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On the mixed Hodge sfructures in the normal crossing case
Yuji Shimizu

(Hk =)
8§1. Introduction and the main result

1.0 The purpose of this note is to remark that the existence of
natural mixed Hodge structures (abbreviated as MHS) on certain
cohomology groups follows from the recent study of variation of MHS
by Kashiwara [K1] (What he studied was named as the infinitesimal
mixed Hodge module) as well as the purity theorem of the
intersection cohomology in the normal crossing case by Kashiwara-
Kawai [KK1] and Cattani-Kaplan-Schmid [CKS]. So this note may be
regarded as an appendix to Kashiwara [K11].

1.1 To be precice, let X be a compact Kahler manifold, Y a
hypersurface of X with normal crossings, and H a polarizable
variation of Hodge structure of weight w on X - Y =: U, Then our

result is the following:

Theorem 1.2 There exist MHS's on H!(U,H) and Hé(U,H) in a

functorial way.

Of course , this generalizes the classical case H = QU by
Deligne fD,II] and the one-dimensional case by Zucker [z,813,143.
Special case was treated in Shimizu [Shl.

We can geheralize Theorem 1.2 to the case allowing H to be. an
admissible variation of MHS (cf.4.6).
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Remark 1.3 Theorem 1.2 can be proved in the frame work of mixed
Hodge modules (cf. [Sa2]) at least when X is projéctive. This

follows from the following facts : (i) H, j,H are weakly mixed

I
Hodge modules [Sa2], where j denotes the inclusion j : U &— X

and H is as above. ( j*, j! .are taken in the sense of filtered
9-modules with Q-structure.) (ii) For a weakly mixed Hodge module }
on a projective manifold X, RI(X,M) is é cohomological mixed Hodge
complex [D,MI(8.1)1.

Stronger fact holds indeed : (i) j*H and j!H in (i) are
mixed Hodge modules, and we can show directly that at least in the
algebraic}category, RC'(U,H) and RFC(U,H) are complexes of MHS.
These facts are remarked in [Sa2] and Kashiwara's theory [K1] is
vital for their proof.

1.4 The outline of the proof'ié as follows.

We will make use of the formalism_of cohomological mixed Hodge

complexes by Deligne [D,I1 to put MHS on the above cohomologies.
In our setup, these cohomologies are the hypercohomologies of
perverse sheaves Rj*H, j!H ( j denotes the inclusion U <= X ).
Then we can use the explicit description of perverse sheaves in the
normal crossing case by Galligo-Granger-Maisonobe [GGM] and its
Cduntefpart'in the mixed Hodge theory is more or less Kashiwara's
theory [K1]l. Using these, we can give the weight filtration on the
above pervefse sheaves. The proceduré for giving the Hodge
filtrations using the canonical extension of OUQH is well known.
Finally resqlts in [K1) and the purity theorem in the normal crossing
case [KK1] or [CKS] imply that Rj*H, j!H are graded-polarizable

cohomological mixed Hodge complexes.
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- ‘We: remark that our method is "ad hoc" compared to the recent
theory of mixed Hodge modules (cf. Remark 1.3).
1.5 ‘The construction of this paper is as follows. In § 2,3, we
recall the necessary facts on the description of perverse sheaves and
infinitesimal mixed Hodge modules. Finally in §4, we construct
filtrations, i.e., the data necessary for a cohomological mixed Hodge
complex.
Acknowledgement: The author would like to express his sincere
gratitude to Professor M.Kashiwara for inspiring conversations. The

essential difficulty in'this note is solved in his study ([(K1l1].



§2. Infinitesimal mixed Hodge modules -

2,0 Let H be a polarized variation of HS of weight w on A*n,

having unipotent monodromies Tj (1 £ j < n). According to Schmid

v

[scl, exp(-J-thij)'F(t) € D has a limit F in D as tj tends

v

to infinity, where D denotes an appropriate period domain, D its
compacf dual and t varies in4the universal covering of A*n.
Moreover, exp(JCTthNj)'F approximates F(t) well with respect to
an invariant metric on Dv. It is why one should study nilpotent
orbits (cf.[CKI1).

2.1 Recall that a nilpotent orbit of weight w {H,F,S;Nl,--~,Nn} or
{H’F;Nl?""Nn} consists of a R-vector space HR , a decreasing
filtration F of H := HRGC y A (-l)w-symmetric bilinear form on HR’
and a set of mutually commuting nilpotent endomorphisms (N1,~--,N }

n
of HR . These data should satisfy the following two conditions.

(i) Nin c FP°1. for a1l p,j.

(ii) There is a constant C > 0 such that (H,exp(J-thjN ):F,S} is

J

a polarized HS of weight w for t., > C .

J
2.2 Kashiwara introduced the notion of infinitesimal mixed Hodge
module (IMHM for short) as an object arising fromvan admissible
variation of MHS [SZ,§31 as in (2.0);“ We recall its definition.
Definition 2.3’ 1) A pre-IMHM (H;W,F,{Sk};Nl,"',Nn} consists of a
R-vector space HR , an increasing filtration W on’ HR , a decrea-

L]

sing filtration F on H := HRQC , a bilinear form S, on GrkHR for

k
each k, and'mutuaLjy“commuting nilpotent endomorphisms {N1,~--,Nn}.
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These data should satisfy the following conditions (i), (ii).

. -1 .
(i) NjFp c FP7H, N¥W, © W for all p,j,k.

W W

(ii) {GrkH,F(GrkH),S Nl,--',Nn} is a nilpotent orbit of weight k

k;
for all k.

. We don't often mention the bilinear forms (Sk}‘explicitly.

2) A pre-IMHM {H,W,F;Nl,-'°,Nn} is called an IMHM if there
exists a filtration M({J) for each J €¢I = {(1,°+*,n} such that
(iii) Nij(J) c Mk—Z(J) for j € J.
(iv) M({J) 1is the relative monodromy filtration of X N, with

j€d
respect to W (For the definition, see (2.4) below). |

It . is shown in [K11l that IMHM has many nice properties
concerning the relative monodromy filtration. We recall some of them,
which will be used later. |
2.4 Here, let H denote an object in an abelian category, W its
increasing filtration and N a nilpotent endomorphism of H such
that ka c wk . The relativé monodromy filtration M of N with
respect to W is, by definition,.the unique (increasing) filtration
(if it exists) satisfying thg conditions :

[} M W

oy . . ~ M W
(i) NM,_ c M (ii) N7: Gry, ,Gry, — Gry_,Gr, for all 4 2 1,k.

k k-2 °

We often denote it by M(N,W). Several properties follow from



jts existence (cf.[SZ1,[K11).

Assuming the existence of M = M(N,W), we recall two filtrations
N W and N W related to the perverse sheaves Rj_H, j,H
* : * !

(cf.I[K1,(3.4)]1). We put

(2.5) (N*W)k i= ka+1+ Mkﬂ Wk = ka+1+ Mkn Wk+1 ,

=W, .+ Mn N1 =W .+ MnN!

(N W) 2= Wy o+ My k-1 k-1% My k-2 °

Lemma 2.6 ([K1,(3.4.2),(3.4.3)1) The following hold :

(i) M(N,N*W) = M(N,N,W) = M(N,W).

| N_W W N,W
k+1 — Grk* > (resp. Grk_1 — Grk! = ). (For

the meaning of [> , see (3.4).)
N, W W

(ii) Gr

M M

ciin _ . L} .
(iii) Grk* = Im(N.Grk+1 — Grk+1) ;) Coker(N.WkGrk+2 e WkGrk)
N, W _ .. W W M
(resp. Gry! = Coim(N:Grp _, — Gry_,) ® Ker(N:Gr (H/W _,) —
M
Grk_z(H/kal)).

Proposition 2.7 (IK1,(5.5.1),(5.5.5)1)

Let {H,W,F;N ",Nn} be an IMHM. Then, for any i,j € I :=

1’
{l,»++,n}, the following hold.
(i) Ni*(Nj*W) = Nj*(Ni*W).

(ii) M(Ni,Nj*W) = Nj*M(Ni,W).
Thus we can define the following : For J = (jl,'°~,j£) cli,

(2.8) NJ*W := ***N, W , N
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Then, putting M(J,W) = M( Z N;, W) , we have
j€d

M@J NJ ;W) = NJ *M(le

2 2

1’ w)o

2.9 We recall an important property of the relative monodromy

filtration ; There is a canonical decomposition [K1,(3.2.9)] :

Therefore, GrM is polarizable if so is Gr: (cf.[Sc,(6.16))). In

Kk
particular, for an IMHM, GrﬁJ*w or Gri‘J!w is polarizable by (2.6).



§3. IMHM's and n-cubes

3.0 There is a description of perverse sheaves in the normal

crossing case due to Galligo-Granger-Maisonobe [GGM], which we recall

now.
In this section, we use the following notation :
- n - PRI = LR = = M
(3.1) X = A z = (z,, »2.), ¥ {z, z,= 0}, A {x€C; IxI<1y,
Y, =0 (z; = 0, Yj =Y, -nY, for Jcl=(1,,n.
jes d jed

Let P(n) denote the category of perverse sheaves F such that

FIY* is a locally constant sheaf of k—modules. We refer the reader
J

to [BBD] about perverse sheaves. Then the objects in P$(n) can be

described in the followiﬁg way.

Proposition 3.2 ([GGM1) %(n) is equivalent to the category €(n)
consisting of the data # = (Ha;faﬁ’gBa} satisfying the following

conditions (the morphisms in €(n) are obviously defined) :

1) Ha is a k~vector space (¢ ¢ 1), and fuB:HB — Ha’ gBa:Ha
HB are k-homomorphisms (8 € ¢ © 1).

(1) faB‘fBY = fay » &g 8y = qu- for vy c B ca .

(2) faa = oot = id.

(3) gvu°fa8 - f75°g66 for 8 cfca and dcrca.

(4> 1 - gg "f,p is invertible for 8 c o and lal = 18I+1 :
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We call an object in €(n) an n-cube.

Example 3.3 Given a local system H on A¥" with unipotent

monodromies. Then, if we denote a stalk of H by the same H,

b1

1) the minimal extension H of H to An corresponds to an

n-cube <mn,H> := {Hu;faB’gBa} defined by Ha = Im NJ ’ faB = N

o-8
gBa = id. |
2) the perverse sheaf Rj*H corresponds to an n-cube <%,H>

defined by Ha =H, f id.

fup = Ng-g » Bpg *
3) the perverse sheaf j,H corresponds to an n-cube <!,H> defined

by Hy =H, f,, = id , g5, = N _,-
For n = 1,
_ N .- N _ 1
<M,H> = { H— ImMN 1 , <¥,H> = [ H~——> H 1 , <!,H> = [ H— H 1.
1 ’ 1 N
For n = 2,
. Ny \ Ny 1
{M,H> = . H "'1——’ Ile , <¥x,H> = H ——1—) H
Nzl]1 N Nzlll 2111 z Nzl{l
S | 1
) ImN2 —1——" IleNZJ H —1—-’ H J .

3.4 An n-cube # is said to have the decomposition property if

£ . i
oB .
HB —_— Ha > for all 8 ¢ ¢ (or equivalently, for all 8 ¢ o such
gBa '
that lal = |81+1 ). Here we write A 1, B b when B = Imf ® Kerg
- g

(cf.[K1,821).

The terminology is explained by the following lemma.

Lemma 3.5 ([K1,(2.3.1)1) The following statements are equivalent.

- g -
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a) An n-cube # has the decomposition property.’

. . (i), (1) (i)
p) # 1is a direct sum of n-cubes (M, sty +8gy '} such that for

some y(‘)c I, Mél)= 0 if v(1)¢ o , and fé;) is surjective and
g(i) is injective if vy = yc a .

Yo

c) We have a decompsition Ha — @ faB(PB) » where we put PB =

Bco
N KergBa , and gBa: faB(PB) —_— PB is injective for ¢ o 8 .

Bgo

3.6 We recalled the notion of IMHM in (2.3), which was motivated by
the infinitesimal study of admissible VMHS. For further study,
Kashiwara introduced an object, a mixture of a cube and an IMHM,
which may be regarded as the infinitesimal version of a mixed Hodge
module of M.Saito [Sa2].

o

Definition ([K1,(5.6)]1) Let {Ha;faB’gBa}_ be an n-cube, W

Fa ) an-increasing (resp. decreasing) filtration on Ha foracl =

{resp.

—d a . . - 3
{1, ,N}. Then we call #£ = (Ha,w ’Fa’faﬁ’gBu} an MH-cube if the

following conditions hold.

p p-la-81 B o
(1) f,8Fg © Fy v Tug¥k € Yk-10-81
P P o 8
8paFo € Fg , 8ok € Ykeia-g) fOT 8 c o .

(2) Nj € End(Ha) is nilpotent for any j, where Nj i =

Ex,autifauqy 1E T €%ty o (i) Ba-(jy,¢ 1P €.
(3) For each o, (Ha,wa,Fa;N1,°",Nn} is an IMHM.
] o

(4) The property er — er

K — k- lo-8 | > holds for 8 c o .

The morphism between MH-cubes is obviously defined. The

category of MH-cubes is an abelian category and is denoted by MH(I).

- 10 -
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We have the operations like dual, Tate twist, neaby and vanishing
cycles in the category MH(I).

3.7 Let {H,W,F;N '--,Nn) be an IMHM. Then we defined cubes

1’
<n,H>, <*,H>, <!',H> in (3.3). We recall the definition of

filtrations Wa, Fa on H“ giving a structure of MH-cube, according

to [K1,(5.8)1.

Definition 1) For <*,H>, put W% := Nys¥ » Fy 1= F .
2) For <!,H>, put W* := N W(-lal) , F, := F .
a ® am * =
(Here W(R) 1is defined by W), :=W__,, .)

These are MH-cubes by (2.6),(3.5).
Of course, <*,H> and <!,H> are dual to each other, and <x,H>

ia a quotient of <!,H> as well as a subobject of <(*,H>

We put
P, (#8) := PB(Gr§<*,H>) = n Ker(gYB:GrNB*w‘ — eriys¥ )
vgB k~181 k-1l
P, (18) := PB(Gr:<!.H>) = n Ker(gYB:GrNBSW — ariiypt¥
vgB k- 181 k=171

(the "primitive part" cf.(3.5,c)). Then, since an MH-cube has the

decomposition property (3.4) by definition, we get the following :

Lemma 3.8 We have a decomposition :

W ' _ _
Grk<*,H> = ? <n,Pk_'J|(*I J)>I_J
o ¥ ' = 11—
(resp. Grk<.,H> = ? <n,Pk_|J|(.I J)>I-J ).

Here < , >1-3 denote the object 'in ©(I-J) regarded as in €(I).

- 11 -
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Wk<*,H>

Gr

" :
k<*,H>

W, <! HD

¢
Grk<.,H>

We illustrate the case n

_ N
= [ W, —Ie (NW, ;]
_ ¥ N . N W
= [ Grk — Grypx; ]
_ W W
= [ Grk — NGrk 1] & [
M
Wy-16T- 121
_ 1 o
= [ W —;» (N,W 00
_ W
= [ Grk — NGrk ] & [
M
Gry _, (H/W,)) 1]

-.12 -

1

1

Coker(N:¥w

M

Ker(N:Grk+1

k-19Tk+1

G M

—

(H/Wk) -

wol
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§4. Proof of Theorem 1.2 : Construction of CMHC

4.0 We give a concrete expression of cohomological MH complexes
(CMHC) alluded to in §1 using the result of §3. See (4.8) for
anotﬁer and simpler expréSsion due to Kashiwara.
We use the same notation as in 81, except for H denoting an
admissibleFVMHS on U. Denote a general stalk of H by the same H.
We will use some notation felated to the integrable connection
0U®H . Let EX(H) denote the (left) canonical extension of GU®H
_[KK2]. Perverse sheaves corresponding to régular holonomic ?2-modules
by.the Riemann-Hilbert correspondence (see e.g.[K21), we denote by
K(F) the 2-module associated to a perverse sheaf F.
4.1 VFirst of all, note that the existence of MHS is automatic, if we
give a structure of CMHC upon Rj*H (resp. j!H). This is due to the
formalism by Deligne [D,H(8.1)1].
We don't reéall the precise definition of a CMHM here, but only
mention that the data needed are :
(1) a filtration W on K*Q (resp. K!Q ),
(2) filtrations W, F on K*C ~(resp. K!C ).
Here K (resp. K ) denotes a complex quasi-isomorphic to Rj*HA

*A ‘A

(resp. j,HA >, A = Q,C, and we assume that these are compatible

between Q and C.

These data should satisfy the condition :

W
k

spectral sequence associated to the filtered complex {RF(X,GrzKC),F}

(3) The CMHC (Gf KQ,(GrﬁKC,F)} are pure for all p, i;e., the

degenerates at E, and gives rise to the Hodge filtration on the

1

abutements (K = K or K,).

=13 -
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4.2 We will define the filtration W using MH-cubes in §3. So we
take Rj*H (resp. j!H) itself as ‘K*Q.(resp. K!Q). To realize the
giltration F, we need a complex of O-coherent modules relevant to
the canonical extension E,(H). Thus we take the logarithmic de Rham
complex . Ry (10gY)®E,(H) as K . .

Lemma 4.2.1 To a subobject F of Rj*Hc in the category of
perverse sheaves €(n) (3.1), there is a subcomplex of QX(IogY)®Ex(H)

quasi-isomorphic to F. Denote it by Q (F).

X,log

Proof Take QX,log(F) t= QXGH(F)n Qx(logY)®Ex(H) . We have only to

remark that the argument in [KK,84] (case F = nH) is applicable to F.

4.3 As for K'C , we use the following simplicial construction. The
construction being local, we may assume (X,U) = (An,A*n) and put Yj
= {zj = 0} (cf.(2.0). Let Nj be the logarithm of the monodromy Tj

along Yj .

Lemma 4.3.1 i) The cube <!,H> is quasi-isomorphic to the simple
complex associated to

{® <n,KerN

1Ji=p
Here <n,KerNJ>I_J denotes the object (3.3,1) in €(I-J) regarded as

371-31P P ogpen -

in €(I), and KerNJ =N KerNj .
j€J |
ii) j He is quasi-isomorphic to the simplicial complex
(e Q@ ("KerN )} . Y, =NnY)
13l=p YJ,log J 77 0<p<n J jed J

Proof (ii) is an immediate consequence of (i). For (i), consider

the case n = 1. The following is an exact sequence in €(n).

- 14 -
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0 T T L L [

0 |— |KerN| — H — | ImN |— 0

Thus we get <!,H> = [ <n,H>, — <n,KerN>¢[1] 1 . The general case

I
is obtained similarly.

Variant 4.3.2 There is a construction ahalogous to (4.3.1). To a
subobject F of j,H in ®(n), we associate a subcomplex of the
complex in (4.3.1,ii), quasi-isomorphic to F. Denote it by Qspl(F)’

The procedure is the same as (4.3.1).

Example 4.3.4 We illustrate the case n = 1 for W, <!,H>.

Kk
W <! H> = tf Ik —_— I [11 1
NN, W),y (N,W), ;N KerN
Grﬁ<z,H> =T Gig — I [11 1
N W N, W
Gr, %, (ImN) Gr, j, (KerN)

4.4 CMHC on Rj H (resp. j,H
In (3.7), we defined a filtration W on <*,H> (resp. <!,H>).
By the construction (4.2) (resp. (4.3)), we get a filtration W on

Ri,H (resp. j,H) as well as Q (RjH) (resp. @ (i W) :

log
kalog(Rj*H) t= Qlog(wk(Rj*H)) ’
wkgspl(j!H) t= Qspl(wk(;!n)) e

- 15 -
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By Schmid's theorem [Sc,861, the canonical extension Ex(H) (or

EY (KerNJ)) has a filtration F which prolongs the Hodge filtration
3 _

of @UGH . Therefore, Q og(Rj*H? (resp. Q

1 (j!H)) has a

spl
filtration F ¢

p : .= p 1 p-1 ..
F Qlog(RJ*H) := F EX(H) — Qx(logY)®F EX(H) S
p s .- P b} 4
F Qspl(J!H) i= [ 9_ F QY ,log( KerN ) ]OSan .
1Jl=q J
We can write down expliocitly W on Qlog(Rj*H) locally. If X
= A", Y, = (z;= 0}, then
4.1) W.Q, ((Rji.HWP = 3 EEiA QP 11 (1ogyreE, ((N. W) )
(4.4. K log ™« 13T<p %3 X 0g X Nr®x- 131
Here dz, = A dz, , z, = Wz, . For N, W, see (2.8).
I e I ey d I*
As for WkQSpl(j!H), we have an expression as
Wg oy (3 H) = [IJT=q QYJ,log(Wk_q<n,KerNJ>)(-q) Jo<qsn °
(cf.(3.7)). To get it, we must use the equality :
NyONgyWiaygp = NpuWyoy g0 TNy
To see this, the author have to use [Sa2] (the case |JI| =1 is

trivial). But we won't use it later.
Remark 4.4.2 We defined W,F using 82,3, so that @ A2i044 they have
meaning onlyxlocally around Y. But on U, Rj*H and j,H reduce

to H itself. Hence there is no problem. ( QUOH patches to

Qlog(Rj*H) and Qspl(j!H)’)
L W Cuy W . .
emma 4.5 For each Kk, Grkﬂlog(RJ*H) (resp. Gr, Q (i ) is a

kspl
direct sum of pure CMHC (4.1,3).

Proof We calculate Gr: using the local expression (4.4.1).

wQ (Rj*H) is mapped into

0
bviously Grk log

- 16 -
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N W

L Qg—'J'(log YhYJ)®Q(-IJI)®Ex(Gr Jx )
1Ji<p d k-IJI
where YnYJ means the divisor on YJ induced by Y, and Q¢-1J])
is the Tate twist. Calculate the stalk of Gr: in the same way as
in [KK1,831 (using the homotopy formula for the Euler operator). Then
the calculation reduces to that of Gri<x,H>. But we see by (3.8)
that
W . _ n _ ~ _
Grkﬂlog(RJ*H) = ? QYJ,log( Pk_|J|(*I INC1IHI-1311 .
. N, W . . N, W .
Since Gr J*x is polarizable by (2.9), Gr J=* is a PVHS
k-1J1 k-1J1

associated to a nilpotent orbit (i.e. pure IMHM) of weight k-1JI.
Thus the second term is a pure complex of weight k by the main
theorem of [KK11 or [CKS].

Similar but more complicated reasoning shows that Grgﬂspl(j,ﬂ)

is a pure complex of weight k :
" _ n - - 1111
Grkﬂspl(J!H) = @ QY QI=-INIne-1Jry .

J J?

CPr 131

log
Corollary 4.6 (including Theorem 1.2) Let X, Y be as in (1.1), but
H be an admissible VMHS. Then there exist MHS's on Hi(U,H) and
H;(U,H). If H is pure of weight w, then the weights of HI(U,H)

(resp. H_(U,H)) are > w+i (resp. < w+i).

Remark 4.7 1) The MHS constructed above is independent of the choice
of compactification X. We can see this using the language of
filtered 9-modules [Sal,§21].

2) The case dim X = 1 was treated in [SZ,84]. The description by
l-cubes is essentially used there.

2d-i

3) The MHS's on Hi(U.H) and HC (U,H*), are dual to each other

- 17 -
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@ = dim X, H*= %omC(H,CX)). This can be proven by observing the
patural pairing betveen Qlog(Rj*H) and Qspl(j!H) (cf.[8Z,(4.30)1,
[Sh,(S.S)]).

4.8 We present here a more direct way of expressing Rj*H or j!H as
CMHC due to Kashiwara.

In general, let g be a holomorphic function on a complex
manifold X, Y= {g = 0}. Then, for a regular holonomic 9-module k
on. X, there is a canonical filtration {Vlﬂ} on X ("V-filtration"),
which we don't recall here (cf.[K31,[Sa1,831). According to

Kashiwara, we have a quasi-isomorphism :

DRK := # — Qlod — Q2%0H — ---

X
~ ® ww 1 2 A * o o
— VODRXK '= Voﬂ — Q @le — ®v2ﬂ —
Each VAK is coherent over V09x . Moreover, it is GY—coherent if

£ has support in Y.
In our setup (1.1), we use the graph construction : take XxC

and pr in place of X and g above. For X, we take the direct

2
image of a regular holonomic Qx—module X, Gx-coherent over a dense
open subset‘ x* of X, by the graph map zg: X —Q» XxC . Then Vlﬂ
has support in tg(X) ,» is coherent over OX and is related to the
canonical extension of ﬁlx*. Thus we gét a complex of Gx-coherent

modules V_DR (f X¥). Since the construction is functorial, we get
. 0 "XxC tg

a4 representative of the filtered complex DRXK(Rj*H) or DRxx(j,H) ’

(4.0). (Take K(WkRj*H) or K(ijzﬂ) as X.)

- 18 -~
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