss if each
processor is equipped with the multiplication instruction that can only be used for computing
addresses of the shared memory (division is not necessary). Thus we can say, for example, PRAMs
with multiplication can recognize in poly-log time any set in PTIME. Secondly we claim that the
matrixization operation is more practical than the shared memory communication of PRAMs. To
do so, we will give a subclass of the VMs hardware realization ofwhich is clearly more feasible than
PRAMs of the same size. They are less powerful in general than PRAMs but still show the same
performance for a number of common specific problems such as computing connected components
and minimum spanning trees of graphs.

Finally it should be noted that the basic idea of the existing ”super computers” is far from the
idea of PRAMs but is somehow close to that of VMs in the broad sense. This paper will hopefully
activate research on VMs which the author believes are the most promising candidate of truly
parallel computers.

1

数理解析研究所講究録
第 625巻 1987年 132-136

133

2. Vector Machine Architectures.

A vector oflength m is denoted by $(a_{1},a_{2}, \ldots,a_{m})$ where each a_{i} is a scalar (nonnegative integer).

Let $A=(a_{1},a_{2}, \ldots,a_{i}),$ $B=(b_{1},b_{2}, \ldots,b_{j})$ and . be a binary operation for scalars. Then $A\cdot B$ is defined
as $(a_{1}\cdot b_{1}, a_{2}\cdot b_{2}, a_{k}\cdot b_{k})$ where $k= \min(i_{1}i)$. $(a_{1},a_{2}, . a_{i})l=(a_{1},a_{2}, a_{i})$ if $l=l$ and
$=((a_{1},a_{2}, \ldots,a_{i})t- 1a_{1},a_{2}, \ldots,a_{i})$ if $l>1$. Key vector operations in this paper are called matrixization
and dematrixization. In general, the matrixization operation makes a vector of length m^{2} from a
vector $(a_{1},a_{2_{\backslash }},\ldots,a_{m})$ oflength m as follows:

$((a_{1}, \ldots, a_{m!c})c(a_{m/c+1}, \ldots, a_{2m/c})c\ldots, (a_{\langle c-1)m/c+1}, \ldots,a_{m})c)m1c$.

As for values of c , three different ones are enough, namely, $c=1,$ $c=m$ and $c=\sqrt m$. Matrixization
operations for $c=1,$ $c=m$ and $c=\sqrt{m}$are denoted $by\downarrow$ $arrow and\searrow$, respectively. (See Fig.1. Two
dimensional expressions used there are just for easier understanding. All vectors in this paper are
one-dimensional.) As a special case, $\downarrow(a_{1})=arrow(a_{1})=\searrow(a_{1})=(a_{1},a_{1})$. The dematrixization operation
is described using function COMMON. It is defined as COMMON$(a_{1}$, . . $a_{m})=0$ if $a_{1}=a_{2}=\ldots$

$=a_{m}=0$ and $=a$ if a is the only one positive value taken by nonnegative a_{i} (i.e., each $a_{i}=0$ or a).

Application of COMMON to the values more than two of which take different positive values, is
illegal. For a vector $A=(a_{1}, \ldots,a_{m}, a_{m+1}, \ldots, a_{2m}, \ldots, a_{n\iota 2- m+1}, \ldots,a_{m2}),$ $COMMON(A)$ is a vector
of length m defined by (COMMON$(a_{1}, \ldots,a_{m}),$ $COMMON(a_{m+1}, \ldots, a_{2m}),$ $\ldots,COMMON(a_{m}z_{-m+1},$ $.$

$a_{n\iota 2}))$.

In the rest of the paper, $a,$ $b,$ $c,$ \ldots are used for scalar constants, $x,$ $y,z,$ \ldots for scalar variables
and $X,$ $Y,$ $Z,$

\ldots for vector variables. $X:=Y$ denotes an assignment instruction where the length of
X (denoted by IXI) is IYI if $IY1\leqq IX1$ and IXI otherwise (i.e., the excess portion of Y is cut off).

Now we are ready to give a VM architecture (a set of instructions) called MATRIX-COMMON,
which includes the following instructions:

(i) Scalar instructions
$x:=y+z$

$x:=y-z$ ($y-z=y- z$ if$y\geqq z$ and $=0$ otherwise)

$x:=y-z$ ($y-z=y- z$ if$y\geqq z$ and $=y$ otherwise)

If $x>0$ go to label
halt

(ii) Scalar-vector instructions
$y:=X$ (y holds the value of the first element of X)

$X:=y$ (1X1 $=1$ whatever the length ofX before execution is)

(iii) Vector instructions
$X:=Y+Z,$ $X:=Y-Z,$ $X:=Y-Z$
$X:=\downarrow Y,$ $X:=arrow Y,$ $X:=\searrow Y$

X: $=COMMON(Y)$

Any of those instructions is executed in a single step. Note that the length of each vector
variable X at some moment is determined by the most recent execution of the assignment
instruction on the left-hand side ofwhich X appears. We can use a special constant vector $I_{0}=(1,2$,

2

134

3, 4..). Its length is assumed to be longer than any other vector existing at that moment. Also
two special vectors called input and output vectors are available.

Theorem 1. Let $\hslash n$) be n^{ϵ} or $\log^{c}n$ for a constant c. Then ifa set $L\subseteq\{0,1\}^{*}$ is recognized in time
$l^{r_{\hslash)}}$ by one-tape Φ_{Ms} then L is recognized in time $O(\rho(n))$ by MATRIX-COMMON VMs.

Theorem 2. Ifa set L is recognized in time $T(n)(T(n)\geqq\log n)$ by MATRIX-COMMON then L is
recognized in time $O(T(n))$ by PRAMs with unit-cost multiplication.

Thus multiplication in PRAMs is really powerful just as it is so in sequential RAMs 151. We
should be very careful in introducing multiplication to PRAMs although it is not likely that the
operatiqn still keeps its essential power when the $n\iota rnber$ ofprocessors is restricted to, say, n^{2} . The
PRAMs in Theorem $2- do$ not need – or $-$ but the usual subtract operation is enough. Also the
multiplication operation needs to be used only for computing addresses of the shared memory. The
fork instruction in [3] does not fit this theorem. All processors must be active from the beginning of
the execution.

Now we introduce a subclass of MATRIX-COMMON. $2DIM$-MATRIX-COMMON is a VM
architecture which is the same as MATRIX-COMMON but the following. (i) It does not $include\searrow$.
(ii) All vectors appearing in instructions are of length n or n^{2} where n is the length of the input
vector. This architecture is motivated by the parallel model called mesh of busses [6]. Fig.2 shows
its structure. Each P_{ti} is a RAM. Each $COLUMN_{j}$ and ROW_{i} can be viewed as a single cell of the
shared memory that can be replaced by a communication bus. Physical realisability seems to be
very good but it is intuitively less powerful than usual PRAMs of n^{2} processors because P_{ti} can
access only ROW_{i} and COLUMNj.. Those merit and demerit are exactly the same in 2DIM-

MATRIX-COMMON. From this viewpoint, the matrixization operation seems to be realistic rather
than powerful. An interesting feature is that although the restriction it shows the same power as
PRAMs for a couple ofcombinatorial problems.

Theorem 3. Connected components of graphs, minimum spanning trees of graphs and sorting
are computed in time 0(\log n) on $2DIM$-MATRIX-ARBITRARY, $2DlM$-MATRIX-MAX and
randamized $2DIM$-MATRIX-COMMON, respectively. (ARBITRARY picks a positive value
nondeterministically and MAX the maximum value. Those, including COMMON, correspond to
the write-conflict resolution in PRAMs.)

3. ProofTechniques.

Algorithms in Theorem 3 are essentially the same as those for the mesh of busses. In PRAMs
each processor can execute conditional branch instructions but not in VMs. Operations -. and $-$

play an important role to handle this problem. This problem also arises frequently in other
theorems.

Theorem 1 is one of those theorems in which the proof goal is clear but the way to there needs a
lot of tricky techniques. $Operation\searrow plays$ a key role throughout the proof. Among many others
we shall present the following fundamental technique. Let $B_{i}(m)$ be the zero-one vector of length i

3

13

that represents binary number m. For example, $B_{8}(9)=(0,O,0,0,1,0,O,1)$. Suppose that the
following vectors are given for some $i=2^{j}$.

$A=$ $(B_{i}(0)aB_{i}(1)\emptyset, \ldots , B_{i}(2^{i}- 1)a),$ $a=2^{i}h$.

$B=(B_{i}10)bB_{i}\langle 1$)$b\ldots$, $B_{i}(2^{i}- 1)b)2^{0.5i}$ $b=21.5\nu i$.

$C=((1)i(0)i)c$ $c=2^{2i}/2i$.

$D=((0)i(1)i)d$ $d=2^{3i}l2i$.

Then

$\searrow(A-C)+\searrow(B-D)$

gives us

$(B_{2i}(0)e,B_{2i}\langle 1)e\ldots$, $B_{2i}(22i_{-}1)e),$ $e=2^{2i}/2i$.

This means we can make all zero-one strings of length $2i$ in constant steps using those of length i

and $operation\searrow$. Then it follows that we can get all zero-one strings of length, say, $2^{n^{2}}$ in $O(n^{2})$

steps.

Theorem 2 is not so difficult. Note that we do not have to compute directly the square root
function when simulating $operation\searrow$.

References.

[1] Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., Alternation, JACM 28,114-133 (1981).

[2] Chandra, A.K., Stockmeyer, L.J., and Vishkin, U., A complexity theory for unbounded fan-in
parallelism, 23rd FOCS, 1-13 (1983).

[3] Fortune, S., and Willie, J., Parallelism in random access machines, 10th STOC, 114-118 (1978).

[4] Goldschlager, L.M., A unified approach to models of synchronous parallel machines, 10th
STOC, 89-94 (1978).

[5] Hartmanis, J, and Simon, J. On the power of multiplication in random access machines, 15th
SWAT, 13-23 (1974).

[6] Iwama, K., Feasible but stillpowerfulPRAMs, Technical Report COMP86-53, IECEJ (1986).

[7] Pratt, V.R. and Stockmeyer, L.J., A characterization of the power of vector $i_{\grave{l}}\iota achines$, JCSS 12,
198-221 (1976).

4

136

$A=(a_{J}oe_{J}0_{J}crightarrow)$ $th=(0_{\nearrow}\mathfrak{a}_{z},$ $0_{\nearrow}0_{4_{J}}$ $-\Rightarrow A=(a_{l},o_{t_{j}}a_{1_{j}}\eta_{J}$

$\mathfrak{a}_{1\nearrow 0_{Z},0_{5},0rightarrow J}$
$0_{2},Q_{2_{\nearrow}}0_{e_{\nearrow}}\phi_{z,}$

$\mathfrak{a}_{1}/a_{Z})o_{j}o_{u_{J}}$
$0_{3_{J}}0_{3_{j}}0_{3}a_{9_{\supset}}$

$Q_{I}0_{\iota_{J}}\mathfrak{a}_{3,}q_{\eta)}$
$q_{\{j}0_{u_{1}}a_{w_{/}}o_{f}\iota)$

$/\=(a_{t_{j}}a_{t}$
\searrow A $=t^{a_{t_{J}}ao_{\iota_{J}}a_{z_{\supset}}}2_{j}$

$0,,$ $a_{\iota_{\dashv}}$) $\mathfrak{a}_{3},a_{q/}o_{\nearrow}a_{\nearrow}$

$a,,\mathfrak{a}_{a,}c_{t\iota},0_{z_{y}}$

$a,,0,_{J}a_{\nearrow}a_{\forall})$

$\ulcorner-|@^{1}1$. V2 $Ct_{\sigma v}o_{\mathfrak{X}}\not\in,\alpha s$.

$F|\partial^{c}2$. $\#\mathcal{A}_{4\sigma k\psi}b_{t\lambda}\sigma ses$

5

