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1. Definitions and summary
A preradical $T$ is a subfunctor of the identity for abelian groups, i.e., TA is a

subgroup of A for each abelian group A and $hTA$ is a subgroup of TB for any $h$

$\epsilon$ Hom(A,B). For a cardinal $x$ , let $T^{1\kappa l}A=\Sigma\{TX:X$ is a subgroup of A and X is
$<\kappa$-generated}. (X is $<\kappa$-generated, ifthere exists a set ofgenerators for X whose
cardinality is strictly smaller than $\kappa.$ ) Then, $T^{[K]}$ is also a preradical. It is a
subfunctor of $T$ and $T^{[K][K]}=T^{[K]}$ holds. We say that $T$ satisfies the cardinality
condition (abbreviated by the c.c.), ifthere exists a cardinal $x$ such that $T=T^{[x]}$ .

In the present paper we investigate the notion $T^{[K]}$ for preradicals T. Though
some results also hold for R-modules over any ring $R$, others need some
restrictions. Since the main interest of this paper is around abelian groups, we
confine ourselves only to abelian groups. (Except the finitely generated case, the
restrictions are only related to the cardinality of the ring R.) To state the main
results some definitions are necessary. For preradicals $S$ and $T,$ $S\cdot T$ is the
composition and $S:T$ is the cocomposition, i.e. $S\cdot T$ A $=$ S(TA) and $S:TA=$

$\sigma^{-1}S(A/rA)$ where $\sigma;Aarrow A!\Gamma A$ is the canonical homomorphism. A preradical is
socle, if $T\cdot T=T$. $T$ is a radical, if $T:T=T$. Let $T^{u+1}=T^{Q}\cdot T$ for an ordinal $a$ ,
$\Psi A=\bigcap_{\beta<\mathfrak{a}}T^{\beta}A$ for a limit ordinal $\mathfrak{a}$ and $T^{\infty}A=T^{Q}A$ , where T’A $=T^{\mathfrak{a}+1}A$ .
Dually, let $T^{(i1+1)}=T:T^{(a)},T^{(\alpha)}A=\Sigma\{T^{(\beta)}A:\beta<a\}$ for alimit ordinal $Q$ and $T^{t\infty)}A$

$=T^{(q)}A$ , where $T^{ta)}A=T^{(\alpha+1)}A$ . Though we shall state the definition of Vop\’enka’s
principle shortly in Section 2, we refer the reader to $[11, 13]$ for more information
and logical and set theoretical background. A cardinal $x$ is regular, if its
cofinality is $x$ itself and $\kappa$ is singular, otherwise. $x$ is a strongly limit cardinal, if
$2^{A}<K$ for any cardinal $A<K$ . Undefined notion and notation is standard $[10, 11]$

and all groups in this paper are abelian.

Theorem 1.1. Under Vop\’enka’s principle, any preradical satisfies the
cardinality condition.

Theorem 1.2. Let $\kappa$ be a regular or finite cardinal. For preradicals $S$ and $T$,
$tS\cdot T)^{[K]}=S^{1\kappa J}\cdot T^{[K]}$ and $(S:T)^{[K]}=S^{[K]}:T^{[K]}$ . Hence, if $T$ is a socle, so is $T^{[\kappa]}$ and if $T$

is a radical, so is $T^{[K]}$.
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Corollary 1.3. (The first half is in [9]) If preradicals $S$ and $T$ satisfy the c.c.,

then both $S\cdot T$ and $S:T$ also satisfy the c.c..

Corollary 1.4. Let $\kappa$ be a regular or finite cardinal and $T$ a preradical. Then,
$T^{lxy_{1}}=T^{\alpha[\kappa]},$ $T^{[x](Q)}=rC1$)$[K]$ for an ordinal $a$ and consequently $T^{lx1\infty}=T^{\infty I\kappa 1},$ $T^{[\kappa]}$

$t\infty)=\Gamma^{\infty})[x]$

These answer a few questions in [9]. In the second half of this paper we shall
investigate the preradicals $R_{Z^{[K]}}A$, where $R_{Z}A=\cap${$Ker(h);h\in$ Hom(A,Z)}.

Theorem 1.5. $R_{Z^{[\aleph 1]}}$ is not equal to $R_{Z^{[\aleph 2]}};tR_{Z^{[\kappa]}})^{0}$ is not equal to $tR_{Z^{[\kappa]})^{\beta}}$ for
any $\kappa>\aleph_{1}$ and distinct ordinals $\alpha,$

$\beta;(Rz^{[\aleph 1]})^{\infty}$ is not equal to $(R_{Z^{[\aleph 2]}})^{\infty}$ .

Theorem 1.6. If $x$ is a singular strongly limit cardinal which is less than the
least measurable cardinal, then $R_{Z^{[K]}}$ is not a radical.

2. General results
First we state Vop\’enka’s principle: Let $A_{i}(i\in I)$ be structures for the same l-st

order language and I a proper class. Then, there exist two distinct indexes $i$ and $j$

and an elementary embedding $e:A_{i}arrow A_{j}$ . We use this principle in the following
form: Let $tA_{i},$ $S_{i)}(i\in I)$ be pairs of groups and their subsets and I a proper class.
Then, there exist two distinct indexes $i$ and $j$ and an injective homomorphism $e$ :
$A_{i}arrow A_{j}$ such that $etS_{i)}\subseteq elS_{j)}$ .

Proof of Theorem 1.1. We suppose the negation of the conclusion and define
cardinals $x_{\mathfrak{a}}$ and groups $A_{Q}$ for each ordinal $a$ inductively. Let $K0=0,$ $K_{Q}=$

$\sup\{K_{\beta}:\beta<\alpha\}$ for a limit $a$ and $|A_{a}|<x_{a+1}$ . Let $A_{r}$ be the direct sum of all
groups A such that TA $\neq T^{[K_{Q}]}A$ and A have the minimal set theoretical rank
anong such groups. (The set theoretical rank $p(x)=\sup\{p(x);y\in x\}.$ ) Since $T$

commutes with direct sums, $TA_{Q}\neq T^{tx_{u^{l}}}A_{a}$. Now, apply Vop\’enka’s principle to
the sequence of pairs $(A_{\alpha}, TA_{\alpha}-T^{Ix_{cI}1}A_{\mathfrak{a}})$. Then, there exist distinct ordinals $a,p$

and an injective homomorphism $e:A_{\mathfrak{a}}arrow A_{\beta}$ such that $e(TA_{a}-T^{1\kappa_{0}1}A_{a})\subseteq$

$elTAp-T^{lx}P^{l}Ap)$ . The construction shows $a<\beta$ . $\Phi\neq e(TA_{a}-T^{lx_{\circ^{l}}}A_{a})\subseteq$

$(TA_{\beta}-rlC\beta^{l}A_{\beta})\cap e(TA_{\alpha})$, which contradicts to $e(TA_{a})\subseteq T^{1\kappa}\beta^{l}A_{\beta}$.
For consequences ofTheorem 1.1, see [9]. In case $x$ is an uncountable cardinal,

a group A is $<K$-generated iffthe cardinality of A (denoted by $|A|$ ) is less than $x$ .

ProofofTheorem 1.2. First, we observe that $T^{I\aleph}o^{1}A=U$ {$T<a>$ : a E $A$} by the
fundamental theorem of finitely generated groups [10, Theorem 15.5]. Therefore,
$T^{[2]}=T^{[\kappa]}=T^{[\aleph_{0}]}$ for $2\leqq K\leqq h$. In that case $(S\cdot T)^{[x]}A=U${$S\cdot T<a>$ : a $\in A$} $=$
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$S^{\mathfrak{l}\kappa l}\cdot T^{[K]}A$. Next, let $x$ be uncountable. $(S\cdot T)^{[\kappa]}A=\Sigma${$S\cdot TX:X\leqq$ A&IXI $<K$} $=$

$\Sigma\{S^{[\kappa]}\cdot T^{[\kappa]}X:X\leqq A\ |X|<x\}\leqq S^{l\kappa 1}\cdot T^{[\kappa]}A$. $S^{[K]}\cdot T^{[K]}A=\Sigma\{SX:X\leqq T^{[\kappa]}A\ |X|<$

$x\}$ . Since $x$ is regular, for any $X\leqq T^{Ix1}A$ with $|X|<K$ , there exists a subgroup $Y$

of A such that $|Y|<K$ and $X\leqq TY$ and hence SX $\leqq S\cdot TY$. These imply $(S\cdot T)^{[x]}$

$=S^{[x]}\cdot T^{[K]}$ .
For the second proposition, let $U=S^{I\propto 1}$ and $V=T^{\iota\propto J}$. Then, $(S:T)^{[x]}A=\Sigma\{S$:

TX: X\leqq A&X is $<x- generated$ } $=\Sigma${$S^{1\propto 1}:T^{1\propto 1}X$ ; X\leqq A&X is $<x-generated$ } $=$

$(U;V)^{[K]}A$. What we must show is $U:VA\leqq(U:V)^{[\kappa]}A$ . Let $\sigma:Aarrow A/VA$ be the
canonical homomorphism. Let $2\leqq x\leqq\aleph_{0},$ $\sigma(a)\in S<\sigma(b)>,$ $k\sigma(b)=\sigma(a)$ and $m$

be the order of $\sigma(b)$ . Then, there exist elements $c,$ $d\in$ A such that a-kb $\epsilon T<c>$

and mb $\in T<d>$ . (If $<\sigma(b)>$ is infinite cyclic, we let $d=0.$) Let $X=<a,$ $b,$ $c$,
$d>$ and $\tau:Xarrow X/\Gamma X$ be the canonical homomorphism. Since TX $\leqq TA$, kr(b) $=$

$\iota(a)$ and $m$ is the order of $\tau(b)$ . Hence, a $\in U:VX$ . Next let $x$ be uncountable, X
a subgroup of ANA ofcardinality less than $K$ and $a^{*}\in\sigma^{-1}UX$ . For an a $\epsilon$ VA,
there exists a subgroup $Y_{a}$ of A such that $|Y_{a}|<x$ and a $\epsilon VY_{a}$ . Let $Y_{0}$ be a
subgroup of A such that $|Y_{0}|<x,$ $X\leqq\sigma(Y_{0})$ and $a^{*}\epsilon Y_{0}$ and let $Y_{n+1}=Y_{n}$

$+\Sigma${$Y_{a}$: a E $VA\cap Y_{n}$}. Then, I$Y_{n+1}|<x$ and $VA\cap Y_{n}\leqq VY_{n+1}$ for every $n<$

$\omega$ . Let $Y^{*}=\Sigma\{Y_{n}:n<\omega\}t=\cup\{Y_{n}:n<\omega\}$). Then, $|Y^{*}|<x$ and $VA\cap Y^{*}=$

$VY^{*}$ . Hence, there exists an injective homomorphism $i:Y^{*}/VY^{*}arrow ANA$ such
that $\sigma|Y^{*}=i\cdot\tau$ where $\tau:Y^{*}arrow Y^{*}R^{*}$ is the canonical homomorphism. Since X
$\leqq i\cdot\tau(Y^{*}),$ $\tau(a^{*})\in U\cdot Y^{*}/VY^{*}$. Therefore, $U:VA=\sigma^{-1}U(MA)=\sigma^{-1}(\Sigma\{UX:X\leqq$

$ANA\ |X|<K\})=\Sigma\{\sigma^{-1}UX:X\leqq ANA\ |X|<x\}\leqq(U;V)^{[x]}A$.
Since any radical $T$ is of the form $R_{X}$ for some class of abelian groups $X$, i.e.

TA $=\cap${$Ker(h);h\epsilon$ Hom(A,X), X $\epsilon X$}, $\prime P^{\kappa\ddagger}=$ Ry for some $Y$, in case $K$ is a
regular cardinal. Next, we show that $Y$ can be gotten from $X$ by using reduced
products. We introduce $x$-complete reduced products $[2, 4]$ . Let $A_{i}(i\in I)$ be abelian
groups and $F$ a filter on I. The reduced products $\Pi_{i\epsilon I}A_{i}/F$ is the quotient group
$\Pi_{i\epsilon I}A_{i}1Kp$, where $K_{F}=\{f\in\Pi_{i\in I}A_{i:}\{i:f\langle i)=0\}\in F\}$ . When $F$ is $\kappa$-complete, i.e.
$X_{\alpha}\epsilon Ft\mathfrak{a}<A<x)$ , imply $\bigcap_{a<\lambda}X_{a}\in F,$ $\Pi_{i\in I}A_{i}/F$ is said to be a $K$-complete reduced
product of $A_{i}(i\in I)$ .

Theorem 2.1. Let $x$ be an uncountable regular cardinal. Then, $R_{X^{[\kappa]}}=$ Ry,

where $Y$ is the class ofall $K$-complete reduced products of elements of $X$.

Proof. Suppose that a $eR_{X^{[\kappa]}}A$ for an a $\epsilon$ A. Let $S$ be a subset of A of
cardinality less than $\kappa$ which contains $a$, then there exist an $X_{S}\in X$ and an
homomorphism $h_{S:}<S>arrow X_{S}$ such that hsla) $\neq 0$. According to a canonical
construction of reduced products, let $P_{K}A$ be the set of all subsets of cardinality
less than $K$ and $F$ the $K$-complete filter generated by all the $U_{X}’ s$ where $U_{x}=\{S$
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( $P_{K}A:x\in S$} $(x\in A)$ . We set $X_{S}=0$ and $h_{S}=0$ for a $eS\in P_{K}A$ and $arrow Y=$

$\Pi_{S\epsilon P_{K}A}X_{S}/F$. Then, $ths;S\in P_{K}A$) naturally defines a homomorphism $h:Aarrow Y$

such that $h(a)\neq 0$ . More precisely, $h(x)=[(h_{S}’:S\epsilon P_{K}A)]p$ , where $h_{S}’=h_{S}$ for $x$

$\epsilon S$ and $h_{S}’=0$ otherwise and $[$ $]p$ : $\Pi_{S\epsilon P_{K}A^{X}S}arrow Y$ is the canonical
homomorphism. It is easy to check that $h$ is a homomorphism and $h(a)\neq 0$ . Now,
we have shown $R_{Y}A\leqq R_{X^{[K]}}A$.

For the converse, let a E $R_{X^{[\kappa]}}A$, then there exists a subgroup $S$ of A such that
$|S|<K$ and a $\in R_{X}S$ . Put a homomorphism $h:Aarrow Y$ for an $Y\in Y$ and think of
the restriction $h|S$ . There exist $A;(i\in I)$ belonging to $X$ and a $x$-complete filter $F$

on I such that $Y=\Pi_{i\in I}A_{i}/F$. Since the cardinality of $S$ is less than $K$ and $K$ is a
regular cardinal, there exists a homomorphism $h^{*}:Sarrow\Pi_{i\epsilon I}A_{i}$ such that $h=$ $[$ $]p$ .
$h^{*}$ , by [3, Lemma 2.6]. By the assumption, $n_{i}\cdot h^{*}(a)=0$ for every projection $n_{i}$ to
the i-th component and hence $h^{*}(a)=0$ and $h(a)=0$.

In the rest of this section we think of a dual notion of $T^{[K]}$. For a preradical $T$,
let $T_{[\kappa]}=\cap$ {$h^{-1}TX:h\in$ Hom(A,X) and X is $<\kappa$-generated}. Then, $T_{1\kappa 1}$ is also a
preradical.

Proposition 2.2. Let $T$ be a preradical. $T=T_{[\cdot]}$ for some cardinal $K$ iff there
exist a group $G$ and its subgroup $H$ such that TA $=\cap$ {$h^{-1}H:h\in$ Hom(A,G)}.

Proof. Suppose the second proposition holds. Since TA $\leqq T_{\iota\kappa 1}A$ in general, $T=$

$T_{[K]}$, when $G$ is $<x$-generated. For the other implication , let $\{X_{i:}i\in I\}$ be a
representative set of $<K$-generated groups, i.e. any $<\kappa$-generated group X is
isomorphic to some $X_{i}$ . Let $G=-\oplus i\in IX_{i}$ and $H=\oplus i\epsilon I^{TX_{i}}$ be the subgroup of G.
Suppose a $\epsilon\cap$ {$h^{-1}H:h\epsilon$ Hom(A,G)}. For an $h\epsilon$ Hom(A,X) where X is $<K-$

generated, there exist an $i\in$ I and $h^{*}\in$ Hom(A,G) such that X is isomorphic to
$X_{i}$ and $n:\cdot h^{*}=h$ through this isomorphism, where $n::Garrow X_{i}$ be the projection.
Since $n:\cdot h^{*}1a$) $\in TX_{i},$ $h(a)\epsilon$ TX. Hence, $\cap\{h^{-1}H:h\in Hom(A,G)\}\leqq T_{[\kappa]}A=TA$,
and the other inclusion is obvious.

Though Proposition 2.2 answers a question of [9], it does not seem that the
notion $T_{\iota\kappa 1}$ works so well as $T^{[K]}$, as we shall see in the next proposition.

Proposition 2.3. If $T$ is a radical, then $T_{[\kappa]}$ is a radical for any cardinal K.

However, there exists a socle $T$ such that $T_{\iota\aleph_{1}1}$ is not a socle.

Let $\sigma:Aarrow K_{[\kappa]}A$ be the canonical homomorphism and $\sigma(a)\neq 0$ . Then, there
exist a group X and an $h\in$ Hom(A,X) such that X is $<\kappa$-generated and $hla$) $g$

TX. Let $h^{*}=\sigma\cdot h$, where $\sigma:Xarrow X\Pi X$ is the canonical homomorphism. Then,
$h^{*}(a)\neq 0,$ $T\cdot X\Pi X=0$ and $X!\Gamma X$ is $<K$-generated. Hence, $T_{[r]}A\leqq Kerh^{*}$ and so
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there exists an $h^{**}\in Hom(A!\Gamma_{I\kappa l}A,X\Pi X)$ such that $h^{**}\cdot\sigma=h^{*}$ . Now, $h^{**}\cdot\sigma(a)=$

$h^{*}(a)\neq 0$ , which implies that $\sigma(a)fT_{[\kappa]}\cdot K_{1\kappa 1}A$, and so $T_{[\kappa]}\cdot A\Pi_{[K]}A=0$.
For the second proposition, let $T$ be the Chase radical $v$, i.e. $v=R_{X}$ where $X$

is the class of $\aleph_{1}$-free groups, or $R_{Z^{\infty}}$ . Then, $T$ is a socle in each case. For a
countable group $C,$ $R_{Z}C=Rz^{\infty}C=vC$ by Stein’s lenna [10, Corollary 19.3].

Since $T_{\iota\aleph_{1}\}}A=\cap${$h^{-1}R_{Z}C:h\in$ Hom(A,C), $C$ is countable}, $T_{f\aleph_{1}1}=R_{Z}$. As well-
known and a certain example for it will appear in Section 3, $R_{Z}$ is nota socle.

3. Preradicals $R_{Z^{[K]}}$

In this section we study preradicals $R_{Z^{[\kappa]}}$. A trivial remark is: $R_{Z^{[\aleph 0]}}A$ is the
torsion subgroup of A and hence $R_{Z^{1\aleph o1}}$ is a radical and a socle. After studies of
Dugas and G\"obel $[3, 4]$ , we showed that $R_{Z}$ satisfies the c.c. (iff $R_{Z^{\infty}}$ satisfies the
c.c.) iff there exists a strongly $L_{\omega_{1}\omega}$-compact cardinal [5]. In another word $R_{Z}=$

$Rz^{[K]}$ for a strongly $L_{\omega_{1}\omega}$-compact cardinal $\kappa$ . Bergman and Solovay [1] announced
a similar result, i.e. The class of all torsionless groups is chracterized by a set of
generalized Horn sentences, iff there exists a strongly $L_{\omega_{1}\omega}$-compact cardinal.
They also connented that Magidor showed that the existence of a strongly $L_{\omega_{1}\omega^{-}}$

compact cardinal is strictly weaker than that of a strongly compact cardinal. We
showed that the Chase radical $v=R_{Z^{[\aleph 1]}}[6]$ and hence $R_{Z^{[\aleph 1]\infty}}=R_{Z^{[\aleph 1]}}$. To
investigate $R_{Z^{[\aleph 2]}}$, we need some lemmas and definitions. These are obtained by
observing a certain group in $[7, 12]$ .

For a subgroup $S$ of $A,$ $S^{*A}$ is the subgroup of A defined by: $S^{*A}=$ {a $\epsilon A$ :
$h(S)=0$ implies $hla$) $=0$ for any $h\in$ Hom(A,Z)}. $\omega_{2}$ is the set of O,l-valued
functions from to and $<\omega_{2}$ is the set of O,l-valued functions from natural
numbers, i.e. $<\omega_{2}=\{xrn:n<\omega, x\in^{\omega}2\}$ . For an element $xrn$ of $<\omega_{2,1h(x\Gamma n)}=$

$n$ . $Pn$ denotes the n-th prime. Let X be a subset of $\omega_{2}$ ofcardinality $\aleph_{1}$ and $Y=$

{xrn: $n<\omega,$ $x\in X$}. QX and $QY$ are the divisible hull of the free abelian group
generated by X and $Y$ respectively. For an element a of a torsionfree group $A$,

$Qa+A$ is the subgroup of the divisible hull of A generated by the divisible hull of
$<a>$ and A.

Lemma 3.1. For an element a of a torsionfree group $A$, let $A’=<x,$ $y$,
$(x-xrn-x(n)a)/p_{n},$ $A;x\epsilon X,$ $y\epsilon Y,$ $n<\omega>$ be the subgroup of $QX\oplus QY\oplus(Qa+$

A). Then, $R_{Z}A’=(<a>+R_{Z}A)^{*A}$.
Proof. The proof of the fact a $\epsilon R_{Z}A$

’ can be done by the same argument as in
[7, 8.8 Theorem], but we present it here. Suppose that $h(a)\neq 0$ for some $h\epsilon$

Hom(A’,Z). Let $Pn$ be a prime so that $|h(a)|<Pn$ . Since $|X|=\aleph_{1}$ , there exist
distinct $x_{1},$ $x_{2}\in X$ such that $h(x_{1})=h(x_{2}),$ $x_{1}rm=x_{2}rm$ and $x_{1}(m)\neq x_{2}(m)$ for
some $m\geqq n$ . Now, $|h(a)|=|h(x_{1}-x_{1}rm-x_{1}(m)a)-h(x_{2}-x_{2}rm-x_{2}(m)a)|$ and so
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$pm$ divides $|h(a)|$ , which is a contradiction. Hence, $t<a>+R_{Z}A)^{*A}\leqq R_{Z}A’$.
Suppose that $b\in$ A and $bet<a>+R_{Z}A)^{*A}$ , then there exists an $h\in$ Hom(A,Z)

such that $h(b)\neq 0$ and $h(a)=0$. Define $h^{*}(x)=h^{*}(y)=0$ for $x\in X$ and $y\in Y$ ,
we get an extension $h^{*}\in$ $Hom(A’,Q)$ of $h$ . Then, $h^{*}$ belongs to Hom(A’,Z) and
hence $b\not\in R_{Z}A’$ . Suppose $b\in A’-A$, then $\sigma(b)\neq 0$ where $\sigma;Aarrow AlA$’ is the
canonical homomorpohism. Since $A’\cap(Qa+A)=A,$ $A/A\simeq<x,y,$ $(x-xrn)/p_{n}$ ;

$x\in X,$ $y\in Y,$ $n<\omega>$ . There exist a finite subset $F$ of X and an $n$ such that $xrn$

$\neq x’\Gamma n$ for distinct $x,$ $x’\in F$ and $\sigma(b)\in B=<x,$ $y,$ $(x-xrk)/p_{k};x\in F,$ $k\leqq n,$ $lh(y)$

$\leqq n>$ . Since $B$ is finitely generated, there exists an $h\in$ Hom(B,Z) so that $h\cdot\sigma(b)$

$\neq 0$ . Extend $h$ to $h^{*}:QX\oplus QYarrow Q$ so that $h^{*}(x)=h(xrn)$ for any $x\in$ X-F;
$h^{*}(y)=h(x)$ if xrlh$(y)=y$ for some $x\in F$ and $lh(y) >n;h^{*}(y) =h(yrn)$ if no $x$

$\epsilon F$ extends $y$ and lh(y) $>n$ . Then, $h^{*}|A/A\epsilon$ Hom(A’/A,Z) and $h^{*}\cdot\sigma(b)\neq 0$.

Lemma 3.2. If A is $\aleph_{1}$-free, so is $A’$.

Proof. It is enough to show that $A’/A$ is $\aleph_{1}$-free. Observe that
$<x,$ $y,$ $(x-xrk)/pk;x\epsilon F,$ $lh(y)\leqq n,$ $k\leqq n>$ is a pure subgroup of $A/A$ for a finite $F$

and $n<\omega$ . Then, $A’/A$ is $\aleph_{1}$-free by Pontrjagin’s criterion [10, Therem 19.1].

ProofofTheorem 1.5. Let $a=1$ and $A=Z$ in Lemma 3.1. Then, $R_{Z}A’=Z$ ,
$|A’|=\aleph_{1}$ and $A$’ is $\aleph_{1}$-free by Lemma 3.2. $tA$’ is the same group in [7, 8.8
Theorem].) Since $R_{Z^{[\aleph 1]}}A’=vA’=0$ by [6, Theorem 2] and $R_{Z^{I\aleph z1}}A’=R_{Z}A’=Z$ ,

the first proposition holds. By [8, Corollary 3.10] (due to Mines), the second
proposition holds. For the third proposition, we show the existence of an $\aleph_{1}$-free
group $A_{\omega_{1}}$ such that $|A_{\omega_{1}}|=\aleph_{1}$ and $Hom(A_{\omega_{1}},Z)=0$ . This can be done by
iterating the process from A to $A$’ starting from a $=1$ and A $=$ Z. Let $n$ :
$\omega_{1}\cross\omega_{1}arrow\omega_{1}$ be a bijection so that $a\leqq n(a,p)$ and $p\leqq n(a,p)$ for $a,p<\omega_{1}$ . We
inductively define $A_{\alpha}’ s$ so that $A_{\alpha}=\{a_{a_{\beta}}:p<\omega_{1}\},$ $A_{a}$ is $\aleph_{1}$-free, $A_{\alpha}$ is a
subgroup of Ap for $a<p$ and $A_{a}$ is the union of {Ap: $p<a$} for alimit $\alpha$ . In the
stage $6=n(a,\beta)$ , we apply the construction of Lemma 3.1 for $a=a_{a_{\beta}}$ and A $=$

$A_{6}$ . It is easy to see that $R_{Z}A_{\omega_{1}}=A_{\omega_{1}}$ and $|A_{\omega_{1}}|=\aleph_{1}$ . The $\aleph_{1}$-freeness of $A_{\omega_{1}}$

follows from the fact that A is pure in $A$’ and Pontrjagin’s criterion. Now,
$tR_{Z^{[\aleph 1]}})^{\infty}A_{\omega_{1}}=vA_{\omega_{1}}=0$ , but $(Rz^{[\aleph 2]})^{\infty}A_{\omega_{1}}=(R_{Z^{\infty}})^{[\aleph 2]}A_{\omega_{1}}=R_{Z^{\infty}}A_{\omega_{1}}=A_{\omega_{1}}$.

ProofofTheorem 1.6. The $2^{A}- L_{\omega_{1}\omega}$-compactness of A implies that A is equal to
or greater than the least measurable cardinal. Therefore, if A $<K$ , then $R_{Z^{[\lambda]}}$

$\neq Rz^{[K]}$ by [5, Theorem 1]. (Since the notion $1^{1-L}\omega_{1}\omega$-compactness is only used here,

we refer the reader to $[2, 5]$ for it.) Let $p=cf(K)<K$ and $K_{Q}t\alpha<$ ]$1$ ) an increasing
cofinal sequence for $K$ such that $Ka$ is regular, $R_{Z^{[Kn]}}\neq R_{Z^{\mathfrak{l}xo+1l}}$ and $2^{\kappa\alpha}<Ka+1$ .
This can be done, because $R_{Z^{\mathfrak{l}\kappa 1}}A=\Sigma${$R_{Z^{\iota\lambda 1}}A$ : A $<K$}. Then, since $R_{Z^{\iota Ku1}}$ is a

6



22

radical, there exist groups $Y_{\alpha}$ (a $<1^{1)}$ such that $|Y_{\alpha}|<x_{\alpha+1},$ $R_{Z^{[Ku]}}Y_{a}=0$ ,
$R_{Z}Y_{a}\neq 0$ and $Y_{a}$ is torsionfree. Let $Y=\Pi_{a<t^{1}}Y_{\mathfrak{a}}$. If $x_{a}>1^{1},$ $R_{Z^{\iota\kappa\alpha 1}}Y=$

$Rz(\Pi_{\beta}<a^{Y}\beta)\oplus R_{Z^{\iota Ka1}}1^{\Pi_{\beta}}\geqq a^{Y}\beta)$ . Let X $\leqq\Pi_{\beta\geqq\alpha^{Y}\beta}$ and $|X|<$ Kq. Then, X $\leqq$

$\Pi_{\beta\ddagger l}\geqq n_{\beta}X$ , where $n_{\beta}$ is the projection to the p-th component. Since $R_{Z}$ commutes
with products whose index sets are of cardinality less than the least measurable
cardinal [3, Theorem 2.4] and $R_{Z}n_{\beta}X=0$ for $p\geqq a,$ $R_{Z^{[Kn]}}Y=R_{Z}(\Pi_{\beta<a^{Y}\beta)}=$

$\Pi_{\beta<a}R_{Z}Yp$ Hence, $R_{Z^{[K]}}Y=tf\in\Pi_{\alpha 1}<\iota^{R_{Z}Y_{a\ddagger}}|\{a:fla)\neq 0\}|<1^{I\}}\cdot R_{Z}Y_{\alpha}$ contains a
subgroup isomorphic to $Z$ and so $Y/R_{Z^{[K]}}Y$ contains a subgroup isomorphic to
$Z1^{1}/z<1^{1}$ where $Z^{<}t^{1}=\{f\in ZH;|\{a<1^{1};f(\alpha)\neq 0\}|<1^{1\}}$. Since $R_{Z^{[K]}}(Z1^{1}/z<1^{1})=$

$R_{Z}(ZP/z<1^{1})=Z1^{1}/z<1^{1},$ $R_{Z^{[K]}}\cdot Y/R_{Z^{\{K1}}Y\neq 0$.
It seems possible that $R_{Z^{1\aleph\omega 1}}$ would be a radical. In that case $R_{Z^{\iota\aleph\omega 1}}=R_{Z^{[\aleph n+1]}}$

and $\aleph_{\omega}<2^{\aleph n}$ for some $n$ by an observation of the proof of Theorem 1.6 and 15,
Theorem 1].

Problem: Is it consistent with ZFC that $R_{Z^{\mathfrak{l}\aleph\omega 1}}=R_{Z^{[\aleph 2]}}$ or $R_{Z^{t\aleph\omega 1}}$ is a radical?

Under the scope of [5, Theorem 1], there is a closely related and a little bit
stronger question, i.e., Is it consistent with ZFC that $\aleph_{2}$ is $\aleph_{n}- L_{\omega_{1}\omega}$-compact for
every $n<$ to? However, during the conference of Logic and its applications at
Kyoto in 1987 Hugh Woodin kindly taught me that this does not hold. More
precisely, if $x$ is a cardinal less than the least regular limit cardinal, $K$ is not K-

$L_{\omega_{1}\omega}$-compact.
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