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PROPAGATION OF QUASI-HOMOGENEOUS MICROLOCAL SINGULARITIES

OF SOLUTIONS -TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Masao Yamazaki (Department of Mathematics, University of Tokyo)

Abstract. In this article we give a quasi-homogeneous
version of Meyer's microlocal elliptic theorem for general fully
nonlinear partial differential equations. We also relax the
condition originaily p&sed on the smoothnéss of the solutions,
and give a sharper estimate of the microlocal smoothness. We
also discuss . some examples which shows the sharpness of the
condition. Details on this result will be. published in [12].

Secondly, we generalize Bony's theorem on propagation of
microlocal>singularities of solutions to general fully nonlinear
partial differential equations to the quasi-homogeneous case.
This result also generalizes the theorems given by Godin and
Sakurai on propagation of quasi-homogeneous microlocal
singularities of solutions of semilinear equations. We also
relax the condition on the smoothness Qf the solutions sufficient
for the propagation of singularities; and obtain sharﬁer
microlocal regularities. Then we compare the conditions for the
propagation of singularities with. that for the microlocal
ellipticity, and discuss the meanings Qf the conditions. Details

on this result will be published in [13].
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§0. Introduction. Among a number of studies on microlocal
analysis for nonlinear partial differential equations, Bony [1]
was the first where general nonlinear equations were treated. He
~showed the microlocal hypoellipticity at non-characteristic
points and the propagation of singularities along simple
‘bicharacteristic strips, by making use of paradifferential
operators as the main tool. Along this line, Meyer [7] improved
Bony's microlocal hypoellipticity theorem.

On the other hand, Lascar [6] introduced the notioh of
quasi-homogeneous wave front set, and obtained the propagation of
singularities of solutions to the equations of Schrédinger type.
Here by the quasi-homogeneous treatement we mean the following:
we give a weight m, to each coordinate variable Ty regard
the differen;ial operator a/ax{ as an operator of order m, s
and consider the function spaces, principal symbols and
- bicharacteristic strips suitable to this setting. This treatment
is natural for a number of important nonlinear equations; for
example, nonlineaf parabolic equations, nonlinear equations of
Schrédinger type, and the KdV equation.

The first purpose of this article is to obtain a quasi-
homogeneous version of the microlocal hypoellipticity theorem
with little assumption posed a priori on the smoothness of the
solutions. It is verified by Kobayashi-Nakamura [5] that the
microlocal = hypoellipticity theorem is not applicable for
solutions with strong singularity, by constructing solutions of

semilinear hyperbolic equations with singular spectra on the
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" non-characteristic points. " Hence it is of ‘interest ‘to relax the
condition*oh'the smoothness of solutions for which the microlocal

" hypoellipticity theorem is applicable. The condition obtained in
this article depends on the non-linearity of the equations. We

also give some examples which shows the sharpness of our
condition for the hypoellipticity theorem. At the same time we
give a sharper estimate of the microlocal regularity.

The second purpose of this article is to give a
generalization of the result of Bony [1] on the propagation of
singularities to the quasi?homogeneous case. In this direction,

" Yamazaki [10], [11] showed the microlocal hypoellipticity in
general function spaces of Besov type. Also, Godin [3] and
Sakurai [8] showed the propagation of singularties’for a class of
semilinear equations. Then Sakurai [9] obtained the propagation
theorem along simple bicharacteristic strips for general
semilinear equations. Here we aim to generalize his result to
general nonlinear equations. Also, we do not assume that the
principal symbol is real, as in Hérmander [4]. Here we also aim
to relax the condition posed originally on the regularity of the
solutions, and to obtain sharper estimates.

The outline of this article is as follows. In Section 1 we
list our notations and make some preliminary remarks énd
definitions. Then we state our microlocal hypoellipticity
theorem in Section 2, and we give some examples in Section 3.
Finally, in Section 4, we state our theorem on the propagation of

singularities.
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§1. Notations and preliminary remarks. We start with some

notations. For a multi-index a = (al,~--,an) e N and two
vectors T = (xla"' ’xn)v £ = (51’...’671) € R a‘ we put
a a_ .
s * o a — 1.‘. n . -— *» o o
|a[,-— a + ' ta, T = :I:l :I:n ‘and x-& = x1§l+ ‘ +xn£n .

Here N denotes the set' of natural numbers ( = nonnegative
integers ).

,'Next, for the coordinate variable x = (xl,---,x ) € R, let

dr denote the Lebesgue measure on Rn, and put dx = (Zn)-ndx.

We omit the domain of integration if it is the whole space R™.
%1 %n
) Teee(0_ )

. - — = a -
Next we put 7 = v-1, 2 a/axtv and 9 (3x1 , x

Ty

.

n
Further, let ¢' denote the space of tempered distributions
_on mm”, and for an open set 2 in Rn, let 9'(Q2) denote the
spaces - of all distributions on Q. For u(x) € 9',, let
(&) = Flul(é) denéte the Fourier transform of wu(x); that is,
we put a(f)-= fexp(—im-é)u(m)dm. |
Now we state our general assumptions. YWe give a weight
M = (ml,...,mn) € (R+)n satiéfying min iél,---,n m, = 1 ‘torthe
coordinate variable T € Rn, where R* denotes the set of

nonnegative real numbers. Then we put [|M]| = my+--c+m,  and
@ ={1=1,«2,n; m, = 1 }. The dimension n and the weight M

are fixed throughout this article. Next, let <£> denote the
; ) no %My
unique positive root of t T+ 3> ;=1 ¢ Ei' = 1, which is

regarded as an equation with respect to  ¢t. "~'For an open set
Q c Rn, a subset V c T*Q\O':"QX(Rn\{O}) is called M-conic if

(z,£) e V and ¢ > 1 imply (zx,t"&) e V.
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Now we give the definition of our function spaces.

Definition. For s € R, we define the anisotropic Sobolev

space HM’S by

\1/2
#S = (u@) e 95 lu@)ly o = ([l %aE) " < - ).

At the end of this section we microlocalize this space in

the same manner as-in Lascar [6].

Definition. Let Q be an open set in R~°, and let
u(z) € 9'(Q) and (z,&) € T"Q\0.

Then wu(x) is said to be microlocally in S at (x,§)
if there exist a function p(x) € CS(Q) and an M-conic
neighborhood 1% of (z,E) satisfying p(xz) # 0O and

f <§>28[?[¢u](5)]2d5 < o, where U ={¢ € R"; (x,&) € V for
U

some x € Q }.
And u(x) is said to be locally in 'S at % if there
exists a function p(x) € C;(Q) satisfying p(x) # 0 and

p(x)u(x) € HM’S.
Then, as usual, it is easy to see the following

Proposition 1.1. Let 2, * and u(x) be the same as in
the previous definition. Then wu(x) is locally in HDS at 2
if and only if wu(x) 1is locally in HD'S at (%,8) for every

E # 0.
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§2. Microlocal hypoellipticity theorem. We consider
nonlinear partial differential equations on Q of the following

form:

(2.1) 55 80 E (@5 u@), - 0lul@), ) = rle),

where o) is an open set of Rn, K € N, B(k) € Nt
(k=1,-++,K ), u(x), flx) € 2'(Q) and the function
Fk(x; X,---,Xa,o--) is of the form
Xa(k,l)"'xa(k,Lk)Gk(m; X,---,Xa yo ). (We put ?k =0 and
Gk = Fk if Fk is not divisible by any Xa’)

Here the number Lk is determined and the multi-indices

a(k,l),v--,a(k,Lk) are arranged in such a way that the relation

Zlk b 12k 2 s 2 AOk should hold, where
XOk = max { M-a; Gk depends on Xa }
( ZOk = - if Gk does not depend on any Xa )
and

Mea(k,j) (if 1 < J = L, )

Jk

2o (if J > L, ).

Next we suppose that w(x) 1is a solution of (2.1) such

that one of the following two conditions holds.

(HR) The functions Gk(m; X,+++,X ,+++) are C  with respect

to x € and every Xa e R, and u(x) 18 a real-valued
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distribution.

(HC) The functions Gk(x; X,---,Xa,--~) are C° with respect

to x € 2, and entire with respect to each Xa, and u{x) 1is a

complex-valued distribution.

We write the formal development of (2.1) as

(2.2) Az w(x),---,dzulx), ) = f(z),
0A g
and we put aﬁ(x) = ;zgzaj(x; u(x).-~~,a;u(x),---) for B § N".

Now we define the weighted order of the equation (2.1) by
m = max { M-a; a;u(x) appears in (2.2) },

and the weighted principal symbol of (2.1) by
- Y :

Pm(x,f) = > M- B=m aﬁ(x)(zf) , and we say that a point

(x,&) € T*Q\O is non-characteristic with zrespect to M and

u(z) if Pm(x,g) £ 0.

Remark 2.1. If the equation (2.1) 1is not semilinear, the
weighted principal symbol may depend on the choice of the
solution wu(x), and it may not be smooth. We shall return to

this problem in Remark 2.5.

Further, we introduce some numbers. First we put

/ h
p o= max | g (10k+|M|/z, max ;. {1M]/2+(S =1 xjk-|M|)/h})

and
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¢ = max { Py MAX 4 g py2 {|M|/2+(M-B(K)+ E.Z

) zjk—m)/(h-l)}}.

Next, for every k = 1,--+«,K and s > o, put

(2.3) mls) = min o {51 (smag-lmls2)e w2} - wepii).

J

Now let pu(s) be a real number such that u(s) = ”k(s) holds
for every k = 1,-.-,N and that pu(s) < yk(s) holds for every

k satisfying Rgp, 2 s-|M|/2 and

(2.4) There exists an integer J € {1,-",Lk} satisfying

ljk = s-|M|/2 such that ag(k’J)u(x) is not essentially

bounded.

Example 2.3. If the equation (2.1) 4is fully nonlinear of
weighted order m, we have 6 = p = m+|M|/2 and

u(s) = 2s-2m-|M|/2. If the equation has better linearity, then

6 is smaller and u(s) is greater. In particular, if (2.1)
is 1linear, we can take o arbitrarily small and w(s)
arbitrarily large. Some other examples are given in Yamazaki
[12].

Then our microlocal hypoellipticity theorem is the

following.

Theorem 2.4. Let (z,&) € T"O\O be non-characteristic with
respect to M and u(x). Suppose that wu(zx) 18 locally 1in

S at % for some s > o, and that f(z) is microlocally in
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#ht ar (2,8 for some t g u(s). Then u(x) is microlocally
in HOU gt (%,8).

Remark 2.5. The condition s >p guarantees that the
nonlinear terms are well-defined and can be linearized by means
of the paradifferential operators. This condition depends, at
least formally, on the expression (2.1).

On the other hand, the condition

h

(2.5) s > max | g p oo ([M[/2¢(H-p(K)+ 3 ;1) 25-m)/(R-1))

implies that we can take
(2.6) pu(s)+m > s,

which is necessary for the main theorem to be meaningful.
Bésides, (2.6) implies that Pm(x,i) is continuous. We also
remark that the condition (2.5) depends only on the formal

development (2.2), not on the expression (2.1).

- 10 =-



§3. Some examples.

Example 3.1. Consider the following semilinear elliptic

equation:
(3.1) Au+au{+a'u =f ({t,meN, t,n 22 ).

Put M= (1,---,1). Then we have p = n/2-n/t and
6 = max { p, n/2-2/(4-1) }. We also have u(s) = Ls-({L-1)n/2-2
for s < n/2, and all points are non-characteristic with respect

s for

to M. Hence, if f 1is c” and if u is locally in H
some S > o0, we can see easily that uw is c” near i, using
Theorem 2.4 and Proposition 1.1 repeatedly.

Suppose further that =n 2 3. Then we have ¢ = n/2-2/(1-1)
for { 2 n/(n-2), and we see that o < 1 holds if and only if ¢
is less than the critical Sobolev exponent (n+2)/(n—2). In this
case we can apply the argument above to the variational solutions

belonging to the space Hl. (See, for example, Brézis-Nirenberg

(21.)

Remark 3.2. - The condition (2.5) is essential. In fact,
let { be a natural number greater than n/(nQZ), and put
b=-2/(¢{-1) and M = (1,.--+,1). Then we have <{b+n = b-2+n > 0
and a fortiorti 2b+n > 0. Hence, for the equation (3.1), we
have ¢ = b+n/2 > p = n/2-n/{ in this case, and hence (2.5) is
equivalent to s > 0. On the other hand, it follows that

u(x) =_lx|b is a solution of (3.1) with a = b(2-b-n) and



a' = 0. Furthermore, Assertion 1) of Proposition 2.8 of [12]

implies that u{x) 1is locally in HP"¢ at x =0 for every
e > 0. However, u{x) 1is not C” near zx = O, which implies

that Theorem 2.4 is not applicable in this case.

We now compare our result with that of Kobayashi-Nakamura

[5].

Remark 3.3. Let ¢(x) be an analytic function defined near
0 ¢ R* satisfying ¢(0) = 0 and grad ¢(0) # 0, and let P(D)
and Q(D) pe partial differential operators with constant
coefficients of order m and m-h respectively. Assume that
P(D) is strictly hyperbolic with respect to the time function
¢(x). Next we put x = -h/({-1).

Then, under some assumptions on the coefficients of P(D)

and Q(D), Kobayashi-Nakamura [5] constructed a local solution

u(xz) of the equation
. L
P(D)u+Q(D)(u )y =0

and a smooth function v(x), both defined near 0, such that
u(x) is the sum of v(z)(¢(x)+10)* and a more regular function.

The wave front set (modulo sufficiently regular terms)xof
u(x) is contained in the set UV = { (z, grad ¢(z)); ¢(x) =0 },
which consists of non~-characteristic points. On the other hand,
Assertion 2) of Proposition 2.8 of [12] implies that wu(x) is
x+l/2-¢

locally in H for every & > 0. On the other hand, the



condition (2.5) <can be rewritten as s > o+n/2. It is to be
expected that we will be able to fill in this gap by introducing
some function spaces associated with an appropriate second
microlocalization.

Since the fiber of V is strictly convex, there is little
difficulty in justifying the definition of the nonlinear terms in
this case. However, 1in general, some conditions other than

(2.5) are necessary.

o
-1
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§4. The propagation theorem. In this section we consider
the equation (2.1) again. In order to state our theorem on the
propagation of microlocal singularities, we introduce some

notions following Lascar [6].

‘Definition. We call the vector field
(@) = 3 oo (E(Be Pyle,6)) gl - 52-(Re Py(2,6)) 5]
{ 1 { {

the quasi-homogeneous Hamiltonian vector field associated to the
solution u(x). Next, if X(x,£) # 0 at a point (x,&) e T*Q\0
such that Pm(x,f) = 0, then we say that the equation (2.1) is
of principal type at (x,&) with respect to the weight M and
the solution u(x). An integral curve of X contained in the set
VO = { (x,&) € T*Q\O; Re Pm(m,f) = 0} is called a null
bicharacteristic strip associated to the weight M and the
solution wu(x). Further, we put

h
2

J 1jk+1—m)/(h—1)}}.

7 = max { o max‘lgkgK,hzZ {|M|/2+(M-B(K)+ .

Example 4.1. If the equation (2.1) is fully nonlinear of

weighted order m, we have 1 = m+l+|M|/2.

Then our theorem  on the propagation of microlocal

singularities is the following.

Theorem 4.2. Let T = { 7(t); as< t < b} c Vq be a null

bicharacteristic strip assoctiated to M and u(x), and suppose

- 14 -
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that the following six conditions are satisfied.

(4.1) wu(x) 1is locally in HS at every point of , where

S > 0.

(4.2) The equation (2.1) 1is of principal type with respect to
the solution u(x).

(4.3) For every {L,t' € 0, the derivative 3, Re Pm(x,f) 18
1

Lipshitz continuous with respect to T,

(4.4) we can take an M-conic neighborhood V of I in T*0\0
and a disjoint partition Il,--o,IN of the set { B € Nn;
m-1 < M-8 < m} such that the conditions

. B
Im > peI, aﬂ(x)(zé) > 0 and
n (M-p-m+1)z(¥)/m,

lIm ilﬂl(aﬂ(m+x')—2aﬂ(x)+aﬁ(x—x')J‘ < C3> Ix%l
(B € Iv)

hold for every (x,£) € V and every v» = 1,::--,N with some

constant C, where t(v) = 2/(m+l-max BeI M<B).
. Y

(4.5) f(x) 18 microlocally 1in HM’t at every point of T,

where t = u(s).

(4.6) wu(x) 1is microlocally in ghtem=1 o4 v(b).

- 15 -
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Then wu(x) 1is microlocally in. HM’t””—1 at every point of T.

Remark 4.3. The condition

-

(5.7) s> max g g puo (M]/20008(K)+ 3 P 2 mme)/(ro1))

implies that we can take
(4.8) wu(s)+m-1 > s,

which is necessary for the main theorem to be meaningful.
Besides, (4.8) implies that Pb(x,é) is continuous for every
b > m-1, and that Pm(m,f) is differentiable with respect to x,
for every { € 6. However, this 1s not strong enough to
guarantee (4.3) and the latter inequality in  (4.4) (The
Holder-type condition). If u(s)+m-2 > s, then these conditions
will be automatically satisfied;

The condition (4.7) depends only on the formal development

(2.2), not on the expression (2.1).

Remark 4.4. Theorem 4.2 generalizes Theorem 6.1 of Bony
[1], where the case M = (1,--.,1) 1is treated. Moreover, our

theorem improves the values of 1t and u(s).
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