ON THE DEFORMATION OF A CERTAIN TYPE OF ALGEBRAIC VARIETIES

Mutsuo OKA

Dedicated to Professor I. Tamura for his 60th birthday

§1. Introduction

Let $A=(a_{ij})$ $(1\leq i,j\leq n)$ be an upper triangular integral matrix with a non-zero determinant and $a_{ij}\geq 0$ for each i,j. Let Δ be the n-simplex in \mathbb{R}^n which is spun by $A_0=\overrightarrow{0}$ and $A_i=(a_{i1},\ldots,a_{in})$ $(i=1,\ldots,n)$. Let $A_{n+1},\ldots,A_{n+2},\ldots,A_{\ell}$ be the other integral points in Δ . For an integral vector $\nu=(\nu_1,\ldots,\nu_n)$, we denote the monomial $y_1^{\nu},\ldots,y_n^{\nu}$ by y^{ν} . For $t=(t_0,\ldots,t_{\ell})$ of $\mathbf{c}^{\ell+1}$, we define

(1.1)
$$h(y,t) = t_0 + \sum_{j=1}^{\ell} t_j y^{A_j}$$

and let $M_{f t}^a$ be the affine variety in ${f c}^n$ defined by $h({f y},{f t})=0$. There exists a toric variety ${f W}$ of dimension ${f n}$ which depends only on ${f \Delta}$ and a Zariski open subset ${f U}$ of ${f C}^{\ell+1}$ such that ${f W}\supset {f C}^n\supset {f M}_{f t}^a$ and the closure ${f M}_{f t}$ of ${f M}_{f t}^a$ in ${f W}$ is nonsingular for each ${f t}\in {f U}$. This type of algebraic variety ${f M}_{f t}$ appears as an exceptional divisor of a resolution of an

isolated hypersurface singularity ([12]). The purpose of this paper is to study this deformation $\{M_{+}\}$ in W.

In $\S 5$, we prove the surjectivity of the infinitesimal displacement map

$$\xi : T_t U \rightarrow H^0(M_t, \nu_t).$$

In §6, we give a criterion about the injectivity of the Kodaira-Spencer map

$$\delta \cdot \xi^{e} : T_{t}U^{e} \longrightarrow H^{1}(M_{t}, \theta_{t}).$$

In §7, we will apply the results in §§5,6 to construct a complete deformation of a Godeaux surface.

§2. Infinitesimal displacement

Let W be a compact complex manifold of dimension n and let $\{M_t\}$ (teU) be an analytic family of non-singular hypersurfaces where U is an open set of $\mathbf{C}^{\ell+1}$. Let $\{(U_{\alpha}, \mathbf{z}_{\alpha})\}$ ($\alpha \in \mathbf{S}$) be local coordinate systems of W such that (i) W = U $_{\alpha} \in \mathbf{S}$ and (ii) there exists analytic functions $\mathbf{f}_{\alpha}(\mathbf{z}_{\alpha}, \mathbf{t})$ on $\mathbf{U}_{\alpha} \times \mathbf{U}$ such that $\mathbf{M}_t \cap \mathbf{U}_{\alpha} = \{\mathbf{z}_{\alpha} \in \mathbf{U}_{\alpha} \; ; \; \mathbf{f}_{\alpha}(\mathbf{z}_{\alpha}, \mathbf{t}) = 0 \}$. Let $\mathbf{h}_{\alpha\beta} = \mathbf{f}_{\alpha}/\mathbf{f}_{\beta}$. We may assume that $\mathbf{h}_{\alpha\beta} \in \mathbf{O}^*(\mathbf{U}_{\alpha}\cap \mathbf{U}_{\beta})$. The line bundle $[\mathbf{M}_t]$ is defined by the cocycle $\{\mathbf{h}_{\alpha\beta}\}$ of $\mathbf{H}^1(\mathbf{W}, \mathbf{O}^*)$ and the normal bundle \mathbf{N}_t of \mathbf{M}_t in W is the restriction of $[\mathbf{M}_t]$ to \mathbf{M}_t . Let ν_t be the sheaf of the germs of the holomorphic sections of \mathbf{N}_t . Take a holomorphic tangent vector $\mathbf{v} \in \mathbf{T}_t \mathbf{U}$. As $\mathbf{f}_{\alpha} = \mathbf{h}_{\alpha\beta} \mathbf{f}_{\beta}$, we have

(2.1)
$$v(f_{\alpha}) = h_{\alpha\beta} v(f_{\beta}) \text{ on } U_{\alpha} \cap U_{\beta} \cap M_{t}.$$

This defines a canonical linear mapping

where $\xi(v) = \{v(f_{\alpha})\}(\alpha \in S)$. $\xi(v)$ is called the infinitesimal displacement along v.

Let θ_W and θ_t be the sheaves of the germs of holomorphic vector fields of W and M respectively. We have the exact sequence of sheaves:

$$(2.3) 0 \rightarrow \Theta_{t} \rightarrow \Theta_{W}|M_{t} \rightarrow \nu_{t} \rightarrow 0.$$

This induces the following exact sequence.

$$(2.4) \quad 0 \rightarrow H^{0}(M_{t}, \Theta_{t}) \rightarrow H^{0}(M_{t}, \Theta_{W}|M_{t}) \rightarrow H^{0}(M_{t}, \nu_{t})$$

$$\xrightarrow{\delta} \quad H^{1}(M_{t}, \Theta_{t}) \longrightarrow H^{1}(M_{t}, \Theta_{W}|M_{t}) \longrightarrow \cdots$$

The composition

$$(2.5) T_{+}U \xrightarrow{\xi} H^{0}(M_{+},\nu_{+}) \xrightarrow{\delta} H^{1}(M_{+},\theta_{+})$$

is equal to the infinitesimal deformation map. See Kodaira-Spencer [6] or Kodaira [7] for details.

§3. Resolution of a hypersurface singularity

We recall basic properties about the resolution of a hypersurface singularity through the toroidal embedding theory. We use the same notation as in [12]. Let $f(z_0,\ldots,z_n)=\sum\limits_{\nu}a_{\nu}\ z^{\nu} \ \ \text{be an analytic function defined in a}$

neighborhood of the origin and we assume that V = f^-1(0) has an isolated singular point at the origin. Let $\Gamma_+(f)$ be the convex hull of $U = \{\nu + (\mathbf{R}^+)^{n+1}\}$. The Newton boundary $\Gamma(f) = \mathbf{R}^+ \mathbf{R}^+$

is the union of the compact faces of $\Gamma_+(f)$. We assume that f is non-degenerate on each face Λ of $\Gamma(f)$. Let N be the dual space Hom (R^{n+1},R) . We identify N with R^{n+1} through the standard inner product and we denote the dual vectors by column vectors to avoid confusion. Let N^+ be the set of non-negative dual vectors. We introduce an equivalence relation ~ in N⁺ by P ~ Q if and only if $\Delta(P) = \Delta(Q)$. Here $\Delta(P)$ is the locus where the restriction of P on $\Gamma_{+}(f)$ takes its minimal value which we denote by d(P). This induces a cone-like polyhedral decomposition of N^+ and we denote this by $\Gamma^*(f)$. Let Σ^* be a unimodular simplicial subdivision. For each n-simplex $\sigma = (P_0, ..., P_n) = (p_{ij})$ which is a unimodular matrix, we associate an affine space $\mathbf{c}_{\sigma}^{n+1}$ with coordinate $\mathbf{y}_{\sigma} = (\mathbf{y}_{\sigma 0}, \dots, \mathbf{y}_{\sigma n})$. Let $\pi_{\sigma} : \mathbf{c}_{\sigma}^{n+1} \to \mathbf{c}^{n+1}$ be the tional morphism defined by $\pi(\mathbf{y}_{\sigma}) = (z_0, \dots, z_n)$ where $z_i = \prod_{j=0}^{n} y_{\sigma j}^{p_{ij}}$. Let X be the complex manifold of dimension n+1 which is obtained by gluing the affine spaces $\mathbf{c}_{\sigma}^{\mathrm{n+1}}$ where σ moves in the n-simplices of Σ^* and let $\widehat{\pi}$: X \rightarrow c^{n+1} be the projection map. Let $\widetilde{\mathtt{V}}$ be the proper transform of \mathtt{V} and let π : \widetilde{V} \rightarrow V be the restriction of $\hat{\pi}$ to \widetilde{V} . By the nondegeneracy assumption, π : \widetilde{V} \rightarrow V is a good resolution of V. For each strictly positive vertex P of Σ^* with dim $\Delta(P) \ge 1$, there are corresponding exceptional divisors $\hat{E}(P)$ and E(P)

of $\hat{\pi}$ and π respectively so that E(P) is a hypersurface in $\hat{E}(P)$. $\hat{E}(P)$ is a toric variety. Let $\sigma = (P_0, \ldots, P_n)$ with P = P_0 . Then in the coordinate chart $\mathbf{C}_{\sigma}^{n+1}$, $\hat{E}(P)$ is defined by $\mathbf{y}_{\sigma 0} = 0$ and E(P) is defined by $\hat{E}(P) \cap \{ \mathbf{h}_{\sigma}(\mathbf{y}_{\sigma 1}, \ldots, \mathbf{y}_{\sigma n}) = 0 \}$ where $\mathbf{h}_{\sigma}(\mathbf{y}_{\sigma})$ is defined by

$$(3.1) f_{\Delta(P)}(\pi_{\sigma}(\mathbf{y}_{\sigma})) = \prod_{i=0}^{n} y_{\sigma i}^{d(P_{i})} h_{\sigma}(y_{\sigma 1}, \dots, y_{\sigma n}).$$

§4. Compactification of M_t^a .

Let $h(\mathbf{y},\mathbf{t})$ be as in (1.1). Let σ' be the unimodular matrix (P,R_1,\ldots,R_n) where $P={}^{\mathbf{t}}(1,\ldots,1)$, $R_1={}^{\mathbf{t}}(0,1,\ldots,0)$, Let $\pi_{\sigma'}:\mathbf{C}^{n+1}\to\mathbf{C}^{n+1}$ be as in §3. Let y_0,\ldots,y_n be the coordinate of the source. Then we have $z_0=y_0$ and $z_i=y_0y_i$ for $i=1,\ldots,n$. Let k be the degree of k and we define $f_{\Xi}(\mathbf{z},\mathbf{t})=h(\pi_{\sigma'}^{-1}(\mathbf{z},\mathbf{t}))$ $z_0^k=h(z_1/z_0,\ldots,z_n/z_0,\mathbf{t})$ z_0^k . Then $f_{\Xi}(\mathbf{z},\mathbf{t})$ is a homogeneous polynomial in z_0,\ldots,z_n and we can write

$$f_{\Xi}(z,t) = \sum_{i=0}^{\ell} t_{j} z^{B_{j}}$$

for some integral vectors B_0, \ldots, B_ℓ . Note that $B_0 = (k, 0, \ldots, 0)$. Let $f(\mathbf{z}, \mathbf{t}) = f_\Xi(\mathbf{z}, \mathbf{t}) + \sum_{i=0}^n z_i^L$ for a sufficiently large L. The notation $f_\Xi(\mathbf{z})$ is the same as in [12] if we set $\Xi = \Delta(P)$. There exists a Zariski open subset U of $\mathbf{C}^{\ell+1}$ such that $f(\mathbf{z}, \mathbf{t})$ has a non-degenerate Newton boundary for each $\mathbf{t} \in U$. Let $\sigma = (P, P+R_1, \ldots, P+R_n)$. If L is

sufficiently large, $\Delta(P+P_i)\supset B_0$ for each $i=1,\ldots,n$. Thus σ is an admissible simplex of $\Gamma^*(f)$. (σ' is not necessarily an admissible simplex.) Thus we can take a unimodular simplicial subdivision Σ^* which has σ as an n-simplex by §3 of [12].

Assertion. The defining equation of E(P) in $c_{\sigma}^{n+1} \cap \{y_{\sigma 0} = 0\}$ is equal to $h(y_{\sigma}, t) = 0$.

<u>Proof</u>. E(P) is defined by $h_{\sigma}(y_{\sigma},t) = 0$ where

$$h_{\sigma}(\mathbf{y}_{\sigma}, \mathbf{t}) = f_{\Delta}(\pi_{\sigma}(\mathbf{y}_{\sigma}), \mathbf{t}) / y_{\sigma 0}^{d(P)} \prod_{i=1}^{n} y_{\sigma i}^{d(P) + d(R_{i})}$$

$$= f_{\Delta}(\pi_{\sigma}, (\mathbf{y})) / \{(y_{\sigma 0} \dots y_{\sigma n})^{d(P)} \prod_{i=1}^{n} y_{\sigma i}^{d(R_{i})}\}$$

$$= h(\mathbf{y}, \mathbf{t}) = h(\mathbf{y}_{\sigma}, \mathbf{t})$$

Here we have used the equality $\pi_{\sigma}^{-1} \cdot \pi_{\sigma} = \pi_{\sigma}^{-1} \cdot \pi_{\sigma}$ and $y_0 = y_{\sigma 0} \dots y_{\sigma n}$ and $y_i = y_{\sigma i}$ for $i = 1, \dots, n$.

Thus we take E(P) as the compactification $\mathbf{M_t}$ of $\mathbf{M_t^a}$ and $\hat{\mathbf{E}}(P)$ as W hereafter. Note that $\pi_1(\mathbf{M_t})$ is a finite cyclic group by Theorem (7.3) of [12]. Let S be the set of the n-simplex τ of Σ^* such that P is a vertex of τ . Then it is obvious that $\{\mathbf{C}_\sigma^n\}$ $(\sigma \in S)$ is an open covering of W where $\mathbf{C}_\sigma^n = \mathbf{C}_\sigma^{n+1} \cap \{\mathbf{y}_{\sigma 0} = 0\}$.

 $\mbox{\bf Remark.}$ To study the deformation of $\mbox{\bf M}_{t}$ in W, we only need the information about S.

§5. Main theorem

We are ready to state the main theorem. Let $\nu_{\bf t}$ be the sheaf of the germs of the holomorphic sections of the normal bundle N₊ of M₊ in W. Let ℓ be as in §1.

Theorem (5.1). (i) dim $H^0(M_t, \nu_t) = \ell$ and the infinitesimal displacement map $f: T_t U \to H^0(M_t, \nu_t)$ is surjective. The kernel of f is generated by $\sum_{j=0}^{\ell} t_j \frac{\partial}{\partial t_j}$. (ii) Let $\psi_1, \ldots, \psi_{\ell}$ be a system of the generators of $H^0(M_t, \nu_t)$ and let $\Psi: M_t \to P^{\ell-1}$ be the associated mapping.

Let W = $\hat{E}(P)$ and M_t = E(P) as in §4. For each n-simplex $\tau = (Q_0(\tau), \dots, Q_n(\tau))$ of S, we may assume that

$$Q_{\hat{\mathbf{Q}}}(\tau) = \mathbf{P}.$$

Then Y is a birational morphism.

Let $h_{\tau}(y_{\tau},t)$ be the defining polynomial of M_t in $C_{\tau}^n=C_{\tau}^{n+1}\cap\{y_{\tau,0}=0\}$. h_{τ} is defined by the equality

(5.3)
$$f_{\Delta}(\pi_{\tau}(\mathbf{y}_{\tau}), \mathbf{t}) = \prod_{i=0}^{n} y_{\tau i}^{d(Q_{i}(\tau))} h_{\tau}(\mathbf{y}_{\tau}, \mathbf{t}).$$

Take two simplices α and β in S and let $\alpha^{-1}\beta=(\lambda_{ij})$ $(0 \le i,j \le n)$. By (5.2), we have $\lambda_{00}=1$ and $\lambda_{i0}=0$ for $i=1,\ldots,n$. Recall that \mathbf{C}^n_{α} and \mathbf{C}^n_{β} are glued by

(5.4)
$$y_{\alpha i} = \prod_{j=1}^{n} y_{\beta j}^{\lambda_{ij}}$$
 (i = 1,...,n).

Now we consider the line bundle [M_t] which is defined by the cocycle $\{h_{\alpha\beta}\}$ where $h_{\alpha\beta}=h_{\alpha}$ / h_{β} . By (5.3), we have

$$(5.5) h_{\alpha\beta}(\mathbf{y}_{\beta},\mathbf{t}) = \prod_{i=0}^{n} \mathbf{y}_{\beta i}^{d(Q_{i}(\beta))} / \prod_{i=0}^{n} \mathbf{y}_{\alpha i}^{d(Q_{i}(\alpha))}.$$

Here the right hand is considered as a monomial of $y_{\beta 1},\ldots,y_{\beta n}$ through (5.4). The exponent of $y_{\beta 0}$ is zero. We can write $h_{\tau}(y_{\tau},t)$ more explicitly as

(5.6)
$$h_{\tau}(\mathbf{y}_{\tau}, \mathbf{t}) = \sum_{j=0}^{\ell} t_{j} \mathbf{y}_{\tau}^{A_{j}(\tau)}$$

where the positive integral vector $\mathbf{A}_{\mathbf{j}}(\tau)$ is characterized by

(5.7)
$$\pi_{\tau}(\mathbf{y}_{\tau})^{B_{j}} = (\prod_{i=0}^{n} y_{\tau i}^{d(Q_{i}(\tau))}) y_{\tau}^{A_{j}(\tau)}.$$

Combining (5.7) and (5.5), we obtain

(5.8)
$$\mathbf{y}_{\alpha}^{\mathbf{A}_{\mathbf{j}}(\alpha)} = \mathbf{h}_{\alpha\beta} \mathbf{y}_{\beta}^{\mathbf{A}_{\mathbf{j}}(\beta)}.$$

(5.8) says that $\{\mathbf{y}_{\alpha}^{\mathbf{A}_{\mathbf{j}}}(\alpha)\}$ ($\alpha \in \mathbf{S}$) is an element of $\mathbf{H}^0(\mathbf{W}, \pmb{\delta}([\mathbf{M}_{\mathbf{t}}]))$. Thus we get the inequality dim $\mathbf{H}^0(\mathbf{W}, \pmb{\delta}([\mathbf{M}_{\mathbf{t}}])) \geq \mathbf{l} + 1$. On the other hand, take a monomial $\mathbf{y}_{\sigma}^{\mu}$ where $\mu \neq \mathbf{A}_{\mathbf{j}}(\sigma)$ for $\mathbf{j} = 0, \dots, \mathbf{l}$. (Here σ is fixed.) Let $\Pi_{\mathbf{k}}$ be the hyperplane which contains $\{\mathbf{A}_{\mathbf{i}}(\sigma) \ ; \ \mathbf{i} \neq \mathbf{k}, \ 0 \leq \mathbf{i} \leq \mathbf{n}\}$. Then there is an integer \mathbf{k} ($0 \leq \mathbf{k} \leq \mathbf{n}$) such that $\mathbf{A}_{\mathbf{k}}(\sigma)$ and μ are separated by $\Pi_{\mathbf{k}}$. Take a simplex $\beta = (\mathbf{P}, \mathbf{Q}_{\mathbf{1}}(\beta), \dots, \mathbf{Q}_{\mathbf{n}}(\beta))$ such that

(5.9)
$$B_i \in \Delta(Q_1(\beta))$$
 for $i \neq k$, $i = 0,...,n$.

Assume that $y^{\mu}_{\sigma} = h_{\sigma\beta} \ y^{\nu}_{\beta}$ for $\nu = (\nu_1, \ldots, \nu_n)$. Then by the assumption, we have $\nu_1 < 0$. This implies that the section y^{μ}_{σ} of $H^0(\mathbf{C}^n_{\sigma}, ([M_t]))$ cannot be holomorphically extended to W. Thus using GAGA-principle [13], we have proved the following.

Lemma (5.10). $\dim H^0(\mathbb{W}, \mathcal{O}([\mathbb{M}_t])) = \ell + 1$ and $\{y_{\alpha}^{A_j(\alpha)}\}(\alpha \in \mathbb{S}), \ (j = 0, \dots, \ell) \text{ gives a canonical basis}.$

This is a special case of $\S6$ of [1] and Lemma 2.3 of [10]. For the further geometry of the toric variety W, see [5, 2, 1, 9, 3].

We are ready to prove (i) of Theorem (5.1). From the exact sequence of sheaves on W :

$$0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}([M_{+}]) \longrightarrow \nu_{+} \longrightarrow 0,$$

we have the exact sequence

$$(5.11) \quad 0 \rightarrow \mathbf{c} \longrightarrow \mathrm{H}^0(\mathbf{W}, \boldsymbol{\delta}([\mathbf{M_t}])) \xrightarrow{\theta} \mathrm{H}^0(\mathbf{M_t}, \nu_{\mathbf{t}}) \rightarrow 0.$$

Here we have used the fact that $H^1(W,) = 0$ because W is simply connected ([1]). Thus $\dim H^0(M_{\mathbf{t}}, \nu_{\mathbf{t}}) = \ell$ and $H^0(M_{\mathbf{t}}, \nu_{\mathbf{t}})$ is generated by $\varphi_j = \{\mathbf{y}_\alpha^{A_j(\alpha)}\}_{\alpha \in S}$ ($j = 0, \ldots, \ell$). They satisfy the obvious relation $\sum\limits_{j=0}^{\ell} t_j \varphi_j = 0$. Now we study the infinitesimal displacement map $\xi: T_{\mathbf{t}}U \to H^0(M_{\mathbf{t}}, \nu_{\mathbf{t}})$. By the definition of ξ , we have

$$\xi(\frac{\partial}{\partial t_{j}}) = \{\frac{\partial h_{\alpha}}{\partial t_{j}}\}_{\alpha \in S} = \{y_{\alpha}^{\lambda_{j}}(\alpha)\}_{\alpha \in S} = \varphi_{j}.$$

Thus ξ is surjective and the kernel of ξ is generated by $\sum_{j=0}^{\ell} t_j \frac{\partial}{\partial t_j}$. This completes the proof of (i) of Theorem (5.1).

Now we will prove (ii) of Theorem (5.1). Let $\varphi_0,\ldots,\varphi_{\varrho}$ above and define $\widehat{\Psi}:W o P^{\widehat{\ell}}$ $\hat{\psi}(x) = [\varphi_{\hat{\Pi}}(x); \dots; \varphi_{\hat{\Pi}}(x)].$ Let $\tau \in S$. As the polynomial $\mathbf{h}_{_{\boldsymbol{\mathcal{T}}}}(\mathbf{y}_{_{\boldsymbol{\mathcal{T}}}})$ contains a non-zero constant term, there exists an integer $0 \le k \le n$ such that $A_k(\tau) = (0, \dots, 0)$. $\widehat{\boldsymbol{\Psi}}(\boldsymbol{y}_{\tau}) = [\boldsymbol{y}_{\tau}^{\boldsymbol{\lambda}_{0}(\tau)}; \dots; \boldsymbol{y}_{\tau}^{\boldsymbol{\lambda}_{\varrho}(\tau)}] \quad \text{on } \boldsymbol{C}_{\tau}^{n}, \text{ this implies that } \widehat{\boldsymbol{\Psi}} \text{ is a}$ morphism. We have to prove that $\widehat{\Psi}$ is generically injective. Note that $\{A_0(\tau), \ldots, A_0(\tau)\}$ is equal to the set of the integral points of the simplex spun by $A_{i}(\tau)$ (j = 0,..., n). By Lemma (3.8) of [12], there exist $0 \le i_1 < \dots < i_n \le \ell$ such that $t_{\zeta} = (t_{\lambda_{i_1}(\tau), \ldots, t_{\lambda_{i_n}(\tau)}})$ is a unimodular matrix. Let $\zeta^{-1} = (\zeta_{ij})$. The image of $\Psi | \mathbf{c}_{\tau}^n$ is in the coordinate chart $U_k = \{X_k \neq 0\}$ of P^{ℓ} . Let $Y_j = X_j / X_k$ ($j \neq k$). Assume that $\widehat{\Psi}(y_{\tau}) = (Y_{j})_{j \neq k}$ for $y_{\tau} \in (C_{\tau}^{*})^{n}$. Then y_{τ} is determined by $y_{\tau m} = \prod_{j=1}^{n} Y_{ij}^{\xi_{mj}}$ (m = 1,...,n). This proves that $\widehat{\Psi}$ is injective on $(c_{\tau}^{*})^{n}$. Therefore the restriction of $\widehat{\mathbb{Y}}$ to $\mathbf{M_t}$ is also a morphism and is injective on $\mathbf{M_t}$ \cap $(\mathbf{C_{\tau}^{\star}})^{\mathrm{n}}.$ The image of $\widehat{\Psi} | M_t$ is in the hyperplane H: $\sum_{j=0}^{k} t_j X_j = 0$ of P^{ℓ} . Identifying H with $P^{\ell-1}$, we have $\hat{\Psi}|M_{t}=\Psi$. This completes the proof of Theorem (5.1).

Remark. If $A = dI_n$, W is the projective space of

dimension n and $\{M_t^{-}\}$ are projective hypersurfaces of degree d. This case is studied in [6].

§6. Canonical vector fields

Let $\tau \in S$. Then $\theta_W \mid C_\tau^n$ is a free -module of rank n with a canonical basis $\{\frac{\partial}{\partial y_{\tau\,1}}, \ldots, \frac{\partial}{\partial y_{\tau\,n}}\}$. We define $\frac{\widetilde{\delta}}{\partial y_{\tau\,i}} = y_{\tau\,i} \; \frac{\partial}{\partial y_{\tau\,i}} \; \text{for} \; i=1,\ldots,n$. Similarly we define $\widetilde{d}y_{\tau\,i} = \frac{dy_{\tau\,i}}{y_{\tau\,i}}$. Let $\beta \in S$ and let $\beta^{-1}\tau = (\lambda_{i\,j})$ and let $(\mu_{i\,j}) = \tau^{-1}\beta$. Then we have

Proposition (6.1). (i) We have the formula

$$\frac{\widetilde{\partial}}{\partial y_{\tau i}} = \sum_{j=1}^{n} \lambda_{ji} \frac{\widetilde{\partial}}{\partial y_{\beta j}}, \quad \widetilde{d}y_{\tau i} = \sum_{j=1}^{n} \mu_{ij} \widetilde{d}y_{\beta j}.$$

(ii) { $\frac{\widetilde{\vartheta}}{\vartheta y_{\tau \, i}}$; i = 1,..., n } can be holomorphically extended to W.

<u>Proof.</u> Recall that $y_{\beta j} = \prod_{i=1}^{n} y_{\tau i}^{\lambda j i}$. Thus the assertion (i) is obvious. The assertion (ii) follows from (i).

Definition (6.2). $\{\frac{\hat{\delta}}{\partial y_{\tau 1}}, \dots, \frac{\hat{\delta}}{\partial y_{\tau n}}\}$ generates a subspace of dimension n of $H^0(W, \theta_W)$ which we denote by $Can(W, \theta_W)$. The restriction of $Can(W, \theta_W)$ to $H^0(M_{\mathbf{t}}, \theta_W | M_{\mathbf{t}})$ is denoted by $Can(M_{\mathbf{t}}, \theta_W)$. We call vector fields in $Can(W, \theta_W)$ or in $Can(M_{\mathbf{t}}, \theta_W)$ canonical vector fields. These vector fields come from the torus action on W. It is easy to see that

 $\dim \operatorname{Can}(M_{t}, \Theta_{W}) = n.$

Corollary (6.3). We have the inequalities $\dim \ H^0(W,\theta_W) \geq n \ \underline{and} \ \dim \ H^0(M_{\mbox{t}},\theta_W|M_{\mbox{t}}) \geq n.$

Now we characterize the image of $\theta: \operatorname{Can}(M_{\mathbf{t}}, \Theta_{\mathbf{W}}) \to \operatorname{H}^0(M_{\mathbf{t}}, \nu_{\mathbf{t}})$. Let σ be the fixed simplex so that $\operatorname{h}_{\sigma}(\mathbf{y}_{\sigma}, \mathbf{t}) = \operatorname{h}(\mathbf{y}_{\sigma}, \mathbf{t})$ where h is as in (1.1). Let $\operatorname{X} \in \operatorname{H}^0(M_{\mathbf{t}}, \Theta_{\mathbf{W}}|_{M_{\mathbf{t}}})$ and let $\operatorname{X} = \sum\limits_{i=1}^n \operatorname{X}_{\tau\,i} \frac{\partial}{\partial \operatorname{y}_{\tau\,i}}$ on \mathbf{C}^n_{τ} . Then it is easy to see that

(6.4)
$$\theta(X) = (\theta(X)_{\tau})_{\tau \in S}$$
 where $\theta(X)_{\tau} = \sum_{i=1}^{n} X_{\tau i} \frac{\partial h_{\tau}}{\partial y_{\tau i}}$.

Let $\mathbf{X}^1, \ldots, \mathbf{X}^n$ be the canonical vector fields defined by

(6.5)
$$X^{i} = \frac{\widetilde{\partial}}{\partial y_{\sigma i}} = y_{\sigma i} \frac{\partial}{\partial y_{\sigma i}}$$
 on C^{n}_{σ} (i = 1,..., n).

Then we have

(6.6)
$$\theta(X^{i})_{\sigma} = Y_{\sigma i} \frac{\partial h}{\partial Y_{\sigma i}} \quad (i = 1, ... n).$$

We claim that $\{\theta(X^i)\}$ (i = 1,..., n) are linearly independent. In fact, assume that $\sum\limits_{i=1}^n \lambda_i \theta(X^i) = 0$. Then we must have $\sum\limits_{j=1}^\ell t_j b_j \mathbf{y}_\sigma^{A_j} \equiv 0$ modulo $h(\mathbf{y}_\sigma, t)$ where $b_j = \sum\limits_{i=1}^n \lambda_i a_{ji}$. This implies that $\lambda_i = 0$ for each i. Thus we have shown

Theorem (6.7). $\theta(x^1), \ldots, \theta(x^n)$ are linearly independent. They are characterized by

$$\theta(X^{i})_{\sigma} = \frac{d}{ds} h(y_{\sigma 1}, \dots, y_{\sigma i}, \dots, y_{\sigma n}, t)|_{s=1}$$

Now we consider the following subfamily of $\{M_t\}$. Let $U^e = \{t \in U : t_0 = \dots = t_n = 1\}$. We call $\{M_t\}$ $(t \in U^e)$ the embedded deformation. Let $\xi^e : T_t U^e \to H^0(M_t, \nu_t)$ be the restriction of ξ to $T_t U^e$. Then we have

Theorem (6.8). Assume that $H^0(M_t, \theta_W | M_t) = Can(M_t, \theta_W)$. Then the Kodaira-Spencer map $\delta \cdot \xi^e : T_t U^e \to H^1(M_t, \theta_t)$ is injective and $H^0(M_t, \theta_t) = 0$.

Proof The second assertion is immediate from Theorem (6.7), (2.4) and the assumption. Assume that $\delta \cdot \xi^e(v) = 0$ where $v = \sum_{j=n+1}^{\ell} \lambda_j \frac{\partial}{\partial t_j}$. Then by (2.4), we can write $(\xi^e(v))_{\sigma} = \sum_{i=1}^{n} \mu_i \ y_{\sigma i} \frac{\partial h}{\partial y_{\sigma i}}$ for some complex μ_1, \ldots, μ_n . This implies that

$$\sum_{k=1}^{n} \left(\sum_{i=1}^{n} \mu_{i} a_{ki}\right) \mathbf{y}_{\sigma}^{\mathbf{A}_{k}} + \sum_{k=n+1}^{\ell} \left(\lambda_{k} + \sum_{i=1}^{n} \mu_{i} a_{ki}\right) \mathbf{y}_{\sigma}^{\mathbf{A}_{k}} = 0$$

modulo $h(\mathbf{y}_{\sigma},\mathbf{t})$. This implies that $\lambda_k=0$ for $k=n+1,\ldots,$ ℓ and $\mu_i=0$ for i=1,...,n, because the left side has no constant term. This completes the proof. It seems that the assumption in Theorem (6.8) is satisfied in many cases if W is not projective space P^n . The following is an example where the Kodaira-Spencer map is not injective.

Example (6.9). (Hashimoto- Oka[4]) Let M be the algebraic surface which is the compactification of $y_1 + y_1^9 y_2^{16} + y_1^3 y_3^4 + 1 = 0$. Then M has the following invariants: $K^2 = 0$, $p_g = 1$ and $\pi_1(M) = Z/2Z$. M has 27 dimensional

effective deformation and dim $H^1(M,\Theta_W|M) = 20$. On the other hand, $H^0(M,\Theta_W|M) = 12$ and the dimension of the image of effective deformation is 18.

§7. Deformation of a Godeaux surface.

In this section, we study the case of n = 3. Recall that $\Xi = \Delta(P)$ is spun by B_0, \ldots, B_3 . Let Ξ_i be the 2-face of Ξ with $B_i \notin \Xi_i$ for $i=0,\ldots,3$. Let P_0,\ldots,P_3 be the vertices of Σ^* which are adjacent to P such that $\Delta(P_i) \supset \Xi_i$. We define divisors \hat{C}_i of W by $\hat{E}(P) \cap \hat{E}(P_i)$ and divisors C_i of M by $E(P) \cap E(P_i)$ for $i=0,\ldots,3$. Let σ be as in §4 and we denote $y_{\sigma i}$ by y_i for simplicity. Let $A = C[y_1,y_1^{-1},\ldots,y_3,y_3^{-1}]$. For a polynomial g(y) of A, we define an integer ord \hat{C}_i by the order of the zeros (or poles) of \hat{C}_i along the divisor \hat{C}_i . Similarly we define $\operatorname{ord}_{C_i}g(y)$ by the order of the zeros (or poles).

Definition (7.1). We say that g(y) has a regular form on C_i if ord $g(y) = \operatorname{ord}_{C_i} g(y)$.

We fix an index a for $0 \le a \le 3$. Let $\tau = (P, Q_1(\tau), Q_2(\tau), Q_3(\tau))$ be a simplex of S such that $Q_1(\tau) = P_a$ and let $\sigma^{-1} \cdot \tau = (\lambda_{ij})$. Then by the definition, we have $\operatorname{ord}_{\hat{C}_a} \mathbf{y}^{\nu} = \sum_{j=1}^{3} \nu_j \lambda_{j1}$. We define $h^a(\mathbf{y}, \mathbf{t}) = \Sigma' t_j \mathbf{y}^{A_j}$

where the sum is taken for j such that $B_j \in \Xi_a$. Note that $h^a(y,t)$ is homogeneous with respect to the weight $(\lambda_{11},\lambda_{21},\lambda_{31})$ and

(7.2)
$$\operatorname{ord}_{\hat{C}_{\mathbf{a}}} \mathbf{y}^{\mathbf{A}_{\mathbf{a}}} > \operatorname{ord}_{\mathbf{a}} \mathbf{h}^{\mathbf{a}}.$$

Note also that h^a is irreducible in A, because C_a is an irreducible curve and the defining polynomial of C_a is h^a up to the multiplication of a monomial. Take $g \in A$. Let $k = \operatorname{ord}_{\hat{C}_i} g$ and let g_k be the leading term of g with respect to the above weight. Then we have

Lemma (7.3). g has a reqular form on C_a if and only if g_k is not zero modulo h^a .

<u>Proof.</u> We can write $g_k(y(y_\tau)) = y_{\tau 1}^k g'(y_{\tau 2}, y_{\tau 3})$. As $g(y(y_\tau)) \equiv g_k(y(y_\tau))$ modulo $(y_{\tau 1}^{k+1})$, it is easy to see that $g'|C_a \equiv 0$ iff $g_k \equiv 0$ modulo h^a .

Now let $X = \sum_{j=1}^{3} X_j \frac{\tilde{\delta}}{\partial y_j}$ be a rational vector field on W such that $X_j \in A$. We define ord $X = \min \max_{1 \le j \le 3} \operatorname{ord}_{C_i} X_j$ and $\widehat{C}_i = \min \max_{1 \le j \le 3} \operatorname{ord}_{C_i} X_j$. Let $X = \sum_{j=1}^{3} X_{\tau j} \frac{\tilde{\delta}}{\partial y_{\tau j}}$ on C_{τ}^3 . Then we have $\min \max_{1 \le j \le 3} \operatorname{ord}_{C_a} X_{\tau j} = \min \max_{1 \le j \le 3} \operatorname{ord}_{C_a} X_j$ by Proposition (6.1). In particular, if X is an element of $H^0(M_t, \theta_W | M_t)$, we have $\operatorname{ord}_{C_i} X \ge -1$ for each i. Similarly let $\omega = \sum_{j=1}^{3} Y_j$ $\widetilde{d}y_j$ be a rational 1-form such that $Y_j \in A$. We

define ord $_{\hat{C}}$ and $\text{ord}_{\hat{C}}$ and the same way. Then we have

Lemma (7.4). (i) Let X be as above and assume that $\{X_j\}$ (j = 1,2,3) have reqular forms on C_a and assume that $\operatorname{ord}_{C_a} X \leq -2$ for some a. Then X is not a holomorphic section of θ_W over M_t .

(ii) Let $D = \sum_{i=0}^{3} n_i C_i + D'$ be a divisor on M_t such that the support of D' does not include any of C_i (i=0,..., 3). Let ω be as above. Assume that $\{Y_j\}$ (j=1,2,3) have regular forms on C_a for some a. If $\operatorname{ord}_{C_a} \omega \leq -n_a$, the restriction of ω to M_t is not contained in $H^0(M_t, \Omega_W^1 | M_t(D))$.

For the rest of the section, we consider the following example. Let

$$f_{\Delta}(z) = z_0^2 z_1 z_2^4 + z_1^2 z_2 z_3^4 + z_2^2 z_3 z_0^4 + z_3^2 z_0 z_1^4$$

and let $f(\mathbf{z}) = f_{\Delta}(\mathbf{z}) + \sum\limits_{i=0}^{3} z_i^{11}$. Let $P = {}^{t}(1,1.1,1)$. As $\Gamma^*(f)$ is invariant under the canonical $\mathbf{Z}/4\mathbf{Z}$ -action, we can take Σ^* to be $\mathbf{Z}/4\mathbf{Z}$ -invariant and Σ^* is canonical in the sense of [12]. Namely we have $P_0 = {}^{t}(1,2,3,1)$, $P_1 = {}^{t}(1,1,2,3)$, $P_2 = {}^{t}(3,1,1,2)$ and $P_3 = {}^{t}(2,3,1,1)$. Let $\sigma = (P,P_0,P_1,R)$ where $R = (P_2 + 2P_0 + 3P_1 + 2P)$ / $S = {}^{t}(2,2,3,3)$. Let M = E(P). The defining equation of M in \mathbf{C}_{σ}^3 is

$$h(\mathbf{y}) = y_1^5 y_3^2 + y_2^5 y_3^3 + y_3 + 1 = 0.$$

We have shown in Example (9.11) of [12] that $\pi_1(\mathtt{M})=\mathbf{Z}/5\mathbf{Z}$ and $\mathbf{q}=\mathbf{p}_{\mathbf{g}}=0$. This surface is known as a Godeaux surface. As \mathbf{l} is 11, the dimension of the embedded deformation is 8. The corresponding embedded monomials are: y_2y_3 , $y_2^3y_3^2$, y_1y_3 , $y_1y_2y_3$, $y_1y_2^2y_3^2$, $y_1^2y_3$, $y_1^2y_2^2y_3^2$ and $y_1^3y_2y_3^2$. See [11]. Let $\mathbf{h}(\mathbf{y},\mathbf{t})$ be as before. As numerical data, we have $\mathbf{K}\sim 2\mathbf{C}_3-\mathbf{C}_2\sim 2\mathbf{C}_1-\mathbf{C}_0$ and $\mathbf{C}_1^2=1$ and $\mathbf{K}^2=1$. Here \mathbf{K} is a canonical divisor. By the Riemann-Roch theorem, we have $\mathbf{\chi}(\theta_{\mathbf{t}})=-8$. We will show that

Theorem (7.5). We have $H^0(M_t, \theta_t) = H^2(M_t, \theta_t) = 0$, $H^1(M_t, \theta_t) \cong C^8$ and the Kodaira-Spencer map

$$\delta \cdot \xi^{e} : T_{t} U^{e} \rightarrow H^{1}(M_{t}, \Theta_{t})$$

is an isomorphism.

Compare with the construction of the moduli space of the Godeaux surfaces by Miyaoka [8]. Note that Z/4Z acts canonically on U^e so that $M_t\cong M_{qt}$ for $g\in Z/4Z$.

Lemma (7.6).
$$H^0(M_t, \Theta_w | M_t) \cong C^3$$
 and $H^2(M_t, \Theta_w | M_t) = 0$.

Proof. Let $\tau = (P, P_2, P_3, R')$ where $R' = {}^t(3,3,2,2)$. We denote $y_{\tau i}$ by u_i for simplicity. Then we have $y_1 = u_1^{-2} u_2$, $y_2 = u_1^{-3} u_2^2$ and $y_3 = u_1^5 u_2^{-5} u_3^{-1}$. Let $X \in H^0(M_{\mathbf{t}}, \Theta_{\mathbf{W}} | M_{\mathbf{t}})$. By the GAGA-principle, X can be expressed in $\mathbf{C}_{\sigma}^3 \cap M_{\mathbf{t}}$ as $\sum_{j=1}^3 X_j \frac{\widetilde{\partial}}{\partial y_j}$ where $X_j \in A$.

Assertion. We can assume that X has a regular form

on C_2 and C_3 simultaneously.

Proof. We may first assume that ord \hat{c}_3 $X_i = \operatorname{ord}_{C_3} X_i$, using the irreducibility of h^3 in A. Assume that X_i has not a regular form on C_2 . We substitute $h^2(\mathbf{y})\mathbf{y}^{\nu}$ by $(h(\mathbf{y},\mathbf{t})-h^2(\mathbf{y},\mathbf{t}))\mathbf{y}^{\nu}$ to change X_i in a regular form on C_2 in a finite steps. Note that this operation does not decrease ord \hat{c}_3 . Thus if we change X_i in a regular form X'_i on C_2 , we have

$$\operatorname{ord}_{C_3} X_i = \operatorname{ord}_{C_3} X_i' \ge \operatorname{ord}_{\hat{C}_3} X_i' \ge \operatorname{ord}_{\hat{C}_3} X_i.$$

This implies that ord $X'_1 = \operatorname{ord}_{C_3} X'_1$ by the regularity assumption on C_3 . Assume that the monomial \mathbf{y}^{ν} has a non-zero coefficient in X_i . As we have

$$y^{\nu} = u_1^{-2\nu} 1^{-3\nu} 2^{+5\nu} 3 \quad u_2^{\nu} 1^{+2\nu} 2^{-5\nu} 3 \quad u_3^{-\nu} 3$$

we must have $\nu_1 + 2\nu_2 + 1 \ge 5\nu_3 \ge 2\nu_1 + 3\nu_2 - 1$. Combine this with $\nu_1 \ge -\delta_{i1}$, $\nu_2 \ge -\delta_{i2}$ where δ_{ij} is the Kronecker's symbol. The possible cases are $y_2^2 \ y_3 \ \frac{\partial}{\partial y_i}$ (i=1,2,3), $y_1^2 \ y_2^{-1} \ \frac{\partial}{\partial y_2}$, $y_1 \ y_2^{-1} \ \frac{\partial}{\partial y_2}$, $y_1^{-1} \ y_2 \ \frac{\partial}{\partial y_1}$ and $\frac{\partial}{\partial y_i}$. After checking their linear combinations in detail, we conclude that $H^0(M_{t}, \theta_{w} | M_{t}) = Can(M_{t}, \theta_{w})$.

Now we consider $H^2(M_{\mathbf{t}}, \Theta_{\mathbf{W}}|M_{\mathbf{t}})$. By the Serre duality, this is isormophic to $H^0(M_{\mathbf{t}}, \Omega^1_{\mathbf{W}}(K)) \cong H^0(M_{\mathbf{t}}, \Omega^1_{\mathbf{W}}|M_{\mathbf{t}}(2C_1-C_0))$

where $\Omega_{\mathbf{W}}^1$ is the sheaf of the germs of 1-forms on \mathbf{W} . Let $\mathbf{W} = \sum\limits_{i=1}^3 \mathbf{Y_i} \ \mathbf{\widetilde{d}} \mathbf{Y_i}$ be a rational 1-form with $\mathbf{Y_i} \in \mathbf{A}$ and assume that the restriction of \mathbf{W} is in $\mathbf{H}^0(\mathbf{M_t}, \Omega_{\mathbf{W}}^1 | \mathbf{M_t} (2\mathbf{C_1} - \mathbf{C_0}))$. Let \mathbf{y}^{ν} be a monomial with a non-zero coefficient in $\mathbf{Y_i}$. Then by Lemma (7.4), we have $\mathbf{v_1} \geq -2 + \delta_{i1}$, $\mathbf{v_2} \geq 1 + \delta_{i2}$ and $\mathbf{v_1} + 2\mathbf{v_2} \geq 5\mathbf{v_3} \geq 2\mathbf{v_1} + 3\mathbf{v_2}$. This has no integral solution. This implies that $\mathbf{H}^2(\mathbf{M_t}, \mathbf{\Theta_{\mathbf{W}}} | \mathbf{M_t}) = 0$, completing the proof of Lemma (7.6).

Proof of Theorem (7.5). We consider the exact sequence (1.4). Considering the section φ of $H^0(M_{\mathbf{t}}, \nu_{\mathbf{t}})$ such that $\varphi_{\sigma} = 1$, we see that $N_{\mathbf{t}} = [5C_3]$. Thus by Riemann-Roch theorem, we have $\chi(\nu_{\mathbf{t}}) = 11$, $\chi(\Theta_{\mathbf{t}}) = -8$ and $\chi(\Theta_{\mathbf{W}}|M_{\mathbf{t}}) = 3$. This implies that $H^1(M_{\mathbf{t}},\Theta_{\mathbf{W}}|M_{\mathbf{t}}) = H^2(M_{\mathbf{t}},\nu_{\mathbf{t}}) = 0$ and $H^2(M_{\mathbf{t}},\Theta_{\mathbf{t}}) = H^0(M_{\mathbf{t}},\Theta_{\mathbf{t}}) = 0$ and $H^1(M_{\mathbf{t}},\Theta_{\mathbf{t}}) \cong \mathbf{C}^8$. This completes the proof by Theorem (6.8).

References

- [1] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys, 33:2 (1978), 97-154.
- [2] M. Demazure, Sous-groupes algebriques de rang maximum du groupe de Cremona, Ann. Sci. Ecole Norm. Sup., (4) 3 (1970), 507-588.

- [3] F. Ehlers, Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einer isolierter Singularitäten, Math. Ann., 218 (1975), 127-156.
- [4] N. Hashimoto and M. Oka, Example of an algebraic surface whose effective deformation is not injective, in preparation.
- [5] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings, 339, Springer, Berlin-Heidelberg-New York, 1973.
- [6] K. Kodaira and D.C. Spencer, On deformations of complex structures I, II, Annals of Math., 67 (1958), 328-466.
- [7] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, Berlin-Heiderberg-New York, 1985.
- [8] Y. Miyaoka, Tricanonical Maps of Numerical Godeaux Surfaces, Inventiones Math., 34 (1976), 99-111.
- [9] T. Oda, Lectures on torus embeddings and applications, 58, Springer-Verlag, Berlin-Heiderberg-New York, 1978.
- [10] T. Oda, Convex body and algebraic geometry (in Japanese), Kinokuniya, Tokyo, 1985.
- [11] M. Oka, Examples of Algebraic Surfaces with q=0 and $p_q \le 1$ which are Locally Hypersurfaces, preprint.

- [12] M. Oka, On the Resolution of Hypersurface Singularities, Advanced Study in Pure Mathematics, 8 (1986), 405-436.
- [13] J.P. Serre, Géométrie Algébrique et Géométrie Analytique, Ann. Innst. Fourier, **36** (1956), 1-42.