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1. Definitions and summary '

A preradical T is a subfunctor of the identity for abelian groups, i.e., TA isa
subgroup of A for each abelian group A and hTA isa subgroup of TB for any h
¢ Hom(A,B). For a cardinal k, let TIVA = Z{TX: X is a subgroupof A and X is
<x-generated}. (X is <k-generated, if there exists a set of generators for X whose
cardinality is strictly smaller than x.) Then, TI¥! is also a preradical. It is a

- subfunctor of T and T®Ix! = Tixl holds. We say that T satisfies the cardinality
condition (abbreviated by the c.c.), if there exists a cardinal x such that T = Tix],

In the present paper we investigate the notion T for preradicals T. Though
some results also hold for R-modules over any ring R, others need some
restrictions. Since the main interest of this paper is around abelian groups, we
confine ourselves only to abelian groups. (Except the finitely generated case, the
restrictions are only related to the cardinality of the ring R.) To state the main
results some definitions are necessary. For preradicals S and T, ST is the
composition and S:T is the cocomposition, i.e. ST A = S(TA) and S:TA =
0~'S(A/TA) where o: A— A/TA is the canonical homomorphism. A preradical is
socle, if T-T = T. T is aradical, if T:T = T. Let Te*! = TeT for an ordinal a,
TeA = ﬂB<aTBA for a limit ordinal a and T<A = T°A, where T°A = Te+IA,
Dually, let T@*D = T:T@, T®A = Z{T®A: g < a} for a limit ordinal a and T¢=)A
= T@WA, where TWA = T@*+*DA  Though we shall state the definition of Vopénka’s
principle shortly in Section 2, we refer the reader to [11, 13] for more information
and logical and set theoretical background. A cardinal x is regular, if its
coﬁnality is k itselfand x is singular, otherwise. x is a strongly limit cardinal, if
23 < x for any cardinal A < k. Undefined notion and notation is standard (10, 11]

and all groupsin this paper are abelian.

Theorem 1.1. Under Vopénka’s principle, any preradical satisfies the
cardinality condition.

Theorem 1.2. Let x be a regular or fimte cardinal. For preradicals S and T,
(ST = SIKLTIK gnd (S:T)™ = S&LTIX], Hence, if T is a socle, so is Tix! and if T

is a radical, so is T'),



Corollary 1.3. (The first half is in [9]) If preradicals S and T satisfy the c.c.,
then both ST and S:T also satlsfy the c.c..

Corollary 1. 4 Let x be a regular or fimte cardinal and T a preradlcal Then,
ixla — Talx] Tixi@) = T@Ix for an ordinal a and consequently Ti¥le = Tl Tix]
(0) = 'I‘(OO)lKl

These answer a few questions in [9]. In the second half of this paper we shall
investigate the preradicals Rz/*JA, where RzA = N{Ker(h): h ¢ Hom(A,Z)}.

Theorem 1.5. Rz™! is not equal to Rz™; (Rz®)? is not equal to (Rz™)8 for
any K > X; and distinct ordinals a, B; (Rz™)> is not equal to (Rz™)>,

Theorem 1.6. If k is a singular strongly limit cardinal which is less than the
least measurable cardmal then Rz'®! is not a radical.

2. General results .
First we state Vopénka’s principle: Let Aj (i € I) be structures for the same 1-st

order language and I a proper class. Then, there exist two distinct indexes i and j
and an elementary embedding e: Aj—Aj. We use this principle in the following
form: Let (Aj, S;) (i € I) be pairs of groups and their subsets and I a proper class.
Then, there exist two distinct indexes i and j and an injective homomorphism e:
Aj—A; such that e(Sj) ¢ e(S;).

Proof of Theorem 1.1. We suppose the negation of the conclusion and define
cardinals x, and groups A, for each ordinal a inductively. Let kg = 0, kq =
sup{ kp: B < a} for a limit a and |Aq| < Kq+1. Let Ay be the direct sum of all
groups A ‘such that TA # T¥aA and A have the minimal set theoretical rank
among such groups. (The set theoretical rank p(x) = sup{ p(x): y € x}.) Since T
commutes with dire¢t sums, TA, # T*JA,. Now, apply Vopénka’s principle to
the sequence of pairs (Aq, TAgq—T*A,). Then, there exist distinct ordinals d,p
and an injective homomorphism e: A;—Apg such that e(TAq—TA,) C
e(TAg— T“‘BIAB) The construction shows a < p. ¢ # e(TAq—T*JA,) C
(TAp— T“‘BJA[;) N e(TA,), which contradicts to e(TAg,) C T“‘BlAB :

For consequences of Theorem 1.1, see [9]. In case x is an uncountable cardinal,
agroup A is <x-generated iff the cardinality of A (denoted by |A])isless than k.

Proof of Theorem 1.2. First, we observe that T/A = U{T<a>:a ¢ A} by the

fundamental theorem of finitely generated groups [10, Theorem 15.5]. Therefore,
T = Tm TiXol for 2=x = Ry Inthat case (S- T)“lA U{S T<a>:ae€A} =
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StITIA, Next, let x be uncountable. (ST)®A = Z{STX: X < A& |X| <k} =
Z{SHTHX : X = A & [X] < x} = SIWTIKIA. SLTA = B{SX: X < TWHA & |X| <
k}. Since k isregular, for any X = TWA with |[X| < x, there exists a subgroup Y
of A suchthat [Y| <x and X = TY and hence SX = S‘TY. These imply (S-T)!
= SlxlLpix] ‘

For the second proposition, let U = S!®} and V = T, Then, (S:T)™A = Z{S:
TX:X = A& X is <x-generated } = Z{SITKIX : X < A & X is <x-generated } =
(U:V)<IA, What we must show is U:VA = (U:V)¥JA, Let o: A — A/VA be the
canonical homomorphism. Let 2 = x = Ry, o(a) ¢ S<o(b)>, ko(b) = o(a) and m
be the order of o(b). Then, there exist elements ¢,d ¢ A such that a—kb ¢ T<c>
and mb ¢ T<d>. (If <o(b)> isinfinite cyclic, welet d = 0.) Let X = <a,b,¢,
d> and v X — X/TX be the canonical homomorphism. Since TX = TA, ki(b) =
t(a) and m is the order of t(b). Hence, a ¢ U:VX. Next let x be uncountable, X
a subgroup of A/VA of cardinality less than x and a* € 0-'UX. For an a ¢ VA,
there exists a subgroup Y, of A such that |[Yo] < x and a € VY, Let Yg bea
subgroup of A such that |Yo| < x, X = 0(Yg) and a* ¢ Yo andlet Yp4+1 = Yy
+Z{Ya:a € VA N Yy} Then,|Yn+1] <x and VANY, = VY41 forevery n <
. Let Y* = Z{Yp:n < @} (=U{Yn: n < @}). Then, |[Y* < x and VAN Y* =
VY*. Hence, there exists an injective homomorphism i: Y*/VY* — A/VA such
that o[Y* = it where tv: Y*— Y*/VY* is the canonical homomorphism. Since X
=< iw(Y*), v(a*) ¢ U-Y¥/VY*. Therefore, U:VA = ¢-1UA/VA) = ¢~ 1(Z{UX: X =
A/VA & [X| < k}) = Z{o~1UX: X = A/VA & [X| < x} = (U:V)IA,

Since any radical T is of the form Rx for some class of abelian groups X, i.e.
TA = N{Ker(h): h ¢ Hom(A,X), X ¢ X}, T'"! = Ry for some Y,in case k isa
regular cardinal. Next, we show that Y can be gotten from X by using reduced
products. We introduce k-complete reduced products [2, 4]. Let A; (i € I) be abelian
groups and F a filter on 1. The reduced products IIjcjAj/F is the quotient group
II;c1Ai/Kr, where Kp = {f € IIjcjAj: {i: Ri) = 0} ¢ F}. When F is x-complete, i.e.
Xa € F(a <A <k),imply Ng<aXq € F, I1jcAi/F is said to be a k-complete reduced
product of Aj;(i € I).

Theorem 2.1. Let k¥ be an uncountable regular cardinal. Then, Rx!x! = Ry,
where Y is the class of all k-complete reduced products of elements of X.

Proof. Suppose that a ¢ Rx'™A for an a ¢ A. Let S be a subset of A of
cardinality less than x which contains a, then there exist an Xg ¢ X and an
homomorphism hg:<S>— Xg such that hg(a) # 0. According to a canonical
construction of reduced products, let PxA be the set of all subsets of cardinality
less than x and F the k-complete filter generated by all the Uy’s where Ux={S



€ PgA:x €S} (x € A). Weset Xs =0 and hg =0 for a¢S e P,A and Y =
IIsep,AXs/F. Then, (hs: S € PgA) naturally defines a homomorphism h: A —Y
such that h(a) # 0. More precisely, h(x) = [(hg": S ¢ PxA)]f, where hg’ = hg for x
€ S and hg = O otherwise and [ Jr : IIsep,AXs — Y is the canonical
homomorphism. Itis easy to check that h is a homomorphism and h(a) # 0. Now,
we have shown RyA = Rx/MA,

For the converse, let a € Rx!*/A, then there exists a subgroup S of A such that
[S| <x and a € RxS. Puta homomorphism h: A— Y foran Y ¢ Y and think of
the restriction h|S. There exist A; (i € I) belonging to X and a x-complete filter F
on I such that Y = IIijA;/F. Since the cardinality of S islessthan x and x isa
regular cardinal, there exists a homomorphism h*:S—1II;cjA; such that h = [ ]p-
h*, by [3, Lemma 2.6]. By the assumption , nj-h*(a) = 0 for every projection nj to
the i-th component and hence h*(a) = 0 and h(a) = 0. | :

In the rest of this section we think of a dual notion of T!*, For a preradical T,
let Ty = N{h~'TX: h ¢ Hom(A,X) and X is <k-generated}. Then, Ty is also a
preradical. B

Proposition 2.2. Let T be a preradical. T = T}, for some cardinal & iff there
exist a group G and its subgroup H such that TA = N{h~'H:h ¢ Hom(A,G)}.

Proof. Suppose the second proposition holds. Since TA = T;A in general, T =
Tix, When G is <xk-generated. For the other implication , let {Xj:i € I} be a
representative set of <x-generated groups, i.e. any <x-generated group X is
isomorphic to some Xj. Let G = éieIXi and H = ®;TX; be the subgroup of G.
Suppose a € N{h~1H: h ¢ Hom(A,G)}. For an h ¢ Hom(A,X) where X is <k-
generated, there exist an i ¢ I and h* ¢ Hom(A,G) such that X is isomorphic to
X; and mj-h* = h through this isomorphism, where nj:G—X; be the projection.
Since nj-h*(a) € TX;, h(a) ¢ TX. Hence, N{h—'H: h ¢ Hom(A,G)} = T;4A = TA,

and the other inclusion is obvious.

Though Proposition 2.2 answers a question of [9], it does not seem that the
notion Ty, works so well as T!™], as we shall see in the next proposition.

Proposition 2.3. If T is a radical, then T, is a radical for any cardinal x.
However, there exists a socle T such that Ty is not a socle. ’

~ Let 0:A—A/TiA be the canonical homomorphism and ¢(a)#0. Then, there
exist a group X andan h € Hom(A,X) such that X is <k-generated and h(a) ¢
TX. Let h* = o-h, where o: X—X/TX is the canonical homomorphism. Then,
h*(a)#0, T-X/TX =0 and X/TX is <k-generated. Hence, TjyA = Kerh* and so
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there existsan h** ¢ Hom(A/T;A,X/TX) such that h**.¢ = h*. Now, h**.o(a) =
h*(a) # 0, which implies that o(a) ¢ TjxyA/TA, and so TjrA/TiA = 0.

For the second proposition, let T be the Chase radical v,i.e. v = Ry where X
is the class of Ri-free groups, or Rz™. The_n; T is a socle in each case. For a
countable group C, RzC = Rz*C = vC by Stein’s lemma [10, Corollary 19.3].
Since TixjA = N{h~'RzC: h € Hom(A,C), C is countable}, Tix; = Rz. As well-
known and a certain example for it will appear in Section 3, Rz is not a socle.

3. Preradicals Rz® .

In this section we study preradicals Rz!®l. A trivial remark is;: Rz™JA is the
torsion subgroup of A and hence Rz is a radical and a socle. After studies of
Dugas and Gobel [3, 4], we showed that Rz satisfies the c.c. (iff Rz™ satisfies the
c.c.) iff there exists a strongly L, o-compact cardinal [5]. In another word Rz =
Rz for a strongly L, o-compact cardinal k. Bergman and Solovay [1] announced
a similar result, i.e. The class of all torsionless groups is chracterized by a set of
generalized Horn sentences, iff there exists a strongly L,,-compact cardinal.
They also commented that Magidor showed that the existence of a strongly L, -
compact cardinal is strictly weaker than that of a strongly compact cardinal. We
showed that the Chase radical v = Rz™ [6] and hence Rzl = Rz®™l. To
investigate Rz™!, we need some lemmas and definitions. These are obtained by
observing a certain grdup in[7,12].

For a subgroup S of A, S*A is the subgroup of A defined by: S** = {a ¢ A:
h(S) = 0 implies h(a) = 0 for any h € Hom(A,Z)}. @2 is the set of 0,1-valued
functions from ® and <92 is the set of 0,1-valued functions from natural
numbers, i.e. <®2 = {xin:n < w, x € ®2}. For an element xin of <®2, lh(xrn) =
n. pn denotes the n-th prime. Let X be a subset of @2 of cardinality 8; and Y =
{xr:n < @, x € X}. QX and QY are the divisible hull of the free abelian group

generated by X and Y respectively. For an element a of a torsionfree group A,

Qa + A is the subgroup of the divisible hull of A generated by the divisible hull of
<a> and A.

Lemma 3.1. For an element a of a torsionfree group A, let A’ = <x,y,
(x—xm—x(n)a)/pp, A: x€X,y€Y,n <w > bethe subgroup of QX6QY®(Qa +
A). Then, RzA’ = (<a> + RzA)*A,

Proof. The proof of the fact a ¢ RzA’ can be done by the same argument as in
[7, 8.8 Theorem], but we present it here. Suppose that h(a) # 0 for some h ¢
Hom(A’,Z). Let p, be a prime so that |h(a)] < pp. Since |X| = Ry, there exist
distinct xi, x2 € X such that h(x;) = h(xg), x;fm = xgfm and x;(m) # x2(m) for
some m=n. Now, |h(a)] = |h(x; —x1'm —x1(m)a) —h(zg —x2fm —x2(m)a)| and so



pm divides |h(a)], which is a contradiction. Hence, (<a> + RzA)**=RzA’.
Suppose that b€ A and b ¢ (<a> + RzA)*4, then there exists an h ¢ Hom(A,Z)
such that h(b) # 0 and h(a) = 0. Define h*(x) = h*(y) = 0 for x¢ X and y¢Y,
we get an extension h* ¢ Hom(A’,Q) of h. Then, h* belongs to Hom(A’,Z) and
hence b ¢ RzA’. Suppose b € A’—A, then o(b)#0 where o:A—A/A’ is the
canonical homomorpohism. Since A’N(Qa + A) = A, A/A =~<x,y, (x—xIn)/pn:
x€X,y€Y,n < @>. There exist a finite subset F of X and an n such that xrn
# x'In for distinct x,x’ € F and o(b) ¢ B = <x,y, (x—xrk)/pk: x € F,v k=n, lh(y)
=n>. Since B is finitely generated, there exists an h ¢ Hom(B,Z) so that h-o(b)
# 0. Extend h to h*: QX®QY — Q so that h*(x) = h(xrn) for any x ¢ X —F;
h*(y) = h(z) if xrlh(y) = y for some x ¢ F and lh(y) > n; h*(y) = h(yrn) if no x
¢ F extends y and lh(y) > n. Then, h*|A’/A ¢ Hom(A’/A,Z) and h*-¢(b) # 0.

Lemma 3.2. If A is Xj-free,sois A’.

Proof. It is enough to show that A’/A is Rj-free. Observe that
<x,y,(x—xrk)/pk: x € F,Ih(y)=n,k=n> is a pure subgroup of A/A for a finite F
and n < w. Then, A’/A is R;-free by Pontrjagin’s criterion [10, Therem 19.1].

Proof of Theorem 1.5. Let a =1 and A = Z in Lemma 3.1. Then, RzA’ = 7Z,
|A7] = Ry and A’ is Rj-free by Lemma 3.2. (A’ is the same group in [7, 8.8
Theorem].) Since Rz™A’ = vA’ = 0 by [6, Theorem 2] and Rz™A’ = RzA’ = Z,
the first proposition holds. By [8, Corollary 3.10] (due to Mines), the second
proposition holds. For the third proposition, we show the existence of an Xj-free
group Ay, such that [A, | = X1 and Hom(Ag,,Z) = 0. This can be done by
iterating the process from A to A’ starting from a =1 and A = Z. Let m:
@1 X0;—®; be a bijection so that a=m(a,p) and p=n(a,p) for a,p < ;. We
induqtively define Ag,’s so that Ay = {auB: B < @}, Aq is Ry-free, Ay is a
subgroup of Apg for a < g and A, is the union of {Ap: p < a} for alimit a. In the
stage 8 = n(a,p), we apply the construction of Lemma 3.1 for a = aag and A =
As. Itis easy to see that RzA, = A, and |A,,| = Ry. The Ri-freeness of Ay,
follows from the fact that A is purein A’ and Pontrjagin’s criterion. Now,
RzFM)* Ay, = VAg, = 0, but (RzMN)°A,, = (Rz®)®A, = Rz™Ay, = Ag,.

Proof of Theorem 1.6. The 2-L,,-compactness of A implies that A is equal to
or greater than the least measurable cardinal. Therefore, if A < x, then Rz
# Rz by [5, Theorem 1), (Since the notion p-L,o-compactness is only used here,
we refer the reader to [2, 5] forit.) Let p = cf(x) <x and Kq (a < p) an increasing
cofinal sequence for k such that kg is regular, Rz®al # Rzl¥e+1l and 2K < gq41.
This can be done, because Rz®A = E{RZWA: A < k}. Then, since Rz* isa
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radlcal there ex1st groups Yg (a < p) such that [Yq < Ka+1 RzXY, =
RzY.#0 and Y, is torsionfree. Let Y = Ha<pYo. I kq > p, RZXY
Rz(Hﬂ<aYﬁ)$Rz[K“](HBgaYp). Let X = IIg=qYp and [X| < xq. Then, X
HBg QnBX, where ng is the projection to the p-th component. Since Rz commutes
with products whose index sets are of cardinality less than the least measurable
cardinal [3, Theorem 2.4] and RzmgX = 0 for p=a, Rz™IY = Rz(Ilg<qYp) =
Ilg<qRzYp. Hence, Rz¥IY = {f ¢ qa<pRzYq: {a: la)#0}| < p}. RzYq containsa
subgroup isomorphic to Z and so Y/Rz™Y contains a subgroup isomorphic to
ZVW/Z<P where Z<P = {f ¢ ZP: [{a < p: fla) # 0}] <p}. Since RzXAZP/Z<P) =
Rz(ZWZ<P) = ZWZ<W, RzX-Y/Rz¥IY # 0,

It seems possible that Rz™! would be a radical. In that case Rz®®! = Rz/Xn+1
and R, < 2** for some n by an observation of the proof of Theorem 1.6 and [5,
Theorem 1].

Problem: Is it consistent with ZFC that Rz = Rz® or Rz®®! is a radical?

Under the scope of [5, Theorem 1], there is a closely related and a little bit
stronger question, i.e., Is it consistent with ZFC that Rp is Rj-Lg,e-compact for
every n < w? However, during the conference of Logic and its applications at
Kyoto in 1987 Hugh Woodin kindly taught me that this does not hold. More
precisely, if x is a cardinal less than the least regular limit cardinal, k is not k-

L, w-compact.
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