
104

On Operational Semantics ofCongruence Relation

Defined inAlgebraic Language ASL/*

Hiroyuki SEKI, Kenichi TANIGUCHI and Tadao KASAMI

(関 浩之 谷口 健一 嵩 忠雄)

Department of Information and Computer Sciences
Faculty of Engineering Science

Osaka University
Toyonaka, Osaka 560, JAPAN

Abstract An algebraic specification (or text) specifies a congruence relation
on a set of expressions. In algebraic language $ASL/*$, a pair (G, AX) is called a
text, where G is a context-free grammar and AX is a set of axioms. A text
$t=(G, AX)$ specifies the set E_{G} of expressions generated by G and the least
congruence relation on E_{G} satisfying all the axioms in AX , where
‘congruency’ is defined based on the syntax (phrase structure) of the
expressions. In general, for a text t in $ASL/*$, the condition, (A) e is congruent
with $e’$ in t , is not logically equivalent to the condition, (B) $e’$ is obtained from e

by rewriting e when the axioms in t are regarded as ‘bidirectional‘ rewrite
rules. We present a sufficient condition for a text t under which (A) and (B) are
equivalent for any pair of expressions e and $e’$, which means that the
congruence relation specified by t is simply defined operationally.

L Introduction

In a stepwise refinement process of a software development activity, it is
desirable that the semantics of programs and their specifications should be
defined formally. Algebraic semantics is one of the most promising methods to
define the semantics of programs and specifications, and has the following
advantages [1]:

数理解析研究所講究録
第 655巻 1988年 104-123

1 $r.5$

(1) Since the semantics of both of the programs and their specifications (called

texts, in this paper) are defined simply and clearly by using congruence
relation, the correctness of a text can be verified relatively easily.
(2) A text can be written at an arbitrary level of abstraction; a text
corresponding to a specification written in a natural language can be refined
stepwise to obtain an efficient program satisfying the given specification in the
single semantical framework. Especially, a class of functional programs can
be regarded asaspecial subclass of texts[5].

On the other hand, it has been pointed out from the practical point of
view that several problems arise when defining a fairly large specification in
algebraic methods. They are summarized as follows:
(a) The syntax of the terms (or expressions in this paper) is usually restricted
to so called prefix notation such as $p(g(c_{1}, c_{2}),$ c_{3}), and it is not allowed for the
writers to define arbitrary syntax, such as infix notation, at their own
discretion.
(b) Different data types (or sorts) cannot share common syntax. Hence, if there
is an inclusion relation among sorts (or data types, e.g., integer and real), (1)

the definition of each operation on each type must be given separately even if
they are homomorphic (e.g., the addition $+^{t}$ on integer and $tt+$ on real), and,
(2) the type transformation must be specified explicitly $(^{1}1^{t}$ on integer vs. $\dagger 1.0’$

on real).

(c) When error handling and/or exception handling are considered (e.g.,

popping the empty stack results in the error state and no operation is defined
on that error state), the text tends to be complicated [1].

In order to resolve these problems, several extensions of algebraic
semantics such as error algebra[2] have been proposed. However, the
semantics can no longer be defined simply in these approaches.

In $ASL/*$, the syntax of expressions can be de’ ed by using context-free
grammar (abbreviated as $cf\dot{g}$). An inclusion relation among sorts can be
represented by an inclusion relation among the sets of expressions which are
derived from specific non-terminal symbols corresponding to the sort names.
Error handling can be also simply specified as follows: First, let G be a cfg
which has two specific non-terminal symbols; (a) a non-terminal symbol from
which all the states including both legal and error states are derived, and, (b) a
non-terminal symbol, say state, from which only the legal states are derived.
Then, a ‘strict’ operation should be defined only on the expressions derived
from the non-terminal symbol state. Details of sort inclusion and error
handling are described in $[6, 8]$.

106

Since the set of expressions is defined by a cfg in $ASL/*$, the concept
‘congruency’ must be generalized so that a congruence relation can be defined
on a context-free language (cfl) . Remember that a binary relation R is called a
congruence relation if (1) R is an equality relation, i.e., R is reflexive,
symmetric and transitive, and (2) R is closed under each operation, i.e., for
each (n-ary) operation f, whenever $e_{1}Re_{1}’,$ $e_{2}Re_{2’},$

$\ldots,$
$e_{n}Re_{n}$

‘ hold then $f(e_{1}$,
e_{2} , ..., e_{n}) $Rf(e_{1}’,e_{2}’, ..., e_{n}’)$ also holds. In $ASL/*$, for each expression e ,

several substrings of e are specified as subexpressions, which are considered
to be arguments of the operation represented by e . A congruence relation is
defined to be an equality relation which is closed under replacement of
subexpression.

In $ASL/*$, a pair (G, AX) is called a text, where G is a cfg without a start
symbol, and \mathfrak{X} is a finite set of axioms. A text $t=(G, AX)$ specifies the least
congruence relation on E_{G} which satisfies all the axioms in AX, where E_{G} is
the set of all the expressions derived from some non-terminal symbol in G . A
string in E_{G} is called an expression. More formally, for an axiom $l==r$ in AX,
let $Q_{t}(axJ$ denote $((l\theta, r\theta)|l\theta$ (or $r\theta$) is an arbitrary expression obtained from l

(or r) by substituting an expression for each variable in l (or r)} and Q_{t} denote

$ax^{\bigcup_{\in}Q_{t}(ax)}\mathfrak{X}$ The congruence relation \overline{Q}_{t} specified by the text t is defined to

be the least congruence relation on E_{G} containing Q_{t} . For expressions e and $e’$,

if $e\overline{Q}_{t}e’$ holds then e is said to be congruent with $e’$ (in t).

In the case that the syntax of expressions is restricted to the prefix
notation, the close relation between algebraic axioms and rewriting systems is
well-known [4], i.e., the following property holds in our terminology.
[Operational Completeness (text version)] For a given text $t=(G, \mathfrak{X}),$ e is
congruent with $e’$ if and only if $e’$ is obtained from e by rewriting e finitely
many times when Q_{t} is regarded as a set of’bidirectional’ rewrite rules. \blacksquare

Unfortunately, in $ASL/*$, operational completeness does not hold in
general. In this paper, a sufficient condition for a given text t in $ASL/*is$

presented under which operational completeness stated above holds so that the
semantics of the congruence relation specified by t is simply defined
operationally.

In section 2, for a set E of expressions and a relation R on $E(R$ is called a

set of equations), the congruence relation \overline{R} on E generated by R is defined in

an abstract way; \overline{R} is defined independently of the mechanisms which specify
the set E of expressions and the set R of equations. Then, we give a sufficient
condition for a set E of expressions and a set R of equations to satisfy
operational completeness:

1 C7

[Operational Completeness (abstract version)] For any expressions e and $e’$ in

$E,$ $e\overline{R}e’$ holds if and only if $e’$ is obtained from e by rewriting e finitely many
times when R is regarded as a set of rewrite rules. \blacksquare

For a relation R , let R-l be the inverse of R , i.e., $eR^{- l}e’$ if and only if $e’R$

e . The sufficient condition for E and R is as follows.
[A Sufficient Condition for Operational Completeness (abstract version)]

(1) E satisfes the following syntactic transitivity.
[Syntactic Transitivity] For any expressions $e_{1},$ e_{2} and e_{3} in E , if e_{1} is a
subexpression of e_{2} and e_{2} is a subexpression of e_{3} , then e_{1} is also a
subexpression of e_{3} .
(2) E and R satisfy the following local syntax compatibility.
[Local Syntax Compatibility] For any pair $(e_{1}, e_{1}’)$ in $R\cup R^{-1}$ and any
expression e_{2} in E containing e_{1} as a subexpression, let $e_{2}’$ be the string
obtained from e_{2} by replacing e_{1} with $e_{1}’$. Then $e_{2}’$ is also an expression in E

and $e_{1}’$ is also a subexpression of $e_{2}’$. \blacksquare

In sections 3 and 4, for a text $t=(G, AX)$, we formally define the set of
expressions E_{G} and the set Q_{t} of equations. Next, we assume that a cfg G

satisfies a sufficient condition (having unambiguous structure, see 3.2) for G to
satisfy syntactic transitivity. Then we give a decidable sufficient condition
(called global syntax compatibility, see 3.3) for E_{G} and Q_{t} to satisfy local syntax
compatibility. To summarize, for a given text $t=(G, AX)$, if (1) G has
unambiguous structure and (2) Q_{t} satisfies global syntax compatibility (which

is decidable under the assumption that (1) holds) then operational
completeness (text version) holds.

2. A Congruence Relation on a&t ofExpressions

2.1 Expressions and Subexpressions

LetVbeafinite set of symbols. $LetV^{*}$ denote the set of all the strings on
V and let $V^{+}=V-(\epsilon$], where ϵ is the empty string. The length of a string u is
denoted by I $u|$. For strings u and w , if $w=v_{1}uv_{2}$ for some v_{1} and v_{2} then u is
called a substring of w at occurrence $|v_{1}$, or simply, a substring of w . For
strings $w,$ $u’$ and a substring u of w , let $w[uarrow u’, i]$ denote the string obtained
from w by replacing u with $u’$, i.e.,

$w[uarrow u’, i]=v_{1}u’v_{2}$

where $i=|v_{1}|$. If there is no ambiguity, $w[uarrow u’, i]$ may be abbreviated as
$w[uarrow u’]$ by omitting the occurrence i .

108

Let E be a subset of V^{*} . A string in E is called an expression (in E), and
E is called a set of expressions (on V). Let Z denote the set of all the non-
negative integers. Let 9 be a 3-ary relation on $E\cross E\cross Z$ (If (e_{1}, e_{2}, i) satisfies 3,

then we write $e_{1}9e_{2}$ at i) which satisfies (1) e_{1} is a substring of e_{2} at i whenever
$e_{2}9e_{1}$ at i , and (2) $e9e$ at 0 holds for any expression e . e_{1} is called a
subexpression of e_{2} at occurrence i , or simply, a subexpression of e_{2} if and only
if $e_{2}3e_{1}$ at i . $e23e1$ at i is abbreviated as $e23e1$ if there is no ambiguity. We also
say e_{2} contains e_{1} as a subexpression if $e_{2}3e_{1}$. The relation 9 is called the
syntax relation on E . We assume that, when a set E of expressions is
introduced, a syntax relation on E is also introduced (either explicitly or
implicitly). Section 3 describes how a set of expressions and a syntax relation
on it are specified.

2.2 $Deffi_{1}itionofaCongruenoeBelation$

Let E be a set of expressions. A subset R of $E\cross E$ is called a binary
relation on E and we write $eRe’$ when $(e, e’)\in R$. A binary relation C on E is
said to be a congruence relation on E if the following conditions (1) and (2) are
satisfied.
(1) C is an equality relation. i.e., C is reflexive, symmetric and transitive
relation.
(2) [Congruency] For expressions $e_{1},$ $e_{1}’$ and e_{2} in E such that $e_{1}Ce_{1}’$ and e_{23}

e_{1} ,
if $e_{2}[e_{1}arrow e_{1}’]$, denoted $e_{2}’$, is in E and $e_{2}’\partial e_{1}’$ holds, then $e_{2}Ce_{2}’$ also
holds. \blacksquare

Suppose that $e23e1$ i.e., e_{1} is a subexpression of e_{2} , and let $e_{2}’=e_{2}[e_{1}arrow$

$e_{1}’]$ (the string obtained from e_{2} by replacing e_{1} with $e_{1}’$). It does not
necessarily follow that $e_{2}’$ is an expression in E . Furthermore $e_{1}’$ is not always
a subexpression of $e_{2’}$ even if $e_{2}’\in E$. Congruency means that for expressions
e_{1} and e_{1}

’ which are already known to be ‘congruent with each other‘, and an
expression e_{2} which contains e_{1} as a subexpression, e_{2} and $e_{2}’=e_{2}[e_{1}arrow e_{1}’]$

must also be congruent if $e_{2’}$ is an expression in E and e_{l}

’ is a subexpression of
$e_{2}’$.

Let R be a binary relation on E. R is sometimes called a set of equations.

The congruence relation on E generated by R (denoted by \overline{R}) is defined to be the

least congruence relation on E containing R . For any set R of equations, \overline{R}

always exists and is uniquely determined [61.

2.3 Operational Semantics ofa Congruence Relation

1 $n9$

In this subsection, for any set R of equations, the congruence relation \overline{R}

generated by R is characterized operationally. For a relation R , let $R\#$ be the
reflexive-transitive closure of $R\cup R^{-1}$.
[Definition 2.1] For a set E of expressions and a relation R on E , define the
relations $R_{0},$ $R_{1},$

$\ldots,$

R_{∞} as follows.
(1) $R_{0}=R$

(2) For each $i(i\geq l),$ $e_{2}R_{i}e_{2’}$ if and only if
there exist expressions e_{1} and $e_{1}’$ in E such that $e_{1}R_{i- 1}\#_{e_{1}’},$ $e_{2}9e_{1},$ $e_{2’}=$

$e_{2}[e_{1}arrow e_{1}\prime 1$ is in E and $e_{2^{J}}\partial e_{1}’$.
(3) $eR_{\infty}e’$ if and only if $eR_{ie’}$ for some $i(i\geq l)$. \blacksquare

Intuitively, $eR_{1}e’$ means that, when pairs of expressions in the
reflexive-transitive closure of $R\cup R- 1$ are regarded as rewrite rules, $e’$ is
obtained from e by one step rewriting. Similarly, $eR_{i}e’$ means that, when
pairs of expressions in $R_{i- 1}\#$ are regarded as rewrite rules, $e’$ is obtained from
e by one step rewriting, and $eR_{\infty}e’$ means that $e’$ is obtained from e by one step
rewriting under such rewrite rules.
[Lemma2.1] Fora setE of expressions anda relationR on E, $\overline{R}=R_{\infty}^{\#}=R_{\infty}$. \blacksquare

Let us define the relation P as follows:

e_{2} rr $e_{2’}$

if and only if
there exist expressions e_{1} and $e_{1}’$ in E such that $e_{1}Re_{1}’,$ $e_{2}9e_{1},$ $e_{2’}$

$=e_{2}[e_{1}arrow e_{1}’1$ is in E and $e_{2’}3e_{1}’$.
The difference between P and R_{i} is that only R is used as aset of rewrite rules

in the definition of rr while $R_{i- 1}\#$ (i.e., reflexive-transitive closure of $R_{i- 1}\cup R_{i- 1^{-}}$

$1)$ is used in the definition of R_{i} . It is well-known that, if the syntax of

expressions is restricted to the prefix form such as $f(e_{l}, e_{2}, ..., e_{?})$, then $\overline{R}=$

$(F)\#$ holds [4], which means that the operational semantics of the congruence

relation \overline{R} can be defined simply. However $R_{\infty}\#$ does not coincide with $(F)\#$ in

general. The reasons are as follows.
(1) Even if e_{1} is a subexpression of e_{2} and e_{2} is a subexpression of $e_{3},$ e_{1} is not
always a subexpression of e_{3} . For example, assume that $e_{2}3e_{1}$ and $e_{3}3e_{2}$ hold
but $e_{3}9e_{1}$ does not hold. Let $e_{2’}=e_{2}[e_{1}arrow e_{1}’]$ and $e_{3}’=e_{3}[e_{2}arrow e_{2}’]$ and assume
that $e_{29e_{1}}’’$ and $e_{3’}9e_{2}’$. Let $R=((e_{1}, e_{1}’))$. Then, since $e23e1$ and $e_{29e_{1}}’’$

hold by the assumption, $e_{2}R_{1}e_{2’}$ holds by definition 2.1. Similarly $e_{3}R_{2}e_{3’}$ and
hence $e_{3}R_{\infty}\# e_{3’}$ hold since $e_{3}3e_{2}$ and $e_{3}’9e_{2’}$. On the other hand, since e_{1} is

6

110

not a subexpression of $e_{3},$ $(e_{1}, e_{1}’)$ cannot be applied to e_{3} as a rewrite rule.
Similarly, $(e_{1}’, e_{1})$ cannot be applied to $e_{3}’$. It follows that $e_{3}(F)\# e_{3}$

’ does not

hold and $R_{\infty}\#$ does not coincide $(F)\#$.
(2) For expressions e_{1} and e_{2} satisfying $e_{2}\partial e_{1},$ $e_{2}’=e_{2}[e_{1}arrow e_{1}’]_{3}e_{1}$

’ does not
always hold even if $e_{2}’$ is an expression. For example, let $R=((e_{1}, e_{1}’),$ $(e_{1}’$,
$e_{1}’’)]$. Suppose $e23e1$ and let $e_{2’}=e_{2}[e_{1}arrow e_{1}’]$ and $e_{2}’’=e_{2}[e_{1}arrow e_{1}\prime\prime]$. Suppose
that $e2”9e_{1}’’$ but $e_{I}’$ is not a subexpression of $e_{2}’$. $e_{2}R_{1}\#_{e_{2’’}}$ and $e_{2}R_{\infty}\# e_{2’’}$ hold
since $e_{2}9e_{1},$ $e_{2’’}\partial e_{1}’’$ and $e_{1}R\# e_{1}’’$ (by the definition ofR). On the other hand,
$e_{1}’$ is not a subexpression of $e_{2}’$ and so $e_{2’’}$ (or e_{2}) cannot be obtained from e_{2} (or

$e_{2’’})$ by rewriting under rewrite rules in $R\cup R^{-1}$. Hence $e_{2}(F)\# e_{2}’’$ does not

hold and $R_{\infty}\#$ does not coincide with $(F)\#$. \blacksquare

Suppose that a set E of expressions satisfies the following condition.
[Syntactic Transitivity] For any expressions $e_{1},$ e_{2} and e_{3} , if $e_{2}\partial e_{1}$ and $e_{3}3e_{2}$,
then $e_{3}3e_{1}$. \blacksquare

Then, in the example in (1) above, $e_{3}3e_{1}$ and $e33e1\prime\prime$ hold. Hence $(e_{1}, e_{1}’)\in R$

can be applied to e_{3} as a rewrite rule and $(e_{2}, e_{2}’)\in R_{1}$ is not needed as a
rewrite rule. For (2) above, let us assume that a set R of equations on E

satisfies the following condition.
[Local Syntax Compatibility] For any pair $(e_{1}, e_{1}’)$ in $R\cup R^{-1}$ and any
expression e_{2} containing e_{1} as a subexpression, let $e_{2}’=e_{2}[e_{1}arrow e_{1}’]$. Then $e_{2}’$

is also an expression and $e_{2\partial e_{1}}’’$. \blacksquare

Local syntax compatibility ensures that, if $e23e1$ and $(e_{1}, e_{1}’)\in R\cup R- 1$ then $e_{2’}$

$=e_{2}[e_{1}arrow e_{1}’]$ is always an expression and $e_{2}’3e_{1}’$. Hence in the definition of
$R_{1},$ R is sufficient as a set of rewrite rules ($R\#$ is not needed). Notice that, even
if a set R of equations satisfies local syntax compatibility, it does not necessarily
follow that $R_{1},$ $R_{2},$

\ldots also satisfy it. However, the latter is not required since
$(\cup R_{i})- R$ is not needed as rewrite rules if syntactic transitivity is satisfied. To

$i\geq 1$

summarize the above discussion, a sufficient condition for $\overline{R}=(R)\#$ can be

derived as follows.
[Definition 2.21 For a set E of expressions, define the relations $\sim<$ and \approx as

follows:
(1) $e_{1}<e_{1}’\sim$ if and only if

for any expression e_{2} in E such that $e_{2}3e_{1}$,
$e_{2’}=e_{2}[e_{1}arrow e_{1}’]$ is also an expression in E and $e_{2}’\partial e_{1}’$.

(2) $e\approx e’$ if and only if $e<e’\sim$ and $e^{f}<e\sim$. \blacksquare

111

[Lemma 2.2] For a set E of expressions and a relation R on E , if the following

conditions (1) and (2) are satisfied, then operational completeness $\overline{R}=(B)\#$

holds.
(1) E satisfies syntactic transitivity.
(2) R satisfies local syntax compatibility $\prime\prime eRe’$ implies $e\approx e’$ ”. \blacksquare

3. A Set ofExpressions Generated by a Grammar

3.1 A Set ofExpressions Generated by a Gramunar

This subsection describes how a set of expressions together with a syntax
relation (see 2.1) is defined by a context-free grammar. Let $G=(V_{N}, V_{T}, P)$ be
a context-free grammar (cfg) without a start symbol, where $V_{N},$ $V_{T}(V_{N}\cap V_{T}$

$=\phi,$ ϕ denotes the empty set) and P are a finite set of non-terminal symbols, a
finite set of terminal symbols and a finite set of productions, respectively. A
production in P has a form $Aarrow\alpha$, where $A\in V_{N}$ and $\alpha\in(V_{N}\cup V_{T})+$. Let $V=$

$V_{N}\cup V_{T}$. We write $\alpha_{B^{\beta}}$ if $\alpha=uAv_{f}\beta=u\gamma!$ and $Aarrow\gamma\in P$ for some $u,$ $v\in V^{*}$.

Let 2 and \S^{*} denote $(a)^{t}$ and $(\S)^{*}$, respectively, and $B,$
3^{i} and \Rightarrow^{*} are

$abbreviated\cdot as\Rightarrow,$
$\Rightarrow i$

$and\Rightarrow*$ respectively if there is no ambiguity. For each $A\in$

V_{N} , let

$L_{G}(A)=(e|A^{*}\S e, e\in V_{T^{+}})$

and let
$E_{G}=$ \cup $L_{G}(A)$.

$A\in V_{N}$

For $e\in E_{G}$, let
$N_{G}(e)=(A|A\in V_{N}, A^{*}\S e)$.

A cfg G specifies E_{G} as a set of expressions.
A derivation tree is defined to be a tree tr satisfying the following

conditions (1) to (3). A node with at least one child is called an internal node.
(1) Each node in tr has a symbol in V as the label.
(2) The label of an internal node is a non-terminal symbol in V_{N} , and, for a
tree which consists of a single node r , the label of r is a non-terminal symbol.
(3) If a node n has children $n_{1},$ $n_{2},$

$\ldots,$
n_{h} from left to right, and the labels of n ,

$n_{1},$ $n_{2_{J}}\ldots,$ n_{k} are $X,$ $X_{1},$ $X_{2},$ X_{k} , respectively, then $Xarrow X_{1}X_{2}\ldots X_{k}\in P$. \blacksquare

For a derivation tree $tr,$ tr is called a derivation tree for α , where α is the
string obtained by concatenating the labels of the leaves in tr from left to right.

112

If tr is a derivation tree for α and the label of the root of tr is A , then we write tr

: A $a^{\alpha}*$ by using the same notation as for derivations. Similarly, if the number

of the internal nodes of a derivation tree tr is i , then tr may be written as tr.A
i

P^{α}. For a string $\alpha\in E_{G}$, a substring β of α and a derivation tree $tr:$ A^{*}
$F\alpha$ for

α, if tr contains a derivation tree for β as a subtree, then β is said to be derived
from a non-terminal symbol in tr .

A cfg G specifies the following relation $G9$ on E_{G} as a syntax relation:

$e2_{G}^{\partial}e1$ if and only if

there exists a derivation tree tr for e_{2} such that e_{1} is derived from a
non-terminal symbol in tr . \blacksquare

For a given cfg G , a set of expressions together with a syntax relation
can be specified in a natural way as above by using the phrase structures
defined by G . Unfortunately, however, it is undecidable whether $e=e’$ (see 2.3)

holds in general:
[Lemma 3.1] It is undecidable for a given cfg G and expressions e and $e’$ in E_{G}

whether $e=e’$ holds.
(Proof) For a given cfg $G=(V_{N}, V_{T}, P)$ and non-terminal symbols A_{1} and A_{2} in
V_{N} , we can construct another cfg $G’$ such that $e_{1}\approx e_{2}$ holds for two
di stinguished expressions e_{1} and e_{2} in $E_{G’}$ if and only if $Lc(A_{1})=L_{G(A_{2})}$,
which is undecidable. Let $G’=(V_{N’}, V_{T’}, P’)$, where

$V_{N}’$ $=V_{N}\cup(S, H_{1}, H_{2})(V_{N}\cap(S, H_{1}, H_{2}]=\phi)$,
$V_{T’}$ $=V_{T}\cup(e_{1\prime}e_{2})(V_{T}\cap(e_{1}, e_{2})=\phi)$,
$P’$ $=P\cup(Sarrow H_{1}A_{1},$ $Sarrow H_{2}A_{2},$ $H_{1}arrow e_{1},$ $H_{2}arrow e_{2}J$.

Then, it is easy to see that
$e_{1}=e_{2}$ if and only if $L_{G(A_{1})}=L_{G}(A_{2})$. \blacksquare

3.2 A cfg with Unambiguous Sh ucture

In general, for a cfg G and an expression $e=ue_{1}v$, there may be
derivation trees trl and $tr2$ for e such that e_{1} is derived from a non-terminal
symbol in trl while it is not the case in $tr2$.
[Definition 3.1] Let G be a cfg (V_{N}, V_{T}, P) , and let trl and $tr2$ be derivation
trees for α and β , respectively, where $\alpha,$ $\beta\in WN$ $\cup V_{T})^{*}$ and 1 al $=|\beta|$. trl

and $tr2$ are said to have the same structure if the following condition holds:
Let γ be a substring of α and let $\alpha=\zeta\gamma\eta$ and $\beta=\zeta’\delta\eta’$ where $|\zeta|=$ I $\zeta’|$

and 1 $\eta|=|\eta’|$. γ is derived from a non-terminal symbol in trl if and
only if δ is derived from a non-terminal symbol in $tr2$. \blacksquare

$J13$

For a cfg G , if, for each expression e in E_{G} , all the derivation trees for e

have the same structure, then we say that G has unambiguous structure, or G

is with unambiguous structure. If G has unambiguous structure and an
expression e_{1} is a subexpression of an expression e_{2} , then e_{1} is always derived
from a non-terminal symbol in every derivation tree for e_{2} .
[Lemma 3.21 It is undecidable for a given cfg G whether G has unambiguous
structure.
($Proof7$ For a given instance I of $Post^{t}s$ correspondence problem, a cfg G can be
effectively constructed such that G has unambiguous structure if and only if I

does not have any solution. \blacksquare

[Lemna 3.3] If a cfg G has unambiguous structure then E_{G} satisfies syntactic
transitivity (see 2.3).

(Proof) Obvious by the definition of $\dagger unambiguous$ structure\dagger . \blacksquare

$a3$ GlobalSyntaxCompatibility
-ASufficient Condition for Local Syntax Compatibility-

We have already given a sufficient condition for a set R of equations to
satisfy $\overline{R}=(F)\#$ as lemma 2.2. The condition requires that R satisfies local

syntax compatibility $|R\subseteq\approx^{\prime(}$ As will be described in 4.1, a text in $ASL/*$

specifies a set R of equations by a set of axioms. However, it is undecidable for
a given text t in $ASL/*whether$ the set of equations specified by t satisfies local
syntax compatibility (see lemma 4.1).

By the way, the sufficient condition in lemma 2.2 also requires that the
set of expressions under consideration satisfies syntactic transitivity. In 4.2,
we assume that a cfg G which specifies a set E_{G} of expressions has
unambiguous structure so that E_{G} satisfies syntactic transitivity (we believe
the assumption is a reasonable one as will be $explaine_{\iota 1}$ in 4.2). However, to the
best of the authors’ knowledge, even if a cfg is assumed to have unambiguous
structure, it is open whether it is decidable or not for a text t whether $R\subseteq=$

holds, where R is the set of equations specified by t . If the problem is decidable ,

it becomes also decidable for given $cfg^{t}sG_{1},$ G_{2} with unambiguous structures
whether $E_{G_{1}}=E_{G_{2}}$. Since the class of cfl‘ s generated by cfg’s with

unambiguous structures contains the class of deterministic $cfl’s$, and the
equality problem for deterministic $cfl^{t}s$ has been one of the mo st famous open
problems, it seems to be difficult to know whether the problem $R\subseteq=’’$ is
decidable or not.

114

Considering above discussions, we will define a relation, denoted by 0 ,

which satisfies $0\subseteq\approx$. Hence $R\subseteq\approx ifR\subseteq 0$. Furthermore, it will be shown in
4.2 that it is decidable for a text $t=(G, AX)$ whether $R\subseteq 0$ under the
assumption that G has unambiguous structure. Intuitively, $e_{1}0e_{1}’$ holds if
and only if the following two conditions hold:
(1) $e_{1}\approx e_{1}’$.
(2) For any expression e_{2} containing e_{1} as a subexpression, let $e_{2}’=e_{2}[e_{1}arrow e_{1}’]$

($e_{2’}$ is always an expression by (1)). Then, for any derivation tree tr for e_{2} , there
exists a derivation tre$etr’$ for $e_{2’}$ such that tr and $tr’$ have the same structure
$\dagger outside$ of “ the subtrees for e_{1} and $e_{1}’$. That is, tr and $tr’$ have the same
structure when pruning all the nodes other than the roots in the subtrees for e_{1}

and $e_{1}’$, and all the edges in them. Similar condition holds also for any e_{3}

containing e_{1}

’ as a subexpression.
To define the relation 0 on E_{G} more precisely, we first define the relation,

denoted by
$G\propto$

($or\propto$, if no ambiguity), on the powerset of the set of non-terminal

symbols of G as follows.
[Definition 3.2] For a cfg $G=(V_{N}, V_{T}, P)$ and subsets N_{1} and $N_{2}ofV_{N}$,

$N_{1}\propto N_{2}$ if and only if
for any derivation tree

$trl;A^{*}\S uBv(A\in V_{N}, B\in N_{1}, u, v\in V_{T^{*}})$,

there exists a derivation tree
$tr2:c_{B^{u}}^{*}Dv(C\in V_{N}, D\in N_{2})$

such that trl and $tr2$ have the same structure.
[Definition 3.3] For a cfg G , define the relations \angle and 0 on E_{G} as follows:
(1) $e\angle e’$ if and only if $N_{G}(e)\propto N_{G}(e’)$.
(2) $e0e’$ if and only if $e\angle e’$ and $e’\angle e$. \blacksquare

The property $R\subseteq 0’’$ is called global syntax compatibility. Obviously, global
syntax compatibility implies local syntax compatibility.
[Lemma 3.4] It is decidable for a given cfg $G=(V_{N}, V_{T}, P)$ and subsets $N_{1},$ N_{2}

of V_{N} whether $N_{1}\propto N_{2}$ holds. \backslash

(Proof) We can decide whether $N_{1}\propto N_{2}$ by a technique similar to the one used
in the proof of Theorem 1 and 3 in [7]. For simplicity, suppose $Lc(A)\neq\phi$ for
each non-terminal symbol A in V_{N} . The decision algorithm stated below can
be extended easily so as to be applied to a cfg which may have a non-terminal A

such that $Lc(A)=\phi$. For a given cfg $G=(V_{N}, V_{T}, P)$ and subsets $N_{1},$ N_{2} of V_{N} ,

execute the next procedure, PROCI. $N_{1}\propto N_{2}$ holds if the output is “YES” and
$N_{1}\propto N_{2}$ does not hold if $NO”$.
[PROCI]

(Input) A cfg $G=(V_{N}, V_{T}, P)$ and subsets $N_{1},$ N_{2} of V_{N}

(Output) ’YES“ or ttNO’t
(Step 1) Construct a cfg $G_{1}=(V_{N}, V_{T}, P_{1})$ from G , where

$P_{1}=(Aarrow\alpha$ I $A,$ $B\in V_{N},$ $A\S^{*}B,$ $Barrow\alpha\in P$ and $Barrow\alpha$ is not a unit

production (i.e., α is not a string consisting of a single non-terminal
symbol)}.

By the definition of $G_{1},$ $E_{G_{1}}=E_{G},$
$d_{1}=G3$

and G_{1} has no unit production.

(Step 2) Construct a cfg $G_{2}=(V_{N2},$ $V_{T},$ $P_{2}J$, where
(1) V_{N2} consists of all the (newly introduced) non-terminal symbols each of
which corresponds (one to one) to a non-empty subset of V_{N} . For each $B\in V_{N2}$,

let $o(B)$ denote the subset of V_{N} corresponding to B .
(2) $Barrow u_{0}B_{1}u_{1}\ldots B_{n}u_{n}\in P_{2}(B, B_{1}, \ldots, B_{n}\in V_{N2}, u_{0}, u_{1}, \cdots, u_{n}\in V_{T^{*}})$,

if and only if
$\sigma(B)$ consists of exactly all the non-terminal symbols $A\in V_{N}$ such that
there exists $A_{i}\in\sigma(B_{i})(l\leq i\leq nJ$ and $Aarrow u_{0}A_{1}u_{1}\ldots A_{n}u_{n}\in P_{1}$.

(Step 3) Construct a cfg $G_{3}=(V_{N3}, V_{T}, P_{3})$ from G_{2} by removing from $G_{2}(1)$

useless non-terminal symbols (i.e., which do not generate any expression), and
(2) productions which have at least one useless non-terminal symbol in left-
hand side or right-hand side. Details are described in [3].

(Step 4) If the following condition holds, output YES(\dagger and otherwise, output
\dagger NO”
(Condition) Let $m=2^{|V_{N3}|}- 1$. Let C_{1} be an arbitrary non-terminal symbol of
G_{3} such that $A_{1}\in o(C_{1})$ for some $A_{1}\in N_{1}$. For any derivation tree

$trl;B_{1}\Rightarrow\alpha C_{1}G^{i_{3}}\beta(B_{1}\in V_{N3}, \alpha, \beta\in(V_{N3}\cup V_{T})^{*}, i\leq m)$,

there exists a derivation tree
$tr2:B_{2_{G^{i_{3}}}^{\Rightarrow}}\alpha C_{2}\beta(B_{2}, C_{2}\in V_{N3})$

which satisfies the following conditions (1) and (2):

(1) $A_{2}\in o(C_{2})$ for some $A_{2}\in N_{2}$,

(2) trl and $tr2$ have the same structure. \blacksquare

[Corollary 3.5] It is decidable for a given cfg G and expressions $e,$ $e’$ in E_{G}

whether e le‘, and hence so is whether $e0e’$.
(Proof) Obvious from lemma 3.4 and the definitions of \angle and 0. \blacksquare

4. ACongruence Relation Generated byAxioms

4.1 The Algebraic Language ASL!*

116

$ASL/*is$ an algebraic description language used for writing programs
andlor their specifications. A pair (G, AX) is called a text in $ASL/*$, where G is
a cfg without a start symbol and AX is a finite set of axioms defined below. A
text $t=(G, AX)$ specifies (a) a set of expressions together with a syntactic
relation by G , and (b) a set of equations (and, in turn, a congruence relation) by
AX as follows:
(a) A text $t=(G, \mathfrak{X})$ in $ASL/*specifiesE_{G}$ as a set of expressions and δ as a

syntax relation on E_{G} (see 3.1).

(b) Let V_{var} be a set of variables such that $V_{var}\cap(V_{N}\cup V_{T})=\phi$. For each
variable x in V_{var} , a non-terminal symbol in V_{N} , denoted by M_{x} , is associated
with x . M_{x} is called the type of x . Let

$G(V_{var})=(V_{N},$ $V_{T}\cup V_{var},$ $P\cup(M_{x}arrow x|x\in V_{var}J)$.
An expression in $E_{G(V_{var})}$ is called an expression with variables (with respect

to V_{var}).

Let $(x_{1}/u_{1}, x_{2}/u_{2}, \ldots, x_{n}/u_{n})$ denote the substitution which substitutes
strings $u_{1},$ $u_{2},$

$\ldots,$ u_{n} for variables $x_{1},$ $x_{2},$ x_{n} , respectively. For a string u

and a substitution θ, let $u\theta$ denote the string obtained from u by the substitution
θ .

An axiom in $ASL/*consists$ of
(1) variables $x_{1},$ $x_{2},$ x_{n} and their types $M_{x_{1}},$ $M_{x_{2}},$ $M_{x_{n}}$,

and
(2) a pair (l, r) of expressions with variables (w.r. t . $(x_{1}, x_{2}, x_{n}J)$.
An axiom is sometimes written as

$x_{1}:M_{x_{1}},$ $x_{2}:M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$.
Lett $=(G, AX)beatextinASL/*$. Let ax be an axiom in AX which is

$x_{1}:M_{x_{1’}}x_{2}:M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$.
Define $Q_{t}(ax)$ as

$Q_{t}(ax)=((l\theta, r\theta)|\theta=(x_{1}/e_{1},$ $x_{2}/e_{2},$
$\ldots,$

x_{n}/ed is a substitution satisfying
$e_{i}\in L_{G}(M_{x}J^{(1}\leq i\leq n)J$,

and let
$Q_{t}=uQ_{t}(ax)ax\in \mathfrak{X}$

Q_{t} is called the set of equations specified by the text t . The congruence relation
\overline{Q}_{t} generated by Q_{t} (see 2.2) is called the congruence relation specified by t and
denoted by $\equiv\tau$. If $e\equiv te’$ holds for expressions e and $e’$ in E_{G} , then we say that e

is congruent with $e’$ in t .

4.2 A Sufficient Condition for a Text to Satisp Operational Completeness

13

117

Let $t=(G, AX)$ be atext in $ASL/*$. Since t specifies Q_{t} as aset of equations

and $\equiv t(=\overline{Q}_{t})$ as a congruence relation, operational completeness means $\equiv t=$

$(_{Q_{t}^{arrow}})\#$. By lemma $2.2,$ $\equiv t=(_{Q_{t}^{arrow}})\#$ holds if E_{G} satisfies syntactic transitivity, and

E_{G} and Q_{t} satisfy local syntax compatibility $|\dagger Q_{t}\subseteq\approx^{ft}$ However, the latter is
undecidable in general.
[Lemma 4.1] It is undecidable for a given text $t=(G, AX)$ in $ASL/*whetherE_{G}$

and Q_{t} satisfy local syntax compatibility \uparrow }
$Q_{t}\subseteq=^{\dagger}$ ‘.

($Proof\gamma$ For a given cfg G and expressions $e,$ $e’$ in E_{G} , construct a text $t=(G$,

$AX)$, where AX consists of only one axiom $e==e’$, which contains no variables.
Since $Q_{t}=((e, e’)J$ by the definition of $t,$ $Q_{t}\subseteq\approx if$ and only if $e\approx e’$, which is
undecidable by lemma 3.1. \blacksquare

In the following, a sufficient condition is given for a text t in $ASL/*to$

satisfy operational completeness $\equiv t=(arrow)Q_{t}\#$ with the help of lemma 2.2.

Hereafter, for a text $t=(G, AX),$ G is assumed to have unambiguous structure,
which we believe is a reasonable assumption for the following reasons:
(1) If G has unambiguous structure, then E_{G} satisfies syntactic transitivity
(lemma 3.3).

(2) As mentioned in 3.3, global syntax compatibility $R\subseteq 0$
’ implies local

syntax compatibility $\uparrow R\subseteq=’’$. As shown in lemma 4.2, it is decidable for a text t

$=(G, \mathfrak{X})$ to satisfy global syntax compatibility $|Q_{t}\subseteq 0^{tt}$ under the assumption
that G has unambiguous structure.
(3) Even if the class of $cfg^{t}s$ used for specifying the syntax of expressions is
restricted to the class of cfg’s with unambiguous structure, we can write
specifications (texts) in a natural way which deal with error handling (see

example 4.1 at the end of this section, where the ‘popping’ operation on the
empty stack are considered), or sort inclusion (such as integer and real). For
example, the syntax of reals (including integers) cai Je specified by a cfg with
unambiguous structure as follows:

real $arrow real+real$ real $arrow 0.1$

real $arrow int$

int $arrow int+int$ int $arrow 0$

:
On the other hand, if the class of cfg’s is restricted to a smaller class than the
class of cfg’s with unambiguous structure, e.g., to the class of unambiguous
$cfg^{t}s$, then the grammar for specifying the syntax of expressions in such a text
as the example above becomes complicated.

14

118

[Lemma 4.2] Let $t=(G, AX)$ be a text in $ASL/*$, where G has unambiguous
structure. It is decidable whether t satisfies global syntax compatibility $Q_{t}\subseteq$

$0”$

(Proof) Let $G=(V_{N}, V_{T}, P)$. By the definition of Q_{t} , global syntax compatibility
is logically equivalent to

(a) for each ax in AX, $eQ_{t}(ax)e’$ implies $e0e’$.
Let AX^{-1} be the set of the axioms in AX, left-hand sides and right-hand sides
interchanged. Then, (a) in turn is equivalent to

(b) for each ax in $AX\cup AX^{-1}$, (b1) $eQ_{t}(ax)e’$ implies $e\angle e’$.
Since AX is finite, it is enough to show that it is decidable for a given axiom ax

whether $eQ_{t}(ax)e’$ implies $e\angle e’$. Let ax be an axiom in AX which is
$x_{1}:M_{x_{1}},$ $x_{2}:M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$.

Then the condition (b1) holds if and only if
(c) for any substitution $\theta=(x_{1}/e_{1},$ $x_{2}/e_{2},$

$\ldots,$
$x_{n}/e,J$ satisfying $e_{i}\in L_{G}(M_{xJ}$

$(l\leq i\leq n),$ $N_{G}(l\theta)$ & $N_{G}(r\theta)$.
Let

$\Sigma=((N_{G}(l\theta), N_{G}(r\theta))|\theta=(x_{1}/e_{1}, x_{2}/e_{2}, \ldots, x_{n}/e_{n})$ is an arbitrary
substitution satisfying $e_{i}\in L_{G}(M_{xJ}(l\leq i\leq n))$.

Then, the condition (c) can be paraphrased as
$(c’)$ for each pair (S_{1}, S_{2}) in $\Sigma S_{1_{G}}\propto S_{2}$.

Although the number of substitutions $\theta^{(}s$ in (c) is infinite in general, Σ is finite
since it is a set of subsets of $V_{N}\cross V_{N}$. Σ is effectively obtained as follows.

For each variable $x_{i}(l\leq i\leq n)$, let
$\overline{N}_{x_{i}}=(N_{G}(e_{i})|e_{i}\in L_{G}(M_{xJ1}$

and for the left-hand side l of ax and sets of non-terminal symbols $N_{1},$ $N_{2},$
\ldots ,

N_{n} satisfying $N_{i}\in\overline{N}_{x_{i}}(l\leq i\leq n)$, let

Nil, $N_{1},$ N_{2} , ..., N_{n}] $=(A|$ there exists \overline{l} such that $A\S^{*}\overline{l}$, where \overline{l} is

obtained from l by replacing each variable x_{i} with N_{i} (distinct

occurrences of the same variable Xj may be replaced with distinct non-
terminal symbols in N_{i})}

and define $N[r, N_{1}, N_{2}, N_{n}]$ for the right-hand side r in the same way.
Since G has unambiguous structure, Σ coincides with

$((N[l, N_{1}, N_{2}, \ldots, N_{n}], N[r, N_{1}, N_{2}, \ldots, N_{n}])|N_{i}\in\overline{N}_{x_{i}}(l\leq i\leq n)j$.
Let G_{2} be a cfg obtained by executing Steps 1 and 2 of PROCI in lemma

3.4 with G as input. Let
$\overline{N}_{x_{i}}’=(o(B)|M_{x_{i}}\in o(B)$ and $L_{G_{2}}(B)\neq\phi$]

119

for each $i(l\leq i\leq n)$, then $\overline{N}_{x_{i}}=\overline{N}_{x_{i}}’$ holds for each $i(1\leq i\leq n)$ since G has
unambiguous structure. Hence Σ can be effectively obtained. To summarize
above arguments, we can decide whether $Q_{t}\subseteq 0$ as follows: Execute the
following procedure PROC2 with a given text $t=(G, AX)$ as input. If the
answer is $YES|$ ’ then $Q_{t}\subseteq 0$, and otherwise, $Q_{t}\subseteq 0$ does not hold.
[PROC2]

(Input) A text $t=(G, \mathfrak{X})$ in $ASL/*$

(Output) ’YES’t or $|NO’$

(Step 1) Execute Steps 1 and 2 of PROCI in the proof of lemma 3.4 with G as
input. Let G_{2} be a cfg constructed in Step 2 of PROCI.
(Step 2) For each axiom ax in $AX\cup AX^{- 1}$, execute Steps 3 and 4 below. If the
answer is always $tYES|$ then output “YES”, and otherwise , output “NO”.
(Step 3) Let a given axiom be

$x_{1}:M_{x_{1}},$ $x_{2};M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$.

Compute $\overline{N}_{x_{i}}$ for each $i(l\leq i\leq n)$, where

$\overline{N}_{Xj}=(o(B)$ I $M_{x_{i}}\in o(B)$ and $L_{G_{2}}(B)\neq\phi j$.
(Step 4) For each $N_{i}\in\overline{N}_{x_{i}}(l\leq i\leq n)$, determine whether

$N[l,$ $N_{1},$ $N_{2},$
$\ldots,$ $N_{?}1_{G}\propto N[r, N_{1}, N_{2}, \ldots, N_{\eta}]$

$(^{*})$

which is decidable by lemma 3.4. If $(^{*})$ holds for every pair $N_{1},$ $N_{2},$ N_{n} , then
output $\dagger\prime YES^{t}$, and otherwise, output $(\dagger NO||$ \blacksquare

Now, the main theorem can be derived as a corollary of lemma 2.2,
lemma 3.3 and lemma 4.2.
[Theorem 4.3] Let $t=(G_{f}\mathfrak{X})$ be a text in $ASL/*$, where G has unambiguous
structure. It is decidable whether t satisfies global syntax compatibility $Q_{t}\subseteq 0$

which implies operational $com_{P-\gamma}1eteness--=(_{Q_{t}^{arrow}})\#$. \blacksquare

[Example 4.1] Figure 1 is a text $t=(G, AX)$ in $ASL/*e\backslash f$hich defines a data type,
stack of non-negative integers, such as:

Popping the empty stack results in the error state (denoted by
ERRSTACK) and no operation is defined on ERRSTACK. If one tries to
know the top of the empty stack, the distinguished value, ERRINT, is
returned.

Lines (1) to (14) define the productions of G . The synbols appearing in the left-
hand side of some production are non-terminal symbols, and the other symbols
appearing in the right-hand sides of the productions are terminal symbols.
Lines (17) to (22) define the axioms in AX. Line (15) and (16) defines that the
type of variables s and i are stack and int, respectively.

16

120

(1) stack $arrow NEW_{-}STACK$

(2) stack $arrow PUSH$($stack$, int)

(3) stack&err $arrow stack$

(4) stack&err $arrow ERRSTACK$

(5) stack&err \rightarrow PUSH(stack&err, int)

(6) stack&err \rightarrow POP(stack&err)

(7) int $arrow 0$

(8) int $arrow SUCC(int)$

(9) int&err $arrow int$

(10) int&err $arrow ERRINT$

(11) int&err \rightarrow TOP(stack&err)

(12) bool $arrow TRUE$

(13) bool $arrow FALSE$

(14) bool \rightarrow ISNEW(stack&err)

(15) stack s

(16) int i

(17) ISNEW(NEW STACK) $==TRUE$

(18) ISNEW$(PUSH(s, i))$ $==FALSE$

(19) TOP(NEW-STACK) $==ERRINT$

(20) TOP$(PUSH(s, i))$ $==i$

(21) POP(NEW-STACK) $==ERRSTACK$

(22) POP$(PUSH(s, i))$ $==s$

Figure 1 ASpecification ofStack with $Er\infty r$ State

121

Non-terminal symbol int generates all the non-negative integers ;
$L_{G}(int)=(SUCC^{n}(0)|n\geq 0]$. Let $n(n\geq 0)$ denote SUCC (O) for notational
simplicity. int&err generates all the non-negative integers together with the
distinguished value ERRINT, $i.e.,$ L_{G} (int&err) $=L_{G}(int)\cup$ (ERRINT).

Similarly, stack generates all the expressions each of which denote s a legal
states of the stack and $L_{G}(stack\ err)=L_{G}(stack)\cup[ERRSTACKJ$.

Operations ISNEW, POP, and TOP are defined only on the expressions
in $L_{G}(stack)$. For example,

TOP(PUSH(NEW STACK, 3))

is congruent with 3 by the axiom (20) while
TOP(PUSH(POP(NEW STACK), 3)) $(^{*})$

is not congruent with any $n(n\geq 0)$. That is, the value of $(^{*})$ is not defined,
which means that no operation is defined once the stack goes into error state.

Let us execute PROC2 with the text shown in Figure 1 as input. By
executing Steps 1 to 3, we know

$\overline{N}_{s}=((stack$, stach&errJJ
$\overline{N}_{i}=((int$, int&errJJ

If we execute Step 4 for the axiom (18), only the pair $S_{1}=(boolJ$ and $S_{2}=(boolJ$ is
obtained and both $S_{1}\propto S_{2}$ and $S_{2}\propto S_{1}$ hold obviously. Similar arguments hold
for (17), (19) and (21). For (20), the pair $S_{1}=(int\ errJ$ and $S_{2}=$ (int, int&err) is
obtained and $S_{1}\propto S_{2}$ holds while $S_{2}\propto S_{1}$ does not hold. The reason why the
latter does not hold is that PUSH can take as its second argument only
expressions in $L_{G}(int)$ (and so is the first argument of SUCC). For example, if
in the expression PUSH(NEW-STACK, 3), the subexpression 3 is replaced with
the congruent expression TOP(PUSH(NEW-STACK, 3)), the resulting string

PUSH(NEW STACK, TOP(PUSH(NEW STACK, 3)))

is not an expression. The reason is that 3 is in L_{G} (int) while
TOP(PUSH(NE $W_{-}S$TA CK, 3)) is not. For (22), we obtain the pair $S_{1}=$

(stack&err) and $S_{2}=$ ($stach$, stach&err) and in this case both $S_{1}\propto S_{2}$ and $S_{2}\propto S_{1}$

hold. The reason why the latter holds is that every operation which can take
an expression in $L_{G}(stack)$ as its argument can also take an expression in
$L_{G}(stach\ err)$ as its argument. \blacksquare

The text in Figure 1 does not satisfy global syntax compatibility since
(int, int&err) $G\propto$

(int&err) does not hold. For a text $t=(G, AX)$ which does not

satisfy global syntax compatibility, by adding certain productions to the set of
productions of $G,$ t may be transformed into a text $t’=(G’, AX)$ such that
$(\# 1)t’$ satisfies global syntax compatibility, and
$(\# 2)$ for any expressions e and $e’$ in $E_{G,e}\equiv te’$ if and only if $e\equiv t’e’$.

122

Let $t’=(G’, AX)$, where \mathfrak{X} is the same as in Figure 1 and $G’$ is obtained from
G by adding the following productions to the set of productions of G :

stack $arrow PUSH$($stack$, int&err)
stack&err \rightarrow PUSH(stack&err, int&err)
int&err \rightarrow SUCC(int&err)

Then, (int, int&err]
$G\propto$

(int&err) holds, and the conditions $(\# 1)$ and $(\# 2)$ are

satisfied although E_{G} is properly contained in $E_{G’}$, e.g., PUSH(NEW-STACK,

ERRINT) is in $E_{G’}$ while E_{G} does not contain it.
In general, if a text $t=(G, AX)$ is transformed into a text $t’=(G’, AX)$ by

adding certain productions, $E_{G}\subseteq E_{G’}$ and $3\subseteq\partial$ always hold but $E_{G’}\subseteq E_{G}$ and
G $G’$

$8,$ $\subseteq G3$
are not always true. It is under study to investigate a transformation

from a given text into a text which satisfies the conditions $(\# 1)$ and $(\# 2)$ above.

5. Conclusion

In this paper, a congruence relation is extended on a set of expressions
generated by a cfg so that the semantics of specifications or programs which
deal with error handling andlor sort inclusion can be defined in a simple
algebraic framework. Next, a sufficient condition is shown under which the
operational semantics of the congruence relation generated by a set of axioms
can be defined simply in the sense that operational completeness holds.
Although only unconditional axioms are considered in this paper, conditional
axioms can also be used in $ASL/*$. A conditional axiom has a form such as

$x_{1}.\cdot M_{x_{1}},$ $x_{2}.\cdot M_{x_{2}},$
$\ldots,$ $x_{n};M_{x_{n}},$ $l_{1}==r_{1},$ $l_{2}==r_{2},$

$\ldots,$ $l_{m}==r_{m}==>l==r$

which means \dagger ’if $l_{1},$ $l_{2},$
\ldots , and l_{m} are congruent with $r_{l},$ r_{2} , ...,and r_{m} ,

respectively, then l must be congruent with r .“ The congruence relation
generated by a text which contains conditional axioms can be defined as simply
as in the unconditional case [6]. Intuitively, the operational semantics of the

above axiom is that, if $r_{1},$ $r_{2},$ \ldots , and r_{m} are obtained by rewriting from $l_{1},$ $l_{2},$
\ldots ,

and l_{m} , respectively, then l can be rewritten as r . It is an open problem to find
a sufficient condition under which the operational semantics of the
congruence relation generated by a text which contains conditional axioms can
be defined simply.

Acknowledgments The authors would like to thank Associate Professor
Yuji SUGIYAMA of Department of Information and Computer Sciences,
Osaka University, for his fruitful discussions.

19

123

References

[1] J. A. Goguen, J. W. Thatcher and E. G. Wagner: ‘An Initial Algebra
Approach to the Specification, Correctness and Implementation of Abstract
Data Types”, IBM Research Report, RC 6487 (1976), also in R. Yeh (ed.):

’Current Trends in Programming Methodology IV: Data Structuring’,
Prentice Hall, pp.80-144 (1978).

[2] J. A. Goguen: ’Abstract Errors for Abstract Data Types”, Proc. of IFIP
Working Conf. on Formal Description of Programming Concepts, pp.21.1-
21.32 (1977).

[3] J. E. Hopcroft and J. D. Ullman: ”Introduction to Automata Theory,
Languages and Computation”, Addison-Wesley (1979).

[4] G. Huet and D. C. Oppen: ”Equations and Rewrite Rules: A Survey”, in R.
V. Book (ed.): ’Formal Language Theory: Perspectives and Open Problems‘,
pp.349-393, Academic Press (1980).

[5] K. Inoue, H. Seki, K. Taniguchi and T. Kasami: ”Compiling and
optimizing Methods for the Functional Language $ASL/F”$, Science of
Computer Programming, Vol.7, No.3, pp.297-312 (1986).

[6] T. Kasami, K. Taniguchi, Y. Sugiyama and H. Seki: “Principles of
Algebraic Language $ASL/*”$, Trans. IECE Japan, Vol.J69-D, No.7, pp.1066-
1074 (July 1986) (in Japanese).

[7] R. McNaughton: ”Parenthesis Grammars”, J. ACM, Vol.14, No.3, 490-500
(July 1967).

[8] H. Seki, K. Inoue, Y. Sugiyama, K. Taniguchi and T. Kasami: “Design
Principles of Algebraic Specification Language $ASL/*”$, Paper of Technical
Group, IECE Japan, AL84-55 (Jan. 1985) (in Japanese).

20

