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Abstract An algebraic specification (or text) specifies a congruence relation
on a set of expressions. In algebraic language $ASL/*$ , a pair $(G, AX)$ is called a
text, where $G$ is a context-free grammar and $AX$ is a set of axioms. A text
$t=(G, AX)$ specifies the set $E_{G}$ of expressions generated by $G$ and the least
congruence relation on $E_{G}$ satisfying all the axioms in $AX$ , where
‘congruency’ is defined based on the syntax (phrase structure) of the
expressions. In general, for a text $t$ in $ASL/*$ , the condition, (A) $e$ is congruent
with $e’$ in $t$ , is not logically equivalent to the condition, (B) $e’$ is obtained from $e$

by rewriting $e$ when the axioms in $t$ are regarded as ‘bidirectional‘ rewrite
rules. We present a sufficient condition for a text $t$ under which (A) and (B) are
equivalent for any pair of expressions $e$ and $e’$ , which means that the
congruence relation specified by $t$ is simply defined operationally.

L Introduction

In a stepwise refinement process of a software development activity, it is
desirable that the semantics of programs and their specifications should be
defined formally. Algebraic semantics is one of the most promising methods to
define the semantics of programs and specifications, and has the following
advantages [1]:
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(1) Since the semantics of both of the programs and their specifications (called

texts, in this paper) are defined simply and clearly by using congruence
relation, the correctness of a text can be verified relatively easily.
(2) A text can be written at an arbitrary level of abstraction; a text
corresponding to a specification written in a natural language can be refined
stepwise to obtain an efficient program satisfying the given specification in the
single semantical framework. Especially, a class of functional programs can
be regarded asaspecial subclass of texts[5].

On the other hand, it has been pointed out from the practical point of
view that several problems arise when defining a fairly large specification in
algebraic methods. They are summarized as follows:
(a) The syntax of the terms (or expressions in this paper) is usually restricted
to so called prefix notation such as $p(g(c_{1}, c_{2}),$ $c_{3}$), and it is not allowed for the
writers to define arbitrary syntax, such as infix notation, at their own
discretion.
(b) Different data types (or sorts) cannot share common syntax. Hence, if there
is an inclusion relation among sorts (or data types, e.g., integer and real), (1)

the definition of each operation on each type must be given separately even if
they are homomorphic (e.g., the addition $+^{t}$ on integer and $tt+$ on real), and,
(2) the type transformation must be specified explicitly $(^{1}1^{t}$ on integer vs. $\dagger 1.0’$

on real).

(c) When error handling $and/or$ exception handling are considered (e.g.,

popping the empty stack results in the error state and no operation is defined
on that error state), the text tends to be complicated [1].

In order to resolve these problems, several extensions of algebraic
semantics such as error algebra[2] have been proposed. However, the
semantics can no longer be defined simply in these approaches.

In $ASL/*$ , the syntax of expressions can be de’ ed by using context-free
grammar (abbreviated as $cf\dot{g}$ ). An inclusion relation among sorts can be
represented by an inclusion relation among the sets of expressions which are
derived from specific non-terminal symbols corresponding to the sort names.
Error handling can be also simply specified as follows: First, let $G$ be a cfg
which has two specific non-terminal symbols; (a) a non-terminal symbol from
which all the states including both legal and error states are derived, and, (b) a
non-terminal symbol, say state, from which only the legal states are derived.
Then, a ‘strict’ operation should be defined only on the expressions derived
from the non-terminal symbol state. Details of sort inclusion and error
handling are described in $[6, 8]$ .



106

Since the set of expressions is defined by a cfg in $ASL/*$ , the concept
‘congruency’ must be generalized so that a congruence relation can be defined
on a context-free language $(cfl)$ . Remember that a binary relation $R$ is called a
congruence relation if (1) $R$ is an equality relation, i.e., $R$ is reflexive,
symmetric and transitive, and (2) $R$ is closed under each operation, i.e., for
each (n-ary) operation $f$, whenever $e_{1}Re_{1}’,$ $e_{2}Re_{2’},$

$\ldots,$
$e_{n}Re_{n}$

‘ hold then $f(e_{1}$ ,
$e_{2}$ , ..., $e_{n}$) $Rf(e_{1}’,e_{2}’, ..., e_{n}’)$ also holds. In $ASL/*$ , for each expression $e$ ,

several substrings of $e$ are specified as subexpressions, which are considered
to be arguments of the operation represented by $e$ . A congruence relation is
defined to be an equality relation which is closed under replacement of
subexpression.

In $ASL/*$ , a pair $(G, AX)$ is called a text, where $G$ is a cfg without a start
symbol, and $\mathfrak{X}$ is a finite set of axioms. A text $t=(G, AX)$ specifies the least
congruence relation on $E_{G}$ which satisfies all the axioms in $AX$, where $E_{G}$ is
the set of all the expressions derived from some non-terminal symbol in $G$ . A
string in $E_{G}$ is called an expression. More formally, for an axiom $l==r$ in $AX$,
let $Q_{t}(axJ$ denote $((l\theta, r\theta)|l\theta$ (or $r\theta$) is an arbitrary expression obtained from $l$

(or r) by substituting an expression for each variable in $l$ (or $r$ )} and $Q_{t}$ denote

$ax^{\bigcup_{\in}Q_{t}(ax)}\mathfrak{X}$ The congruence relation $\overline{Q}_{t}$ specified by the text $t$ is defined to

be the least congruence relation on $E_{G}$ containing $Q_{t}$ . For expressions $e$ and $e’$ ,

if $e\overline{Q}_{t}e’$ holds then $e$ is said to be congruent with $e’$ (in $t$).

In the case that the syntax of expressions is restricted to the prefix
notation, the close relation between algebraic axioms and rewriting systems is
well-known [4], i.e., the following property holds in our terminology.
[Operational Completeness (text version)] For a given text $t=(G, \mathfrak{X}),$ $e$ is
congruent with $e’$ if and only if $e’$ is obtained from $e$ by rewriting $e$ finitely
many times when $Q_{t}$ is regarded as a set of’bidirectional’ rewrite rules. $\blacksquare$

Unfortunately, in $ASL/*$ , operational completeness does not hold in
general. In this paper, a sufficient condition for a given text $t$ in $ASL/*is$

presented under which operational completeness stated above holds so that the
semantics of the congruence relation specified by $t$ is simply defined
operationally.

In section 2, for a set $E$ of expressions and a relation $R$ on $E(R$ is called a

set of equations), the congruence relation $\overline{R}$ on $E$ generated by $R$ is defined in

an abstract way; $\overline{R}$ is defined independently of the mechanisms which specify
the set $E$ of expressions and the set $R$ of equations. Then, we give a sufficient
condition for a set $E$ of expressions and a set $R$ of equations to satisfy
operational completeness:
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[Operational Completeness (abstract version)] For any expressions $e$ and $e’$ in

$E,$ $e\overline{R}e’$ holds if and only if $e’$ is obtained from $e$ by rewriting $e$ finitely many
times when $R$ is regarded as a set of rewrite rules. $\blacksquare$

For a relation $R$ , let R-l be the inverse of $R$ , i.e., $eR^{- l}e’$ if and only if $e’R$

$e$ . The sufficient condition for $E$ and $R$ is as follows.
[A Sufficient Condition for Operational Completeness (abstract version)]

(1) $E$ satisfes the following syntactic transitivity.
[Syntactic Transitivity] For any expressions $e_{1},$ $e_{2}$ and $e_{3}$ in $E$ , if $e_{1}$ is a
subexpression of $e_{2}$ and $e_{2}$ is a subexpression of $e_{3}$ , then $e_{1}$ is also a
subexpression of $e_{3}$ .
(2) $E$ and $R$ satisfy the following local syntax compatibility.
[Local Syntax Compatibility] For any pair $(e_{1}, e_{1}’)$ in $R\cup R^{-1}$ and any
expression $e_{2}$ in $E$ containing $e_{1}$ as a subexpression, let $e_{2}’$ be the string
obtained from $e_{2}$ by replacing $e_{1}$ with $e_{1}’$ . Then $e_{2}’$ is also an expression in $E$

and $e_{1}’$ is also a subexpression of $e_{2}’$ . $\blacksquare$

In sections 3 and 4, for a text $t=(G, AX)$ , we formally define the set of
expressions $E_{G}$ and the set $Q_{t}$ of equations. Next, we assume that a cfg $G$

satisfies a sufficient condition (having unambiguous structure, see 3.2) for $G$ to
satisfy syntactic transitivity. Then we give a decidable sufficient condition
(called global syntax compatibility, see 3.3) for $E_{G}$ and $Q_{t}$ to satisfy local syntax
compatibility. To summarize, for a given text $t=(G, AX)$ , if (1) $G$ has
unambiguous structure and (2) $Q_{t}$ satisfies global syntax compatibility (which

is decidable under the assumption that (1) holds) then operational
completeness (text version) holds.

2. A Congruence Relation on a&t ofExpressions

2.1 Expressions and Subexpressions

LetVbeafinite set of symbols. $LetV^{*}$ denote the set of all the strings on
$V$ and let $V^{+}=V-(\epsilon$ ], where $\epsilon$ is the empty string. The length of a string $u$ is
denoted by I $u|$ . For strings $u$ and $w$ , if $w=v_{1}uv_{2}$ for some $v_{1}$ and $v_{2}$ then $u$ is
called a substring of $w$ at occurrence $|v_{1}$ , or simply, a substring of $w$ . For
strings $w,$ $u’$ and a substring $u$ of $w$ , let $w[uarrow u’, i]$ denote the string obtained
from $w$ by replacing $u$ with $u’$ , i.e.,

$w[uarrow u’, i]=v_{1}u’v_{2}$

where $i=|v_{1}|$ . If there is no ambiguity, $w[uarrow u’, i]$ may be abbreviated as
$w[uarrow u’]$ by omitting the occurrence $i$ .
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Let $E$ be a subset of $V^{*}$ . A string in $E$ is called an expression (in $E$), and
$E$ is called a set of expressions (on $V$). Let $Z$ denote the set of all the non-
negative integers. Let 9 be a 3-ary relation on $E\cross E\cross Z$ (If $(e_{1}, e_{2}, i)$ satisfies 3,

then we write $e_{1}9e_{2}$ at i) which satisfies (1) $e_{1}$ is a substring of $e_{2}$ at $i$ whenever
$e_{2}9e_{1}$ at $i$ , and (2) $e9e$ at $0$ holds for any expression $e$ . $e_{1}$ is called a
subexpression of $e_{2}$ at occurrence $i$ , or simply, a subexpression of $e_{2}$ if and only
if $e_{2}3e_{1}$ at $i$ . $e23e1$ at $i$ is abbreviated as $e23e1$ if there is no ambiguity. We also
say $e_{2}$ contains $e_{1}$ as a subexpression if $e_{2}3e_{1}$ . The relation 9 is called the
syntax relation on $E$ . We assume that, when a set $E$ of expressions is
introduced, a syntax relation on $E$ is also introduced (either explicitly or
implicitly). Section 3 describes how a set of expressions and a syntax relation
on it are specified.

2.2 $Deffi_{1}itionofaCongruenoeBelation$

Let $E$ be a set of expressions. A subset $R$ of $E\cross E$ is called a binary
relation on $E$ and we write $eRe’$ when $(e, e’)\in R$ . A binary relation $C$ on $E$ is
said to be a congruence relation on $E$ if the following conditions (1) and (2) are
satisfied.
(1) $C$ is an equality relation. i.e., $C$ is reflexive, symmetric and transitive
relation.
(2) [Congruency] For expressions $e_{1},$ $e_{1}’$ and $e_{2}$ in $E$ such that $e_{1}Ce_{1}’$ and $e_{23}$

$e_{1}$ ,
if $e_{2}[e_{1}arrow e_{1}’]$ , denoted $e_{2}’$, is in $E$ and $e_{2}’\partial e_{1}’$ holds, then $e_{2}Ce_{2}’$ also
holds. $\blacksquare$

Suppose that $e23e1$ i.e., $e_{1}$ is a subexpression of $e_{2}$ , and let $e_{2}’=e_{2}[e_{1}arrow$

$e_{1}’]$ (the string obtained from $e_{2}$ by replacing $e_{1}$ with $e_{1}’$ ). It does not
necessarily follow that $e_{2}’$ is an expression in $E$ . Furthermore $e_{1}’$ is not always
a subexpression of $e_{2’}$ even if $e_{2}’\in E$ . Congruency means that for expressions
$e_{1}$ and $e_{1}$

’ which are already known to be ‘congruent with each other‘, and an
expression $e_{2}$ which contains $e_{1}$ as a subexpression, $e_{2}$ and $e_{2}’=e_{2}[e_{1}arrow e_{1}’]$

must also be congruent if $e_{2’}$ is an expression in $E$ and $e_{l}$

’ is a subexpression of
$e_{2}’$ .

Let $R$ be a binary relation on E. $R$ is sometimes called a set of equations.

The congruence relation on $E$ generated by $R$ (denoted by $\overline{R}$ ) is defined to be the

least congruence relation on $E$ containing $R$ . For any set $R$ of equations, $\overline{R}$

always exists and is uniquely determined [61.

2.3 Operational Semantics ofa Congruence Relation
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In this subsection, for any set $R$ of equations, the congruence relation $\overline{R}$

generated by $R$ is characterized operationally. For a relation $R$ , let $R\#$ be the
reflexive-transitive closure of $R\cup R^{-1}$ .
[Definition 2.1] For a set $E$ of expressions and a relation $R$ on $E$ , define the
relations $R_{0},$ $R_{1},$

$\ldots,$

$R_{\infty}$ as follows.
(1) $R_{0}=R$

(2) For each $i(i\geq l),$ $e_{2}R_{i}e_{2’}$ if and only if
there exist expressions $e_{1}$ and $e_{1}’$ in $E$ such that $e_{1}R_{i- 1}\#_{e_{1}’},$ $e_{2}9e_{1},$ $e_{2’}=$

$e_{2}[e_{1}arrow e_{1}\prime 1$ is in $E$ and $e_{2^{J}}\partial e_{1}’$ .
(3) $eR_{\infty}e’$ if and only if $eR_{ie’}$ for some $i(i\geq l)$ . $\blacksquare$

Intuitively, $eR_{1}e’$ means that, when pairs of expressions in the
reflexive-transitive closure of $R\cup R- 1$ are regarded as rewrite rules, $e’$ is
obtained from $e$ by one step rewriting. Similarly, $eR_{i}e’$ means that, when
pairs of expressions in $R_{i- 1}\#$ are regarded as rewrite rules, $e’$ is obtained from
$e$ by one step rewriting, and $eR_{\infty}e’$ means that $e’$ is obtained from $e$ by one step
rewriting under such rewrite rules.
[Lemma2.1] Fora setE of expressions anda relationR on E, $\overline{R}=R_{\infty}^{\#}=R_{\infty}$. $\blacksquare$

Let us define the relation $P$ as follows:

$e_{2}$ rr $e_{2’}$

if and only if
there exist expressions $e_{1}$ and $e_{1}’$ in $E$ such that $e_{1}Re_{1}’,$ $e_{2}9e_{1},$ $e_{2’}$

$=e_{2}[e_{1}arrow e_{1}’1$ is in $E$ and $e_{2’}3e_{1}’$ .
The difference between $P$ and $R_{i}$ is that only $R$ is used as aset of rewrite rules

in the definition of rr while $R_{i- 1}\#$ (i.e., reflexive-transitive closure of $R_{i- 1}\cup R_{i- 1^{-}}$

$1)$ is used in the definition of $R_{i}$ . It is well-known that, if the syntax of

expressions is restricted to the prefix form such as $f(e_{l}, e_{2}, ..., e_{?})$ , then $\overline{R}=$

$(F)\#$ holds [4], which means that the operational semantics of the congruence

relation $\overline{R}$ can be defined simply. However $R_{\infty}\#$ does not coincide with $(F)\#$ in

general. The reasons are as follows.
(1) Even if $e_{1}$ is a subexpression of $e_{2}$ and $e_{2}$ is a subexpression of $e_{3},$ $e_{1}$ is not
always a subexpression of $e_{3}$ . For example, assume that $e_{2}3e_{1}$ and $e_{3}3e_{2}$ hold
but $e_{3}9e_{1}$ does not hold. Let $e_{2’}=e_{2}[e_{1}arrow e_{1}’]$ and $e_{3}’=e_{3}[e_{2}arrow e_{2}’]$ and assume
that $e_{29e_{1}}’’$ and $e_{3’}9e_{2}’$ . Let $R=((e_{1}, e_{1}’))$ . Then, since $e23e1$ and $e_{29e_{1}}’’$

hold by the assumption, $e_{2}R_{1}e_{2’}$ holds by definition 2.1. Similarly $e_{3}R_{2}e_{3’}$ and
hence $e_{3}R_{\infty}\# e_{3’}$ hold since $e_{3}3e_{2}$ and $e_{3}’9e_{2’}$ . On the other hand, since $e_{1}$ is

6
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not a subexpression of $e_{3},$ $(e_{1}, e_{1}’)$ cannot be applied to $e_{3}$ as a rewrite rule.
Similarly, $(e_{1}’, e_{1})$ cannot be applied to $e_{3}’$ . It follows that $e_{3}(F)\# e_{3}$

’ does not

hold and $R_{\infty}\#$ does not coincide $(F)\#$ .
(2) For expressions $e_{1}$ and $e_{2}$ satisfying $e_{2}\partial e_{1},$ $e_{2}’=e_{2}[e_{1}arrow e_{1}’]_{3}e_{1}$

’ does not
always hold even if $e_{2}’$ is an expression. For example, let $R=((e_{1}, e_{1}’),$ $(e_{1}’$,
$e_{1}’’)]$ . Suppose $e23e1$ and let $e_{2’}=e_{2}[e_{1}arrow e_{1}’]$ and $e_{2}’’=e_{2}[e_{1}arrow e_{1}\prime\prime]$. Suppose
that $e2”9e_{1}’’$ but $e_{I}’$ is not a subexpression of $e_{2}’$ . $e_{2}R_{1}\#_{e_{2’’}}$ and $e_{2}R_{\infty}\# e_{2’’}$ hold
since $e_{2}9e_{1},$ $e_{2’’}\partial e_{1}’’$ and $e_{1}R\# e_{1}’’$ (by the definition $ofR$ ). On the other hand,
$e_{1}’$ is not a subexpression of $e_{2}’$ and so $e_{2’’}$ (or $e_{2}$ ) cannot be obtained from $e_{2}$ (or

$e_{2’’})$ by rewriting under rewrite rules in $R\cup R^{-1}$ . Hence $e_{2}(F)\# e_{2}’’$ does not

hold and $R_{\infty}\#$ does not coincide with $(F)\#$ . $\blacksquare$

Suppose that a set $E$ of expressions satisfies the following condition.
[Syntactic Transitivity] For any expressions $e_{1},$ $e_{2}$ and $e_{3}$ , if $e_{2}\partial e_{1}$ and $e_{3}3e_{2}$ ,
then $e_{3}3e_{1}$ . $\blacksquare$

Then, in the example in (1) above, $e_{3}3e_{1}$ and $e33e1\prime\prime$ hold. Hence $(e_{1}, e_{1}’)\in R$

can be applied to $e_{3}$ as a rewrite rule and $(e_{2}, e_{2}’)\in R_{1}$ is not needed as a
rewrite rule. For (2) above, let us assume that a set $R$ of equations on $E$

satisfies the following condition.
[Local Syntax Compatibility] For any pair $(e_{1}, e_{1}’)$ in $R\cup R^{-1}$ and any
expression $e_{2}$ containing $e_{1}$ as a subexpression, let $e_{2}’=e_{2}[e_{1}arrow e_{1}’]$. Then $e_{2}’$

is also an expression and $e_{2\partial e_{1}}’’$ . $\blacksquare$

Local syntax compatibility ensures that, if $e23e1$ and $(e_{1}, e_{1}’)\in R\cup R- 1$ then $e_{2’}$

$=e_{2}[e_{1}arrow e_{1}’]$ is always an expression and $e_{2}’3e_{1}’$ . Hence in the definition of
$R_{1},$ $R$ is sufficient as a set of rewrite rules ($R\#$ is not needed). Notice that, even
if a set $R$ of equations satisfies local syntax compatibility, it does not necessarily
follow that $R_{1},$ $R_{2},$

$\ldots$ also satisfy it. However, the latter is not required since
$(\cup R_{i})- R$ is not needed as $re$write rules if syntactic transitivity is satisfied. To

$i\geq 1$

summarize the above discussion, a sufficient condition for $\overline{R}=(R)\#$ can be

derived as follows.
[Definition 2.21 For a set $E$ of expressions, define the relations $\sim<$ and $\approx$ as

follows:
(1) $e_{1}<e_{1}’\sim$ if and only if

for any expression $e_{2}$ in $E$ such that $e_{2}3e_{1}$ ,
$e_{2’}=e_{2}[e_{1}arrow e_{1}’]$ is also an expression in $E$ and $e_{2}’\partial e_{1}’$.

(2) $e\approx e’$ if and only if $e<e’\sim$ and $e^{f}<e\sim$ . $\blacksquare$
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[Lemma 2.2] For a set $E$ of expressions and a relation $R$ on $E$ , if the following

conditions (1) and (2) are satisfied, then operational completeness $\overline{R}=(B)\#$

holds.
(1) $E$ satisfies syntactic transitivity.
(2) $R$ satisfies local syntax compatibility $\prime\prime eRe’$ implies $e\approx e’$ ”. $\blacksquare$

3. A Set ofExpressions Generated by a Grammar

3.1 A Set ofExpressions Generated by a Gramunar

This subsection describes how a set of expressions together with a syntax
relation (see 2.1) is defined by a context-free grammar. Let $G=(V_{N}, V_{T}, P)$ be
a context-free grammar (cfg) without a start symbol, where $V_{N},$ $V_{T}(V_{N}\cap V_{T}$

$=\phi,$ $\phi$ denotes the empty set) and $P$ are a finite set of non-terminal symbols, a
finite set of terminal symbols and a finite set of productions, respectively. A
production in $P$ has a form $Aarrow\alpha$, where $A\in V_{N}$ and $\alpha\in(V_{N}\cup V_{T})+$ . Let $V=$

$V_{N}\cup V_{T}$ . We write $\alpha_{B^{\beta}}$ if $\alpha=uAv_{f}\beta=u\gamma!$ and $Aarrow\gamma\in P$ for some $u,$ $v\in V^{*}$ .

Let 2 and $\S^{*}$ denote $(a)^{t}$ and $(\S)^{*}$ , respectively, and $B,$
$3^{i}$ and $\Rightarrow^{*}$ are

$abbreviated\cdot as\Rightarrow,$
$\Rightarrow i$

$and\Rightarrow*$ respectively if there is no ambiguity. For each $A\in$

$V_{N}$ , let

$L_{G}(A)=(e|A^{*}\S e, e\in V_{T^{+}})$

and let
$E_{G}=$ $\cup$ $L_{G}(A)$ .

$A\in V_{N}$

For $e\in E_{G}$ , let
$N_{G}(e)=(A|A\in V_{N}, A^{*}\S e)$ .

A cfg $G$ specifies $E_{G}$ as a set of expressions.
A derivation tree is defined to be a tree $tr$ satisfying the following

conditions (1) to (3). A node with at least one child is called an internal node.
(1) Each node in $tr$ has a symbol in $V$ as the label.
(2) The label of an internal node is a non-terminal symbol in $V_{N}$ , and, for a
tree which consists of a single node $r$ , the label of $r$ is a non-terminal symbol.
(3) If a node $n$ has children $n_{1},$ $n_{2},$

$\ldots,$
$n_{h}$ from left to right, and the labels of $n$ ,

$n_{1},$ $n_{2_{J}}\ldots,$ $n_{k}$ are $X,$ $X_{1},$ $X_{2},$ $X_{k}$ , respectively, then $Xarrow X_{1}X_{2}\ldots X_{k}\in P$ . $\blacksquare$

For a derivation tree $tr,$ $tr$ is called a derivation tree for $\alpha$ , where $\alpha$ is the
string obtained by concatenating the labels of the leaves in $tr$ from left to right.
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If $tr$ is a derivation tree for $\alpha$ and the label of the root of $tr$ is $A$ , then we write $tr$

: $A$ $a^{\alpha}*$ by using the same notation as for derivations. Similarly, if the number

of the internal nodes of a derivation tree $tr$ is $i$ , then $tr$ may be written as tr.A
$i$

$P^{\alpha}$. For a string $\alpha\in E_{G}$ , a substring $\beta$ of $\alpha$ and a derivation tree $tr:$ $A^{*}$
$F\alpha$ for

$\alpha$, if $tr$ contains a derivation tree for $\beta$ as a subtree, then $\beta$ is said to be derived
from a non-terminal symbol in $tr$ .

A cfg $G$ specifies the following relation $G9$ on $E_{G}$ as a syntax relation:

$e2_{G}^{\partial}e1$ if and only if

there $e$xists a derivation tree $tr$ for $e_{2}$ such that $e_{1}$ is derived from a
non-terminal symbol in $tr$ . $\blacksquare$

For a given cfg $G$ , a set of expressions together with a syntax relation
can be specified in a natural way as above by using the phrase structures
defined by $G$ . Unfortunately, however, it is undecidable whether $e=e’$ (see 2.3)

holds in general:
[Lemma 3.1] It is undecidable for a given cfg $G$ and expressions $e$ and $e’$ in $E_{G}$

whether $e=e’$ holds.
(Proof) For a given cfg $G=(V_{N}, V_{T}, P)$ and non-terminal $s$ymbols $A_{1}$ and $A_{2}$ in
$V_{N}$ , we can construct another cfg $G’$ such that $e_{1}\approx e_{2}$ holds for two
di $s$tinguished expressions $e_{1}$ and $e_{2}$ in $E_{G’}$ if and only if $Lc(A_{1})=L_{G(A_{2})}$ ,
which is undecidable. Let $G’=(V_{N’}, V_{T’}, P’)$ , where

$V_{N}’$ $=V_{N}\cup(S, H_{1}, H_{2})(V_{N}\cap(S, H_{1}, H_{2}]=\phi)$,
$V_{T’}$ $=V_{T}\cup(e_{1\prime}e_{2})(V_{T}\cap(e_{1}, e_{2})=\phi)$,
$P’$ $=P\cup(Sarrow H_{1}A_{1},$ $Sarrow H_{2}A_{2},$ $H_{1}arrow e_{1},$ $H_{2}arrow e_{2}J$ .

Then, it is easy to see that
$e_{1}=e_{2}$ if and only if $L_{G(A_{1})}=L_{G}(A_{2})$ . $\blacksquare$

3.2 A cfg with Unambiguous $Sh$ ucture

In general, for a cfg $G$ and an expression $e=ue_{1}v$ , there may be
derivation trees $trl$ and $tr2$ for $e$ such that $e_{1}$ is derived from a non-terminal
symbol in $trl$ while it is not th$e$ case in $tr2$ .
[Definition 3.1] Let $G$ be a cfg $(V_{N}, V_{T}, P)$ , and let $trl$ and $tr2$ be derivation
trees for $\alpha$ and $\beta$ , respectively, where $\alpha,$ $\beta\in WN$ $\cup V_{T})^{*}$ and 1 al $=|\beta|$ . $trl$

and $tr2$ are said to have the same structure if th$e$ following condition holds:
Let $\gamma$ be a substring of $\alpha$ and let $\alpha=\zeta\gamma\eta$ and $\beta=\zeta’\delta\eta’$ where $|\zeta|=$ I $\zeta’|$

and 1 $\eta|=|\eta’|$ . $\gamma$ is derived from a non-terminal symbol in $trl$ if and
only if $\delta$ is derived from a non-terminal symbol in $tr2$ . $\blacksquare$
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For a cfg $G$ , if, for each expression $e$ in $E_{G}$ , all the derivation trees for $e$

have the same structure, then we say that $G$ has unambiguous structure, or $G$

is with unambiguous structure. If $G$ has unambiguous structure and an
expression $e_{1}$ is a sub$e$xpression of an expression $e_{2}$ , then $e_{1}$ is always derived
from a non-terminal symbol in every derivation tree for $e_{2}$ .
[Lemma 3.21 It is undecidable for a given cfg $G$ whether $G$ has unambiguous
structure.
($Proof7$ For a given instance $I$ of $Post^{t}s$ correspondence problem, a cfg $G$ can be
effectively constructed such that $G$ has unambiguous structure if and only if $I$

does not have any solution. $\blacksquare$

[Lemna 3.3] If a cfg $G$ has unambiguous structure then $E_{G}$ satisfies syntactic
transitivity (see 2.3).

(Proof) Obvious by the definition of $\dagger unambiguous$ structure\dagger . $\blacksquare$

$a3$ GlobalSyntaxCompatibility
-ASufficient Condition for Local Syntax Compatibility-

We have already given a sufficient condition for a set $R$ of equations to
satisfy $\overline{R}=(F)\#$ as lemma 2.2. The condition requires that $R$ satisfies local

syntax compatibility $|R\subseteq\approx^{\prime(}$ As will be described in 4.1, a text in $ASL/*$

specifies a set $R$ of equations by a set of axioms. However, it is undecidable for
a given text $t$ in $ASL/*whether$ the set of equations specifi$ed$ by $t$ satisfies local
$s$yntax compatibility (see lemma 4.1).

By the way, the sufficient condition in lemma 2.2 also requires that the
set of expressions under consideration satisfies syntactic transitivity. In 4.2,
we assume that a cfg $G$ which specifies a set $E_{G}$ of expressions has
unambiguous structure so that $E_{G}$ satisfies syntactic transitivity (we believe
the assumption is a reasonable one as will be $explaine_{\iota 1}$ in 4.2). However, to the
best of the authors’ knowledge, even if a cfg is assumed to have unambiguous
structure, it is open whether it is decidable or not for a text $t$ whether $R\subseteq=$

holds, where $R$ is the set of equations specified by $t$ . If the problem is decidabl$e$ ,

it becomes also decidable for given $cfg^{t}sG_{1},$ $G_{2}$ with unambiguous structures
whether $E_{G_{1}}=E_{G_{2}}$ . Since the class of cfl‘ $s$ generated by cfg’s with

unambiguous structures contains the class of deterministic $cfl’s$ , and the
equality problem for deterministic $cfl^{t}s$ has been one of th$e$ mo $st$ famous open
problems, it seems to be difficult to know whether the problem $R\subseteq=’’$ is
decidable or not.
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Considering above discussions, we will define a relation, denoted by $0$ ,

which satisfies $0\subseteq\approx$ . Hence $R\subseteq\approx ifR\subseteq 0$. Furthermore, it will be shown in
4.2 that it is decidable for a text $t=(G, AX)$ whether $R\subseteq 0$ under the
assumption that $G$ has unambiguous structure. Intuitively, $e_{1}0e_{1}’$ holds if
and only if the following two conditions hold:
(1) $e_{1}\approx e_{1}’$ .
(2) For any expression $e_{2}$ containing $e_{1}$ as a subexpression, let $e_{2}’=e_{2}[e_{1}arrow e_{1}’]$

($e_{2’}$ is always an expression by (1)). Then, for any derivation tree $tr$ for $e_{2}$ , there
exists a derivation tre$etr’$ for $e_{2’}$ such that $tr$ and $tr’$ have the same structure
$\dagger outside$ of “ the subtrees for $e_{1}$ and $e_{1}’$ . That is, $tr$ and $tr’$ have the same
structure when pruning all the nodes other than the roots in the subtrees for $e_{1}$

and $e_{1}’$ , and all the edges in them. Similar condition holds also for any $e_{3}$

containing $e_{1}$

’ as a subexpression.
To define the relation $0$ on $E_{G}$ more precisely, we first define the relation,

denoted by
$G\propto$

($or\propto$ , if no ambiguity), on the powerset of the set of non-terminal

symbols of $G$ as follows.
[Definition 3.2] For a cfg $G=(V_{N}, V_{T}, P)$ and subsets $N_{1}$ and $N_{2}ofV_{N}$ ,

$N_{1}\propto N_{2}$ if and only if
for any derivation tree

$trl;A^{*}\S uBv(A\in V_{N}, B\in N_{1}, u, v\in V_{T^{*}})$ ,

there exists a derivation tree
$tr2:c_{B^{u}}^{*}Dv(C\in V_{N}, D\in N_{2})$

such that $trl$ and $tr2$ have the same structure.
[Definition 3.3] For a cfg $G$ , define th$e$ relations $\angle$ and $0$ on $E_{G}$ as follows:
(1) $e\angle e’$ if and only if $N_{G}(e)\propto N_{G}(e’)$ .
(2) $e0e’$ if and only if $e\angle e’$ and $e’\angle e$ . $\blacksquare$

The property $R\subseteq 0’’$ is called global syntax compatibility. Obviously, global
syntax compatibility implies local syntax compatibility.
[Lemma 3.4] It is decidable for a given cfg $G=(V_{N}, V_{T}, P)$ and subsets $N_{1},$ $N_{2}$

of $V_{N}$ whether $N_{1}\propto N_{2}$ holds. $\backslash$

(Proof) We can decide whether $N_{1}\propto N_{2}$ by a technique similar to the one used
in th$e$ proof of Theorem 1 and 3 in [7]. For simplicity, suppose $Lc(A)\neq\phi$ for
each non-terminal symbol $A$ in $V_{N}$ . The decision algorithm stated below can
be extended easily so as to be applied to a cfg which may have a non-terminal $A$

such that $Lc(A)=\phi$. For a given cfg $G=(V_{N}, V_{T}, P)$ and subsets $N_{1},$ $N_{2}$ of $V_{N}$ ,

execute the next procedure, PROCI. $N_{1}\propto N_{2}$ holds if the output is “YES” and
$N_{1}\propto N_{2}$ does not hold if $NO”$ .
[PROCI]



(Input) A cfg $G=(V_{N}, V_{T}, P)$ and $s$ubsets $N_{1},$ $N_{2}$ of $V_{N}$

(Output) ’YES“ or ttNO’t
(Step 1) Construct a cfg $G_{1}=(V_{N}, V_{T}, P_{1})$ from $G$ , where

$P_{1}=(Aarrow\alpha$ I $A,$ $B\in V_{N},$ $A\S^{*}B,$ $Barrow\alpha\in P$ and $Barrow\alpha$ is not a unit

production (i.e., $\alpha$ is not a string consisting of a single non-terminal
symbol)}.

By the definition of $G_{1},$ $E_{G_{1}}=E_{G},$
$d_{1}=G3$

and $G_{1}$ has no unit production.

(Step 2) Construct a cfg $G_{2}=(V_{N2},$ $V_{T},$ $P_{2}J$ , where
(1) $V_{N2}$ consists of all the (newly introduced) non-terminal symbols each of
which corresponds (one to one) to a non-empty subset of $V_{N}$ . For each $B\in V_{N2}$ ,

let $o(B)$ denote the subset of $V_{N}$ corresponding to $B$ .
(2) $Barrow u_{0}B_{1}u_{1}\ldots B_{n}u_{n}\in P_{2}(B, B_{1}, \ldots, B_{n}\in V_{N2}, u_{0}, u_{1}, \cdots, u_{n}\in V_{T^{*}})$ ,

if and only if
$\sigma(B)$ consists of exactly all the non-terminal symbols $A\in V_{N}$ such that
there exists $A_{i}\in\sigma(B_{i})(l\leq i\leq nJ$ and $Aarrow u_{0}A_{1}u_{1}\ldots A_{n}u_{n}\in P_{1}$ .

(Step 3) Construct a cfg $G_{3}=(V_{N3}, V_{T}, P_{3})$ from $G_{2}$ by removing from $G_{2}(1)$

useless non-terminal symbols (i.e., which do not generate any expression), and
(2) productions which have at least one useless non-terminal symbol in left-
hand side or right-hand side. Details are describ$ed$ in [3].

(Step 4) If th$e$ following condition holds, output YES( $\dagger$ and otherwise, output
\dagger NO”
(Condition) Let $m=2^{|V_{N3}|}- 1$ . Let $C_{1}$ be an arbitrary non-terminal symbol of
$G_{3}$ such that $A_{1}\in o(C_{1})$ for some $A_{1}\in N_{1}$ . For any derivation tree

$trl;B_{1}\Rightarrow\alpha C_{1}G^{i_{3}}\beta(B_{1}\in V_{N3}, \alpha, \beta\in(V_{N3}\cup V_{T})^{*}, i\leq m)$,

there exists a derivation tree
$tr2:B_{2_{G^{i_{3}}}^{\Rightarrow}}\alpha C_{2}\beta(B_{2}, C_{2}\in V_{N3})$

which satisfies the following conditions (1) and (2):

(1) $A_{2}\in o(C_{2})$ for some $A_{2}\in N_{2}$ ,

(2) $trl$ and $tr2$ hav$e$ the same structure. $\blacksquare$

[Corollary 3.5] It is decidable for a given cfg $G$ and expressions $e,$ $e’$ in $E_{G}$

whether $e$ le‘, and hence so is whether $e0e’$ .
(Proof) Obvious from lemma 3.4 and the definitions of $\angle$ and $0$. $\blacksquare$

4. ACongruence Relation Generated byAxioms

4.1 The Algebraic Language ASL!*
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$ASL/*is$ an algebraic description language used for writing programs
andlor their specifications. A pair $(G, AX)$ is called a text in $ASL/*$ , where $G$ is
a cfg without a start symbol and $AX$ is a finite set of axioms defined below. A
text $t=(G, AX)$ specifies (a) a set of expressions together with a syntactic
relation by $G$ , and (b) a set of equations (and, in turn, a congruence relation) by
$AX$ as follows:
(a) A text $t=(G, \mathfrak{X})$ in $ASL/*specifiesE_{G}$ as a set of expressions and $\delta$ as a

syntax relation on $E_{G}$ (see 3.1).

(b) Let $V_{var}$ be a set of variables such that $V_{var}\cap(V_{N}\cup V_{T})=\phi$ . For each
variable $x$ in $V_{var}$ , a non-terminal symbol in $V_{N}$ , denoted by $M_{x}$ , is associated
with $x$ . $M_{x}$ is called the type of $x$ . Let

$G(V_{var})=(V_{N},$ $V_{T}\cup V_{var},$ $P\cup(M_{x}arrow x|x\in V_{var}J)$ .
An expression in $E_{G(V_{var})}$ is called an expression with variables (with respect

to $V_{var}$).

Let $(x_{1}/u_{1}, x_{2}/u_{2}, \ldots, x_{n}/u_{n})$ denote the substitution which substitutes
$s$trings $u_{1},$ $u_{2},$

$\ldots,$ $u_{n}$ for variables $x_{1},$ $x_{2},$ $x_{n}$ , respectively. For a string $u$

and a substitution $\theta$, let $u\theta$ denote the string obtained from $u$ by the substitution
$\theta$ .

An axiom in $ASL/*consists$ of
(1) variables $x_{1},$ $x_{2},$ $x_{n}$ and their types $M_{x_{1}},$ $M_{x_{2}},$ $M_{x_{n}}$ ,

and
(2) a pair $(l, r)$ of expressions with variables (w.r. $t$ . $(x_{1}, x_{2}, x_{n}J)$ .
An axiom is sometimes written as

$x_{1}:M_{x_{1}},$ $x_{2}:M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$.
Lett $=(G, AX)beatextinASL/*$. Let ax be an axiom in AX which is

$x_{1}:M_{x_{1’}}x_{2}:M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$.
Define $Q_{t}(ax)$ as

$Q_{t}(ax)=((l\theta, r\theta)|\theta=(x_{1}/e_{1},$ $x_{2}/e_{2},$
$\ldots,$

$x_{n}/ed$ is a substitution satisfying
$e_{i}\in L_{G}(M_{x}J^{(1}\leq i\leq n)J$ ,

and let
$Q_{t}=uQ_{t}(ax)ax\in \mathfrak{X}$

$Q_{t}$ is called the set of equations specified by the text $t$ . The congruence relation
$\overline{Q}_{t}$ generated by $Q_{t}$ (see 2.2) is called the congruence relation specified by $t$ and
denoted by $\equiv\tau$ . If $e\equiv te’$ holds for expressions $e$ and $e’$ in $E_{G}$ , then we say that $e$

is congruent with $e’$ in $t$ .

4.2 A Sufficient Condition for a Text to Satisp Operational Completeness

13
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Let $t=(G, AX)$ be atext in $ASL/*$ . Since $t$ specifies $Q_{t}$ as aset of equations

and $\equiv t(=\overline{Q}_{t})$ as a congruence relation, operational completeness means $\equiv t=$

$(_{Q_{t}^{arrow}})\#$ . By lemma $2.2,$ $\equiv t=(_{Q_{t}^{arrow}})\#$ holds if $E_{G}$ satisfies syntactic transitivity, and

$E_{G}$ and $Q_{t}$ satisfy local syntax compatibility $|\dagger Q_{t}\subseteq\approx^{ft}$ However, the latter is
undecidable in general.
[Lemma 4.1] It is undecidable for a given text $t=(G, AX)$ in $ASL/*whetherE_{G}$

and $Q_{t}$ satisfy local syntax compatibility $\uparrow$ }
$Q_{t}\subseteq=^{\dagger}$ ‘.

( $Proof\gamma$ For a given cfg $G$ and expressions $e,$ $e’$ in $E_{G}$ , construct a text $t=(G$,

$AX)$ , where $AX$ consists of only one axiom $e==e’$, which contains no variables.
Since $Q_{t}=((e, e’)J$ by the definition of $t,$ $Q_{t}\subseteq\approx if$ and only if $e\approx e’$ , which is
undecidable by lemma 3.1. $\blacksquare$

In th$e$ following, a sufficient condition is given for a text $t$ in $ASL/*to$

satisfy operational completeness $\equiv t=(arrow)Q_{t}\#$ with the help of lemma 2.2.

Hereafter, for a text $t=(G, AX),$ $G$ is assumed to hav$e$ unambiguous structure,
which we believe is a reasonable assumption for the following reasons:
(1) If $G$ has unambiguous structure, then $E_{G}$ satisfies syntactic transitivity
(lemma 3.3).

(2) As mentioned in 3.3, global syntax compatibility $R\subseteq 0$
’ implies local

syntax compatibility $\uparrow R\subseteq=’’$ . As shown in lemma 4.2, it is decidable for a text $t$

$=(G, \mathfrak{X})$ to satisfy global syntax compatibility $|Q_{t}\subseteq 0^{tt}$ under the assumption
that $G$ has unambiguous structure.
(3) Even if the class of $cfg^{t}s$ used for specifying the syntax of expressions is
restricted to the class of cfg’s with unambiguous structure, we can write
specifications (texts) in a natural way which deal with error handling (see

example 4.1 at the end of this section, where the ‘popping’ operation on the
empty stack are considered), or sort inclusion (such as integer and real). For
example, the syntax of $re$als (including integers) cai Je specified by a cfg with
unambiguous structure as follows:

real $arrow real+real$ real $arrow 0.1$

real $arrow int$

int $arrow int+int$ int $arrow 0$

:
On the other hand, if the class of cfg’s is restricted to a smaller class than the
class of cfg’s with unambiguous structure, e.g., to the class of unambiguous
$cfg^{t}s$ , then the grammar for specifying the syntax of expressions in such a text
as the example above becomes complicated.

14
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[Lemma 4.2] Let $t=(G, AX)$ be a text in $ASL/*$ , where $G$ has unambiguous
structure. It is decidable whether $t$ satisfies global syntax compatibility $Q_{t}\subseteq$

$0”$

(Proof) Let $G=(V_{N}, V_{T}, P)$ . By th$e$ definition of $Q_{t}$ , global syntax compatibility
is logically equivalent to

(a) for each $ax$ in AX, $eQ_{t}(ax)e’$ implies $e0e’$.
Let $AX^{-1}$ be the set of the axioms in $AX$, left-hand sides and right-hand sides
interchanged. Then, (a) in turn is $e$quivalent to

(b) for each $ax$ in $AX\cup AX^{-1}$ , (b1) $eQ_{t}(ax)e’$ implies $e\angle e’$.
Since $AX$ is finite, it is enough to show that it is decidable for a given axiom $ax$

whether $eQ_{t}(ax)e’$ implies $e\angle e’$ . Let $ax$ be an axiom in $AX$ which is
$x_{1}:M_{x_{1}},$ $x_{2}:M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$ .

Then the condition (b1) holds if and only if
(c) for any substitution $\theta=(x_{1}/e_{1},$ $x_{2}/e_{2},$

$\ldots,$
$x_{n}/e,J$ satisfying $e_{i}\in L_{G}(M_{xJ}$

$(l\leq i\leq n),$ $N_{G}(l\theta)$ & $N_{G}(r\theta)$ .
Let

$\Sigma=((N_{G}(l\theta), N_{G}(r\theta))|\theta=(x_{1}/e_{1}, x_{2}/e_{2}, \ldots, x_{n}/e_{n})$ is an arbitrary
substitution satisfying $e_{i}\in L_{G}(M_{xJ}(l\leq i\leq n))$ .

Then, the condition (c) can be paraphrased as
$(c’)$ for each pair $(S_{1}, S_{2})$ in $\Sigma S_{1_{G}}\propto S_{2}$.

Although the number of substitutions $\theta^{(}s$ in (c) is infinite in general, $\Sigma$ is finite
since it is a set of subsets of $V_{N}\cross V_{N}$ . $\Sigma$ is effectively obtained as follows.

For each variable $x_{i}(l\leq i\leq n)$ , let
$\overline{N}_{x_{i}}=(N_{G}(e_{i})|e_{i}\in L_{G}(M_{xJ1}$

and for the left-hand side $l$ of $ax$ and sets of non-terminal symbols $N_{1},$ $N_{2},$
$\ldots$ ,

$N_{n}$ satisfying $N_{i}\in\overline{N}_{x_{i}}(l\leq i\leq n)$ , let

Nil, $N_{1},$ $N_{2}$ , ..., $N_{n}$] $=(A|$ there exists $\overline{l}$ such that $A\S^{*}\overline{l}$ , where $\overline{l}$ is

obtained from $l$ by replacing each variable $x_{i}$ with $N_{i}$ (distinct

occurrences of the same variable $Xj$ may be replaced with distinct non-
terminal $s$ymbols in $N_{i}$)}

and define $N[r, N_{1}, N_{2}, N_{n}]$ for the right-hand side $r$ in the same way.
Since $G$ has unambiguous $s$tructure, $\Sigma$ coincides with

$((N[l, N_{1}, N_{2}, \ldots, N_{n}], N[r, N_{1}, N_{2}, \ldots, N_{n}])|N_{i}\in\overline{N}_{x_{i}}(l\leq i\leq n)j$ .
Let $G_{2}$ be a cfg obtained by executing Steps 1 and 2 of PROCI in lemma

3.4 with $G$ as input. Let
$\overline{N}_{x_{i}}’=(o(B)|M_{x_{i}}\in o(B)$ and $L_{G_{2}}(B)\neq\phi$]
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for each $i(l\leq i\leq n)$ , then $\overline{N}_{x_{i}}=\overline{N}_{x_{i}}’$ holds for each $i(1\leq i\leq n)$ since $G$ has
unambiguous structure. Hence $\Sigma$ can be effectively obtained. To summarize
above arguments, we can decide whether $Q_{t}\subseteq 0$ as follows: Execute the
following procedure PROC2 with a given text $t=(G, AX)$ as input. If the
answer is $YES|$ ’ then $Q_{t}\subseteq 0$, and otherwise, $Q_{t}\subseteq 0$ does not hold.
[PROC2]

(Input) A text $t=(G, \mathfrak{X})$ in $ASL/*$

(Output) ’YES’t or $|NO’$

(Step 1) Execute Steps 1 and 2 of PROCI in the proof of lemma 3.4 with $G$ as
input. Let $G_{2}$ be a cfg constructed in Step 2 of PROCI.
(Step 2) For each axiom $ax$ in $AX\cup AX^{- 1}$ , execute Steps 3 and 4 below. If the
answer is always $tYES|$ then output “YES”, and otherwi$se$ , output “NO”.
(Step 3) Let a given axiom be

$x_{1}:M_{x_{1}},$ $x_{2};M_{x_{2}},$ $x_{n}:M_{x_{n}},$ $l==r$ .

Compute $\overline{N}_{x_{i}}$ for each $i(l\leq i\leq n)$ , where

$\overline{N}_{Xj}=(o(B)$ I $M_{x_{i}}\in o(B)$ and $L_{G_{2}}(B)\neq\phi j$ .
(Step 4) For each $N_{i}\in\overline{N}_{x_{i}}(l\leq i\leq n)$ , determine whether

$N[l,$ $N_{1},$ $N_{2},$
$\ldots,$ $N_{?}1_{G}\propto N[r, N_{1}, N_{2}, \ldots, N_{\eta}]$

$(^{*})$

which is decidable by lemma 3.4. If $(^{*})$ holds for every pair $N_{1},$ $N_{2},$ $N_{n}$ , then
output $\dagger\prime YES^{t}$ , and otherwise, output $(\dagger NO||$ $\blacksquare$

Now, the main theorem can be derived as a corollary of lemma 2.2,
lemma 3.3 and lemma 4.2.
[Theorem 4.3] Let $t=(G_{f}\mathfrak{X})$ be a text in $ASL/*$ , where $G$ has unambiguous
structure. It is decidable whether $t$ satisfies global syntax compatibility $Q_{t}\subseteq 0$

which implies operational $com_{P-\gamma}1eteness--=(_{Q_{t}^{arrow}})\#$ . $\blacksquare$

[Example 4.1] Figure 1 is a text $t=(G, AX)$ in $ASL/*e\backslash f$hich defines a data type,
stack of non-negative integers, such as:

Popping the empty stack results in the error state (denoted by
ERRSTACK) and no operation is defined on ERRSTACK. If one tries to
know the top of the empty stack, th$e$ distinguished value, ERRINT, is
returned.

Lines (1) to (14) define th$e$ productions of $G$ . The synbols appearing in the left-
hand side of some production are non-terminal $s$ymbols, and the other symbols
appearing in the right-hand sides of the productions are $te$rminal symbols.
Lines (17) to (22) define the axioms in $AX$. Line (15) and (16) defines that the
type of variables $s$ and $i$ are stack and int, respectively.

16
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(1) stack $arrow NEW_{-}STACK$

(2) stack $arrow PUSH$( $stack$ , int)

(3) stack&err $arrow stack$

(4) stack&err $arrow ERRSTACK$

(5) stack&err \rightarrow PUSH(stack&err, int)

(6) stack&err \rightarrow POP(stack&err)

(7) int $arrow 0$

(8) int $arrow SUCC(int)$

(9) int&err $arrow int$

(10) int&err $arrow ERRINT$

(11) int&err \rightarrow TOP(stack&err)

(12) bool $arrow TRUE$

(13) bool $arrow FALSE$

(14) bool \rightarrow ISNEW(stack&err)

(15) stack $s$

(16) int $i$

(17) ISNEW(NEW STACK) $==TRUE$

(18) ISNEW$(PUSH(s, i))$ $==FALSE$

(19) TOP(NEW-STACK) $==ERRINT$

(20) TOP$(PUSH(s, i))$ $==i$

(21) POP(NEW-STACK) $==ERRSTACK$

(22) POP$(PUSH(s, i))$ $==s$

Figure 1 ASpecification ofStack with $Er\infty r$ State
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Non-terminal symbol int generates all the non-negative integers ;
$L_{G}(int)=(SUCC^{n}(0)|n\geq 0]$ . Let $n(n\geq 0)$ denote SUCC $(O)$ for notational
simplicity. int&err generates all th$e$ non-negative integers together with the
distinguished value ERRINT, $i.e.,$ $L_{G}$ (int&err) $=L_{G}(int)\cup$ (ERRINT).

Similarly, stack generates all the expressions each of which denote $s$ a legal
states of the stack and $L_{G}(stack\ err)=L_{G}(stack)\cup[ERRSTACKJ$ .

Operations ISNEW, POP, and TOP are defined only on the expressions
in $L_{G}(stack)$ . For example,

TOP(PUSH(NEW STACK, 3))

is congruent with 3 by th$e$ axiom (20) while
TOP(PUSH(POP(NEW STACK), 3)) $(^{*})$

is not congruent with any $n(n\geq 0)$ . That is, the value of $(^{*})$ is not defined,
which means that no operation is defined once the stack goes into error state.

Let us execute PROC2 with the text shown in Figure 1 as input. By
executing Steps 1 to 3, we know

$\overline{N}_{s}=((stack$, stach&errJJ
$\overline{N}_{i}=((int$, int&errJJ

If we execute Step 4 for the axiom (18), only the pair $S_{1}=(boolJ$ and $S_{2}=(boolJ$ is
obtained and both $S_{1}\propto S_{2}$ and $S_{2}\propto S_{1}$ hold obviously. Similar arguments hold
for (17), (19) and (21). For (20), the pair $S_{1}=(int\ errJ$ and $S_{2}=$ (int, int&err) is
obtained and $S_{1}\propto S_{2}$ holds while $S_{2}\propto S_{1}$ does not hold. The reason why the
latter does not hold is that PUSH can take as its second argument only
expressions in $L_{G}(int)$ (and so is the first argument of SUCC). For example, if
in the expression PUSH(NEW-STACK, 3), the subexpression 3 is replaced with
the congruent expression TOP(PUSH(NEW-STACK, 3)), the resulting string

PUSH(NEW STACK, TOP(PUSH(NEW STACK, 3)))

is not an expression. The reason is that 3 is in $L_{G}$ (int) while
TOP(PUSH(NE $W_{-}S$TA $CK$, 3)) is not. For (22), we obtain the pair $S_{1}=$

(stack&err) and $S_{2}=$ ($stach$, stach&err) and in this case both $S_{1}\propto S_{2}$ and $S_{2}\propto S_{1}$

hold. The reason why the latter holds is that every operation which can take
an expression in $L_{G}(stack)$ as its argument can also take an expression in
$L_{G}(stach\ err)$ as its argument. $\blacksquare$

The text in Figure 1 does not satisfy global syntax compatibility since
(int, int&err) $G\propto$

(int&err) does not hold. For a text $t=(G, AX)$ which does not

satisfy global syntax compatibility, by adding certain productions to the set of
productions of $G,$ $t$ may be transformed into a text $t’=(G’, AX)$ such that
$(\# 1)t’$ satisfies global $s$yntax compatibility, and
$(\# 2)$ for any expressions $e$ and $e’$ in $E_{G,e}\equiv te’$ if and only if $e\equiv t’e’$ .
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Let $t’=(G’, AX)$ , where $\mathfrak{X}$ is th$e$ same as in Figure 1 and $G’$ is obtained from
$G$ by adding the following productions to the set of productions of $G$ :

stack $arrow PUSH$($stack$, int&err)
stack&err \rightarrow PUSH(stack&err, int&err)
int&err \rightarrow SUCC(int&err)

Then, (int, int&err]
$G\propto$

(int&err) holds, and th$e$ conditions $(\# 1)$ and $(\# 2)$ are

satisfied although $E_{G}$ is properly contained in $E_{G’}$ , e.g., PUSH(NEW-STACK,

ERRINT) is in $E_{G’}$ while $E_{G}$ does not contain it.
In general, if a text $t=(G, AX)$ is transformed into a text $t’=(G’, AX)$ by

adding certain productions, $E_{G}\subseteq E_{G’}$ and $3\subseteq\partial$ always hold but $E_{G’}\subseteq E_{G}$ and
$G$ $G’$

$8,$ $\subseteq G3$
are not always true. It is under study to investigate a transformation

from a given text into a text which satisfies the conditions $(\# 1)$ and $(\# 2)$ above.

5. Conclusion

In this paper, a congruence relation is extended on a set of expressions
generated by a cfg so that the semantics of specifications or programs which
deal with error handling andlor sort inclusion can be defined in a simple
algebraic framework. Next, a sufficient condition is shown under which the
operational semantics of the congruence relation generated by a set of axioms
can be defined simply in the sense that operational completeness holds.
Although only unconditional axioms are considered in this paper, conditional
axioms can also be used in $ASL/*$ . A conditional axiom has a form such as

$x_{1}.\cdot M_{x_{1}},$ $x_{2}.\cdot M_{x_{2}},$
$\ldots,$ $x_{n};M_{x_{n}},$ $l_{1}==r_{1},$ $l_{2}==r_{2},$

$\ldots,$ $l_{m}==r_{m}==>l==r$

which means \dagger ’if $l_{1},$ $l_{2},$
$\ldots$ , and $l_{m}$ are congruent with $r_{l},$ $r_{2}$ , ...,and $r_{m}$ ,

respectively, then $l$ must be congruent with $r$ .“ The congruence relation
generated by a text which contains conditional axioms can be defined as simply
as in the unconditional case [6]. Intuitively, the operational semantics of th$e$

above axiom is that, if $r_{1},$ $r_{2},$ $\ldots$ , and $r_{m}$ are obtained by rewriting from $l_{1},$ $l_{2},$
$\ldots$ ,

and $l_{m}$ , respectively, then $l$ can be rewritten as $r$ . It is an open problem to find
a sufficient condition under which the operational semantics of the
congruence relation generated by a text which contains conditional axioms can
be defined simply.
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