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Notes on cohomological dimension modulo p - nonmetrizable version

A. Koyama (et s Mg ) 1)
T. Watanabe (L0} L1455 i %)

1. Introduction. Ih 1978, R. D.‘Edwards [4] announced the strong result
as follws . -

Edwards-Walsh Theorem. £very compact metric space X of
cohomological dimension dim 7 X <N (integer coerricients) is the Image or a
cell=like mapping ©. 1 ——=X of a compact melric space Z with dimZ <n.

At that time, while we knew the famous Alexandorff problem: /s there an
INFINte-aimensional compact metric space whosé cohomological dimension s
rinite 7, our geometric topologists had (even now have) much interést in the
CE—probl em: abes every cell-like mapbing préeserve the (covering) dimension?*
However the result and the classical Vietoris-Begle theorem showed the
equivalence of both interesting problems, and therefore gave a.big motivation for
attacking the problems. A proof of the result was given by J.J. Walsh [ 10 ] .
Then he used an interesrting characterization of cohomological dimension.
Namely,

The first characterlzatlon of cohomologlcal dlmenswn

(Edwards-Wwalsh). Zez‘ X ve a comapct melric space and et (X] p] i+ 1) e an
inverse sequence of compact po/ybedr; whose limitis X. Then : dl{mz X<n n>
1, ifand only if for every integer i and e> 0, there is an intéderi> i and a
triangulation Ty of Xy such that ror every triangulation T j or X It there is a
mapping b IT {0 Dl ——— T suen tnat ath, py T e

Recently, L. R. Rubin and P.J. Schapiro [ 9] generalized the Edwards-walsh
Theorem to the case of metrizable spaces X and Z. Moreover, S. Marde$ié and L. R.

*) Recently A. N. Dranishnikov ahhounced thét he had obtained a negative answer of the Alexéndorff
problem. However we do not know the detail.



Rubin [ 8] succeeded to genenarize their theorem to the case of compact
Hausdorff spaces X and Z. In the latter generalization, théy used the following
Marde$i's characetrization of cohomological dimension [ 6 ], which is an an

- useful version of Edwards-Walsh's one. Moreover, S. MardeSic [ 6 ] showed the
factorization theorem of cohomological dimension dimz. |

The second charactrization of cohomological dimension (Ma'rde§i(:).
A compact Ha,c/sdo/"ff space X has caf;omcw/ogfca/ dimension dimz X <n,n2 1, //"
anda on/,vk T ror every polyhedron P, every mapping ©. X ——=P, and every ¢> 0,

there Is a polyheadron Q. and there are mapoings ¢: X —=Q, p: Q P

s5atisrying the roflowing two conditions:
(1) dpg, f) e, and

(2) ror every triangulation M- or Q, there Is a mapoing p'. Ir’l(”+ ! )I —P
such that

dtp’, pIMN* D)y <6 ang dim Imp’ < n.
Here, if a mapping p satisfies the condition (2), p is called (n,e)-goproximable, |
and p' is called an (n,e)-aoproximat ion of p.
The factorization theorem on cohomological dimension (Mardesic).
Lot X be a compact metiic space with dim z7X<n,ny 1. let Y beacompact

melric space and /ét f:X—=Y pea mapping  Then t/)@/‘é jsa compact /ﬁém'c

Z and hl ~ Y such

space 1 with dimgz Z<n andmappings ¢ X

that f=hg.

On the other-hand, modifying their theorem, A. Dranishnikov [ 1 ] has
characterized cohomological dimension with the coefficient group Zp from the
view point of Edwards-walsh.

| .Thev first characterization of cohomological dimension modulo p

(Dranishnikov). Let X be a compact-metric space and et (Xi,pi,i+1) bean

inverse sequence of compact poiyheara whose limit is X. 7hen dimgp X <n,n2



2, Irand only if for every integer i and & > 0, there is an integer § >\ and a

trianguiation Ty of Xy such that for ever)/ lriangulation Ty of Xy, there is a

maoping b lTj(n)l' TN such that din, Py, leTJ(”)I) <e, and [hlde] €

' D~nn(!Ti(”)I') faf every (n+1)-simplex ¢ of T J

Using the characterization, Dranishnikov showed two interesitng theorems.
One is the Edwards-Walsh-type theorem modulo p, and another is the negative_:
answer of the Alexandorff problem modulo p. Namely, . L

The first Dranishnikov theorem . £very compact melric space X with.
dimzp XN, N22, /sthe image of a mapping ©. L ——=X of @ compact melric

space 1 of dim Z <n whose fibers are acyclic moaulo Lp.
The second Dranishnikov Theorem. For each ,ar/me'bumb’er p and each n
=2,3,4..,00, there exIsts g compapct metric space X(n,p) such that dim X(n,p)

=n and dimz, X(n,p) < 2.

Motivated by the above development of cohomological dimension theory, in
this note, we will show the second characterization of cohomological diménsjon
modulo p. And as applicatiopns of the characterization, we will obtaih the
Mardesic-type factorization theorem modulo p and the ge’nerali»z'ation' of the
first Dranishnikov theorem for compact Hausdorff spaces. Our proof is
essentially dueto[ 1], [6]and[8]. |

In this note we mean the definition of cohomological dimension as follows:

the conemological dimension of a space X with a coerficient group G s /ess

than n, denoted by dimg X <n, provided that every mapping f: A——= K(G,n), of

a closed subset A of X-into an Eilenberg-MacLane complex K(G,n) of type (G,n)
admits a continuous extension over X (¢.f. [ S ]. |

2. Approximate (iriverse) systems. We will use the new notion,
aprroximate (inverse) systems and their 1imits, instead of usual inverse systems

and inverse limits. They were introduced by S. Marde$i¢ and L. R. Rubin [ 7 ], and



took an important role in[ 8 ]. ‘Now we quote their basic definitions [ 7 ].

Definition 1. An goproximate (inverse) system of metric cbmpacta X=
(Xa£a.Paq.,A) consists of the following: A directed ordered set (A,<) withno -
maximal element; for each a€A, a compact metric space X with ametric d = dg
and a real number e, > 0; for each pair a<a’ from A, a mapping Pag" Xg — >£a,
satisfying the following conditions: -

(A1) d(PaypoPasas Paas) Stap A £@2La3; Pay = 14,

V (A2) for every a €A and every n> 0, there exists a' > a such'that
d(paa1pa1az: Pazs) <1, a

(A3) for every aeA and n >0, there e-><1sts a > a such that for every a2 @

and every pa1r of pomts X,X' of Xa , 1f d(x x) < ea ) theh
d(pag"(X),paa (X)) < 1.
If "'af IX, —%—:—esxa,aaeA, denote the projections, we define the limit space X
=limX and the natural prOJchons pa X _’Xa as follows:

Deflmtlom 2 A pomt X = (xa)enxa belongs to X = hm X prov1ded that for
every a€A, |
Xz = 1M Paay(Xa,) -
The natural projection py = fglX: X ——=Xj.°
* Next we quote results from [ 7]and [ 8 ] needed in this note.  The proofs may
be found in[7Jand [ 8]
- Proposition 1. et X = (X5,85,059uA) D€ an approximate system. Then we
have the rellowing proverties: | o
(1 /fe;/ez)/'y X475 nonempty, then X = \imX /s 2 nonempty compact

, Hausdofff space,



(2) Tor each aéA 1im d(py, PagiPay) = 0, where d(f,g) =

syp (d(f(x), g(x))l xeX]
(3) 7or each open covering W of X = hm X, there is a eA such that ror any

a1 > a, there exists anopen covering V or Xy, ror which (py,)” W) rerines u,
(3) £ dim¥g<n 7orall acA, then dimX <n,
(4) rorevery ¢> 0, every compact ANR P, and every mapping h. X ——==P,

there /s a€ A such that ror any a > a, there is amaoping f. Xy ——=P which
satsries d(fpy, h) < 2.

Propositon 2. Zef X = (Xy,65,059,A) b€ an approximate system. /7 for

every aeA and every ANR P and every mapping h: X, P, there )‘5 ar > a
- Such that for every a2y at', there 1s & > & Such that forany e a2,
hpa1azpazaa a0,
z‘ﬁm 6‘1/6’/‘}/ mao fmm X= hm X to P /s inessential |
A/c?/??(?/l/ under the above r:andmz/an the set [X Pl orf ;7// homotopy classes of

mapbings fmm X to P istrivial

Proposition 3. let X bea compact //ac)sdorff space with dimgX<n> 1.
Then there exists an appm,\f/mc?z‘e‘symm X = (Xa,ea,‘paa-;A) with lim X =X such
that - .

Q) X3 15 & polyhedron with a metric d = dy < 1

(i1) dim X3 2n,

(111) Pag: Xy —=Xy /5 a surjective PL-mapping,

(iv) card(A) <@ X).

3. The second characterization of cohomological dimension modulo

p. In this section we consider a fixed but arbitrary prime number p. First, we
will intruduce the Zp-version of (n,g)-approximation.
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Definition 3. A mappingy: Q ——= P is called (p,ne)-goproximable, where
n>1i,iIr there exists a triangulation L of P such that ror any trianguiation Mor Q,

there is a mapping y': IM(N)] S— ()] satisfying the following conditions:

) dey’, wlIM(M)) <, |

(2) for every (n+1)-simplex o of M, [q:'llécl]ep-nn(lL(n)l).

Theorem 1. A4 éampact Hausaorrr space X has cohomological dimension |
modulop, domz, X <0, n> 1, 77 and onnly ir for éverypo/yﬂedfm P, eve/‘ymab f:
X——==DP, andevery ¢>0, there isapolvhearon Q and theré are mappings . X
—=Q, y. Q ——=P such that

(3) d(f, yo) <,

(4) y 7s(p,ne)-goproximable.

Proof of Sufficiency. Let a closed subset A of X and h: A ———=K(Zp,n).
Now we have a finite subcomplex KL K(Zp,n) containing h(A) and a,vcontractible

polyhedron P such that K P. Then there are a continuous extension f: X —=P

of h, and a closed polyhedral neighborhood N of K in P and a retractionr: N —

K. Moreover, take & > O such that_
(3) Og(K)C N, where 0g(K) is the §-neighborhood around K,

(6) any two §-near mappings into N are homotopic in N.
Then by the assumption of Theorem 1, there is a polyhedron Q and there are
Mappings ¢: X —==Q, y: @ — P such that -

(7) d(f, y) <8/3,_

(8) y is (p,n,8/3)-approximable. .
By (7) and (5), we have a closed polyhedral neighborhood G of $(A) in Q such that

(9) w(6G)C Og/2(f(A)<N.

Let take a triangulation M of Q such that G is the carrier of a subcomplex My of



M. Then by (8), we have a triangulation L of P and a mapping y": IM(N)] ——=1L(N)]
satisfying the following conditions: o A
(10) dy', yiiMN)) <873,

(11) for any (n+1)-simplex s of M, [w'l&a]ép-nn(lL(”)l).

Then by (10) and the definition of &, y'(M;AMM) C 0ty (M {(MEN, Hence by
(6) and (10),

(12) yI6AMM] A,y 16AMN,
Since wl6nMN| has an extension ylG: 6 —=N, by (12), yI6nMN) aiso
has an extension y* 6w MM —=NU LM < P such that

(13 ¥¥6 a6 InN, |
IT we consider the retraction r as a mapping into K(Zp,n), then we have an
extension r*: Nu IL(“)I ———=K(Zp,n) of r. Then for any (n+1)-simplex o of M, by

(1 1), [r*y*lgo] = 0 inny(K(Zp,n)). It follws that we have an extension y**: Gu

IM(“””I———K(Zp,n) of r¥y* Therefore r¥y* admits an extension 8:Q

K(Zp,n). Then we define the mapping n' X
- (7) and (6), we have that
(14) hlA ahlA.

Therefore‘ h admits an extension oVer X. It completes the proof.

K(Zp,n) by 8¢. By (13),

In oder to show the necessity, we introduce the £awards’ n-modification of
complex L moaulop, where n> 1. Let L be a finite complex, and we write
L=LNUovogu..vas, where n+1 <dimoy <dimoy <...cdimog.
For any simplex o with dim ¢ > n+1, Ty s the rank of nn(c(n)) o Hn(u(“)), and we
define
[
K(e) = K( &, Zp,n).

Then by the inductionons> 1, we can def ine a Cw-complex



L= LM UK | oK) V...V
= v Kloy YK(UZ . ‘K(US)
satisfying the following conditions: |
(@ L =1 ang LW~KGey) =61, §=1,2,..5,

A R
(b) L*1) is obtained from LN by attaching to each (n+1)-simplex of L by

a mapping of degree p,
© K(cijnK(cj) = .oincj | if dim (ﬁinaj)gn,
| (K(c,-ncj) if dim @jnop 2n+1.
Remark 1. If dimo =n+1, the construction of K(o) starﬁts from avttaching an
(n+1)-cell on do o SN by @ mapping of degree p. Namely, -
K@) = 35, and K@) = Joy BT, where ¢: S"—= 9o is a mapping
of degreep. - |
| If dim s 2 n+1, by the condition (c), then K(s) = Ki(o)wKolo)w ... such that
(d) Ky(o) = pGK(1), where the union is taken over all proper faces t of g, |
(e) fori=2,3,.., K@) is obtained from Kj_1(s) by attaching to
Ki-1(@)Xn*1=1) 3 collection of (n+i)-cells killing the (n+i-1)-th
homotopy group. |
Namely, |
K@D = ki @D ang o (Kite) = 0.
Hence | 7 , | |
K@) = K@D i =12,

Yo
Remark 2. Since K(e) = K(& Zp,n) s

o _
I:I‘ K(Zp,n), every mapping f: A

1=
K() of a closed subset of a compact Hausdorff space with dimz, X <n admits an
extension f*: X —=Kl(o).

Proof of Necessity. Assume that dimzp X <n. Let take a polyhedron P,



‘amapping f: X ——=P and ¢ > 0. Then choose a triangulation L of P such that
- (15)-mesh(L) <¢/4, “ | |

and let consider the Edwards’ n-modif ication L of L modulo p. Define an open

‘covering ﬁ\ of L consisting of all sets of the form

(16) U(c)— - (gadg L), where ((9) =< if dimt<n,

Then we note that -
(17) L(D‘)C—U(U) for eachoéL.

Claim \. There is a mapoing P C— lLI such mc?z‘
(18) flf ](IL(n)!)—flf 1(IL(mD

(19) f(f ](c))C_ K(o) for every 4‘//)7,0/6’/\’ c af L with dwm o> n+1

Froor or Claim 1. Write L as the form

L(n)vu VUQV /0g, where n+l <d1mc] <. <d1m US

IL(”)I |L<n>|; IL.

First, we defme the mapping fo - ‘(IL(”)l)f ‘(!L(”)l)

Since dxmzD UCIPRS dimgp X <n, the mapping folf~ ‘(95]) f ‘(951) - 901<
K(s 1) has an extension fg, f~1(e) ——=K(a ). Hence we can define the =
mapping PRI '(cﬂ—-———» LM K(c] )& ILI by

(20) £l gLy = fo and fylf”! (61) = fgy
Then clearly f(f™1(@)))<K(s ). Foreachi?2, since 901;|L(”)lvolv vo"] 1 |
we can similarly obtain the mapping f: £~ (IL(”)!)Vf o).V () —
L) < Ko q)o..v Kop) such that

(21) fﬂf“(lL(ml)vf‘T(s])v....v-r"w]-__l ) =-f]-_1~ and fi(f~ (@) € Koy,
Therefore the mappivng fg is the desired one.

Next we consider the mapping h = f,xf: X —|LIx Iﬁl and the two

projectons y: ILIxICl ———IL| and : ILIx [Ll —=1I. Then h(X) is contained in
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a finite subcomplex of |L| itl, which can be embedded in polyhedron. Hence the
mappings y and § can be extended to a closed polyhedral neighborhood K of h(X)

Now we consider h as a mappmg h: X ——-K and q:, qr as mappmgs y: K—LI,

¥ K Ll Clearly
(21) yh=7 and yh="1.

We choose 1 > 0, which is less than the Lebesgues numbers of both y~ (W) and
¥~ 1D, where U is the open star covering of L. Moreover, we may assume that
(22) 11 d(z,Z) <n, Z,7€K, théh d(qf(z),xp(z‘))iﬁ. | o
Then by the same way as in| 6 ], we can have é mapping ¢: X ————»K suth that
(23) d@.n) <m, . |

(24) ¢(X) is a subpolyhedron Qof K

Hence as we con31der¢ as a surjectwe mapp1ng¢ X — Q and y as a mappmg

¥ Q—=|LI, by (22) and (23),

(25) d0g,) <.

Therefore it suffices to show the following.

Claim 2. The mapping y: Q ILl 75 (p,ne)-aoproximabie..

Froor of Claim 2. Take a triangmation Mof Q. First, we show the exiétance of a
mapping 8: M 1) —— [£(0* 1)} sycn that |
“26) sy 1O = Gyl 1y

(27) 8~ (KNS K@) 1) for every simplex o of L with dimo > n+1.
Since IM(h* Dy is compacf, there exists a finite collection of cells fry,t07
dim 74 > dim 19 > ... > dim 7 > n+2, such that

(28) m(lM(”*”l)f\ 1 #f foreachi=1,..k,

(29) M DRSO D w0 L

We take a small ball B €t -7y such that dim B = dim t;, and
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' 11
consider the mapping §1§1@B)AMIM* iy~ 1(3B) AMIN* ] —< 3B, Since

dim y~1(BYAIM(1* D) <n+1 < dim B, there exists an extension
¥ ﬁr'](B)r\ Mn+ 1)y -——*—QB of %Iﬁ"](BB)"(\ M+ 1)y Considerin{j aretraction
fromzl'l\_}(n_* “’)l V(ty “vIntB)\/“l‘Q;J T onto [L(N* “)lv‘tzv,..u T, Wehavke‘}a
. ‘5 ! Iﬂ(m 1) _—?’Jt(nf M Vv ,,,_Q.Tk such that

(30) By ILM* Duryu v =L Doty o v,

(31 81 e Ngary.
By the inductive step, we obtain the desired mapping 8y = 8. Moreover taking a
siutable subdivisions, we may assume that 8 is simplicial.

Now we choose a point z;€1 - PRV, a(IM(n)I)] for each (n+1)-simplex-t of L,

and take the retraction r: IL(N* D] - (z. | &L and dimt=n+ 1) L) =

IL{N)} “given by the radial projection on each < - (z). Then we define a mapping
¥ MO ——— 1L by rgIM(YL Then by the same way as in [ 6 ], we have that
(1) dly’, wlIMM)) <e.
Let o be a (n+1)-simplex of M. 1f B@)CILM], then ylde = 8l3e & 0 in L
Otherwise, there exists finite (n+1)-balls Bj,...,.By in & -do such that
(32) ZintB; 2871z 1 vl 1) and dim«=n+1)no,
(33) ‘B(B;)Cr‘ -2t for some teL(N*1) such that dimr=n+1. |
Then we have that o : |
(34) y'l9al = (81981 + ... + [rBIdBY] in ay(IL(M)).
Since each r@ldB; can be factorized through the attaching (n+1)-cell of L(N*1)
coontaining 8(B;) - (zy), [erléiB,-]é‘D-nn(lL(n)l) for each i = 1,2,.,m. Hence,.byr

(34), byl3s1e prn(ILM). That is, in the both cases, the condition (2) is satisfied.

- 11 -
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Thererore y 1s (p,n,e)-approximanle. 1T completes the proof of Claim 2.

Using Theorem 1 instead of [ 6 1, Theorem 1, we smﬂarly have two

corollaries which corresponds to Coronames [ and 2 in [ 6]

Corollary 1. let Q= (O,,q,ﬁ 1) be an inverse sequence of pa/)/bedra with the

inverse imit 1=1im Q and projections qi: 1 Qj. Let &> O be numbers

such that

() 77 ror w,w €Qj, dlw,w’) <ej, then d(p;j(w),pj(w) < 17271 >4,
and let each or the mapping Diis1 08 (D,Ngi)-aooroximable, wheren 3 2. Then
dimgzp Z <n.

Corollary 2. Let X be a comapct Hausaor!r space with dimz, X <n,n 22

Let Py,..Px bepoivheara, T X ———=Py, . fiue X—=Py, and ¢ >0, ..8>0

e arbitrary pasitive numbers.  Then there 1s a polyhedron Q and mappings f: X

—=Q,y;:Q — Py ¥i: Q Px such that
.(i) f(X)=Qq, o
- (1) dyis, Ti) <, ;
(i11) ¢ 75 (p,n,s,-)-éppraxzmab/a :
Next we have a criterion of cohomological dimension mc:)‘dul'o_fp, ‘d»imzp X<n,

when X is the Timit of an approximate system of polyhedra A proof can be given
by the similar way as in [ 8 ], if we apply Therom 1 intested of Theorem l in [ 6 ].

Hence we omlt the proof here

Theoem 2. let X = (X,85, paa ,A) be an a,a,ara,wmafe inverse sysz‘em or
pa/,;//yedra With limit X = Tim X, Then di'mzp"x <n 7'/‘2/7don/y Jf Yo every a€A
andevery ©> 0, therejs axa sueh that far'éz/éf} a>a, f/)éb?ﬁpp/’ﬂg‘ Paa’ /5
(p,N2)-approximable |
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4. The factorization theorem on cohomological dimension . = 13
modulo p. We state our main theorem in this section

Theorem 3. et X be a compact Hausaorrt space., wzm dlmzp X n. let Y

be a compact melric space and /et f: X - Y beva mapping.. 7hen thereé exists
a compact metric space 'Z w/m dimg, <N and there exist mappings §: X ——=
Z, h 1 ——»Y sum that f = hg

Proof. Let take an inverse sequence Y =(Y§,rji+ ]) of polyhefra w1th hm1t Y

and prOJectlons ri: Y —=Y;. Then we note that there is 2 sequence [rh}
posmve numbers such that fory,y'eY,
(1) 1 dlrily),ri(y")) <nj forallix 1 theny Y.

Moreover, by the uniform contmu1ty of bondmg mappmgs there is a sequence (dl]

of posmve numbers such that
@ 3 <y R |
(3) if for u,u'€Yy, dly, 0. < 28J, then d(ru(u) r]J(u)) <8 /2" L ',-j‘\
Then by using Corol lames 1 and 2 instead of [ 6 ], CoroHames l anq 2, we

| sinilarly nave positive numbers O <gj < l,&polyhedra Qi, and mappingsg{: x.___,..

Qy, hy: @ —= ¥y, q5: Q) 0y, i <, satisfying the follwing conditions:
(4) gi(x) =qj, | - |

) d(gi, Gjje19i+1) £25/2,

(6) d(rif, higi) <8i/2,

(7) if for u,u'€Qj, dlu,u’) <&, then dthi(u), hi(U'))gsi/Z.- |

(8) if for u,u€Q;, du,u) <ej, then*d(qij(u),’ qij(u'))gci/Zj"', i<,

(9) Gji+1 15 (p,n,¢{)-approximable. |

Now we may assume that the sequence (e} is decreasing and’cbnve‘rges t0 0.

- 13 -
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Applying (5) and (8) by the inductionon j-i> 0, we have
(10) d(gj, Q9 Lej, 1< S |
Hence , by (8) and (10),
an) d(qug], Qik k) <c]/21 Ligjsk
Thus, the sequence {qy Jg J] J)} is a Cauchy sequence of mappings of X to O, Hence
the sequence induces a mapping g‘. X—=Q; by
(12) g =1im qy9;. -
Thenby (10),
(13) d(g, gD e,
Moreover, by the definition, 1t is clearly hold that
(14) q,]gl = g SESh
Namely, putting a compact metric space Z as the inverse limit of an inverse:

sequence (Q;, qn+ 1), the sequence {g]] induces a mapping g: X ——=2 by

(15) q,g g‘ for each i 1,

where q: Z —= Q,, i>1, are the natural prOJecttons Then since g(X) is dense

inZ, g(X) =7 And by (9) and Theorem 2,
(16) dimzp Z<n.

On the other hand, by ( 13), (7) nad (6),
(17) d(ryf, hygh < dlryf, hygp) + dehygi, hig) <8172 + 872 ='8;,
Hence by (17) and (3),
(18) dhig!, Fij+ 1his 191" 1) <dlhyg, 1) + d(jie 41, Fije R0t D
$38i/2 28
Therefore by (3) and (18) and the induction on j-i > 0, we have

(19) dihygl, rijhjel) <281, 1<),
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Moreover by(3)"énd (19, o
(200 dirjjhygl, righid® <8/, e <k
Note that by (15), gk = gkg and gJ ng and therefore, since g is surjective,
@D dryhya righjap <827, ek o
It follows that {rijhjqj} isa Cauchy sequence of rhappihgs of Z to Yi. Hence we
have a mapping hi: Z——=Y given by | |
(22) h =1im ryjhja;. -
Then, clearly,
(23) rijhd =nl, i)
Hence a mapping h: Z——==Y is given by the formula
(24) rih=h foreachiy 1.
* Now foreach iy | , by the def1mt10ns of gJ and h] and (19),
(25) d(nlg, ,g‘) < 25| ” '
Hence by (17) (25) and (6) |
(26) d(r‘lf rhg) € Al h]g‘) + d(h]g‘ hg)¢38i¢m;
Therefore, by the condition of (ni}, (1), we have,that
(27) f=hg
That completes the proof of Theorem 3.

By the standard techniques, Theorem 3 mduces the followmg corollames
Thelr proofs are omitted here. ‘ ‘

Corollary 3. Let X bea campac‘z‘ Hausdor!r space with dimgz, X <n. Let Y
be a compact Hausaorir space and let 1:X ——=Y be a mapping.  Then there
exists a éOmpacf'Hausdafff space 1 with dimzy Z<n and @ () <@ (Y) and

there are mappings ¢ X —=—17, 7 —=Y such that t=hg.
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Corollary 4. Let X be a compact HausdorrT space with dimgp X <n. 77en X
has an inverse system Q = (Qp,apyy,B) of metric compacta Qp with dimzp Qp<n
and card(B) <w(X) whose inverse limit is X.

Corollary 5. el X be a compact Hausaorrr spa;‘e with dimgzp X < n./ Then
there efr/'sfs a compactzf/';'at/'on 7 of X sz/m that dim gz, Z g n.‘ | |

Especially, ir X isa sépafab/e meltric space sz‘/; »di‘mzp X< n, men there-is |
a metric compactirication T of X such that dimgz, Z <n.

Corollary 6. el X be a separable metric space wilh dimzp X<n  7hen

there is a separable metric space 1 w}‘f/; dimZ <n and a proper z:e(/—/ike
mapping f: I ——==X. |

We note that Corollary 6 is a generalization of the first Dranishnikov Theorem
to the case of separable metric spaces X and Z. In the nexr section we will show

another generalization to compact Hausdorff spaces.

5. A resolution on a compact Hausdorff space»yx w'i'th»dimzp X <n.
In this section we will show the generalization of the ﬁrstDrénishniKoQ |
Theorem to the case of compact Hausdorff spaces X and Z. Our brodf essentially
depends on Marde$i¢-Rubin'sway [8]. " |

First we quote the notion of the n-dimensional core Zyk and the stacked

n-dimensional core Zx* of a complex K from [ 8 1. The detail is omitted here.

Let take a finité complex'K and an integer n 2. 0. vL’et K, K, KKK bekthe
iterated\subdivisions of K. For each k 10 choose a simplicial approximation

Qi 1: KT ——=KK of the identity 1y IKI = IKK* 1| KK, and Tet g =

Qs 1O =1 K+ § KK*J ——=KK. Then Gkk+] 15 also a simplicial approximation

of 1x. Hence we have
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(1) oy, T) < mesnkK), J2.1, 17
(2) Qe J( KK S WRSM, 55 1,
Hence we have an inverse sequence of polyhedra
K = (K] s 1.
The n-aimensional core of K is defined as the inverse limit -
(3) Z¢ = 1imK |
Clearly, |
(4) dim Zg <n.
Let qy: Zg ﬁ‘l(KK)(”)l be the pt’jo‘jection.s. Theh by the Sperner's lemma,
€ach Qi+ 1 1s surjective, all of Q.| and"qk are surjective. Moreover, by (1),
(5) dlay, G+ ) < mesh KK, j2 1. |
Hence {ay} is a Cauchy sequence of mappings from ZK to IKl, because of
tim me:/)(Kk) = 0. Therefore we have the mappmg fk: ZK —_— iKl glven by
(6) fi=limqy.
Thén by (3),
(7) d(fK,qk)gmesh(Kk).

Moreover, gy is surjective and 1im mesh (KK) = 0. Hence f(2) is dense in |Kl, and

therefore fi is surjective

Next, in order to describe the stacked n- dlmenswnal core of K we define a
new inverse sequence as follows;for each k 0,1,2,..

(8) kK*k = kMoK ) Ne_..aKK)XN),
Hence |

(9) [kxk*1| = IK*klel(Kk* hn).
The bonding Mmappings G+ *: IK*¥K* 1| ——== [K*K| are defined by
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(10) Gk 1R = 1)k,

(1) qiges 14KK D) = gy 2.
We define the stacked n-aimensional core Zic* as the inverse limit of the-.
inverse seduence K* = (IK*K], g 1),

(12) Zy* = Tim K* = ( 8, [(ck)yMp w7,
and denote the natural projections by q*: Zy* — IK*K|. Then w'e have

(13) dim Z* <n.

Moreover we note the following properties; |
(14) ez and K¥KIC ‘ZKN* for every k » 0,
(15) qAIRE DM = gy, 21, |

(16) q*lZg = a -

By (16), (5) and the definition of Okk+ 1%

(17) d(ae*,ags ) < p}es/;(Kk), 20
Hence (qy*) is a Cauchy sequence of mappings from Zy* to IK|, and therefore we
have the mapping fi*: Zy* — IK| defined by |
(18) fi* = lim ge*.
Then we know that
(19) dfy*, ) < mesh (KK),
(20) 1K 55 the inclusion of KXY fnto K
@20 fez =t |
We note that if we have a metric d on IK| such that @’am () < 1, then we can

choose metrics d* on Zk* and dk on [K*K} such that - gam (Z*) < 1,
dram (IK*K)) < 1 and
(22) dR(ge*(x), gE(x)) < a%(x,x), X, €Zk*, k20,
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We state our main theorem in this section. 19

Theorem 4. Let X be 2 compact Hausaor! space whose cohomological
aimension moau/o p, dimgzy X <N, N 22, 7hen there exists a comapct Hausaorrr
gpace L with dim Z<n and w(Z) LX) and asurjective mapping . 1 ———X
whose ribers are acyclic moauio p. |

Proof. Foracompact Hausdorff space X with dimzg X <n, by Proposition 3,

we have an approximate system X = (X3,85,054,A) With the limit 1im X =X which
satisfies the conditions (i) - (iv) in Proposition 2. Moreover, for each a€&A, we

may choose a triangulation K, of X5 such that
(V) 6 mesh(Ky) <ey

As the proof as in[ 8 ], we will define a new ordering < in A. We consider the

following three conditions for a1 < a2 and any integer k > O:

( ] ) d(paia'pa’a" ) pala"‘) S meSh (Kaik) for az S_ a' S a",‘

(2) if d(x,x") _<_ea-;, fOr X,X"€ Xz, then d(pa,a"(x), Paga"(x)) < mesh (K4 K)
for a2<a’,
(3) Pagg Xgr —=Xg, 1S (p,n, mesh (K4,))-approximable for az<a".

Now we put a1 < a2 provided that a1 < @ and the conditions (1) - (3) hold for k =
0. Then the odering < on A satisfies the following conditions: |

(4) if a1t < a2 then a1 < az,

(5) if a1 < a2 and a2< a3, then a1 < as,

(6) for every a€A, there isa' €A suchthat a< a,
and therefore A’ = (A,<') is a diretted set with no maximél element. We note that
for any at€A and integer k > 0, there exists a2'> a1 such that the conditions (1) -
(3) hold. Moreover »

(7) if a1 < a2, then the set of all integers k > 0, which satisfy the condition

(2), is finite.

Hence, for each pair a1 < az, by (7), there is a maximal integer k > O such that
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the conditions (1) - (3) hold. We denote the integer by k(ai,a2). Clearly we have

the foll owmg propertles ‘ .
(8) if a1 ¢ 2, then for a' 222, O(PayaPar , Pay) < Mesh (Kyk(anaa),
(9) 1f a < a and az < a3, then k(ag,a2) < k(ax a), . ‘

(10) for any a1 €A and integer k > 0, there is a2€A such that a1 < 22 and k

< k(a1 az)

’ For each pair a1 < az, by (6) and the deflmtlon of k(a1 az) we have aPL- mappmg

| gala2 K gt ——== (K4, I, where k = k(at,2), such that |

(1) AGagzn pa1a2“Kaz(n)|) <2 ’77‘5"“/7(Ka1k)

(12) [gauzldsle prn(Ka kXM for every (n+1)-simplex o of Ky,
Now, for each a€A’, we define " |
(13) 2% = Ik *

For a1 < a2, we define the mapping ra,ay Z5,% ——= Z5* by

(14) Taga; = Jasandoar™ -
here qoaz* 2% —= IK5,{N)| is the mapping gg*: Zxz,* —= IK5,{(MI. Then
note that o

as) ra1a2<2 *) € I(Kg k)(”)l k = kat, ).
By the same way as in[ 8 ], Lemma 7, we have

(16) Z = (Z5%e4,r32,A") 1S an approximate system of nonempty metric

compacta Zy* with dim Za* <n.

Therefore by Proposition 1 (1) and (3), the hmlt Z =limZ isa nonempty
compact Hausdorff space with dlm Z<n and w(2) ¢ card(A) = card(A) L@ (X).
Let PN 7 ——m L™ be the pro jectlons.

For each aeA’, by T %, we denote the mapping fieg®: 5% = Zg* —=IKyl =

X5 Then by the same way as in[ 8], we can have the mapping f: Z —=X given

by
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(17) T3%r4=p,af foreach a€A

Now we will show that the mvapping f satisfied the required condition. Let

take a given point x of X. For each ae€A, put
(18) x5 = py(x),
(19) Ng=Na(x) = [x'€Xy | dlxa,x) <4 ),
(20) Mg = Ma(x) = f% 7 1IN,
Then by [ 8 ] Lemmas I2Aa4nd 14,’ |
(21) N(x) = (N3,e2,pa7',A") s an approximate system of nonempty compact
Hausdorff spaces whose 1imit is (x],
(22) M(x) = (Ma,ea,haa-,A‘) is an apvproximate system of nonempty compact |
Hausdorff spaces whose limit is f~1(x). | |
Hence by Proposition 1(2) and (22), (%) is nonempty. Namely,
(23) fissurjective (see[ 8], Theorem 15).

Therefore it sufficies to show that f~1(x) is acyclic modulo p.

Claim\. t isa W -mapping

Prooror Claim 1. For any a1 €A’, let take a2 € A’ such that ar < a2 Since Nazy isa
‘neighborhood of X, in the polyhedron Xay there exists a closed polyhedral

neighborhood U of x4, in Ny, such that

(24) U is contractible.
Now we may assume that

(25) U =ILl, where L is a subcomplex of the j-th 'bar'y‘centric subdivision Kg,]

for some sufficiéntly large j. | |

Then by the proof of [ 8 ], Lemma 17, there is as'> a2 such that

(26) rgaMad S ILL
By (10), taking a sufficiently large as if necessary, we may assume that for some
i 20, the i-th barycentric subdivision L! of L is a subcomplex of K,k(@2,as), .

- 21 -
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- Note that

Forany 1 <m <nand a mapping &: SM - '

(27) LT IRk K azas))m) = [LH M) for every.integer m 2 0.
Moreover, by (24) and (25), 3 |
(28) (LM =g (LD =0 it m<n.

'Maé, by (26), (15) and (27),
(29) e &(SM) € ILIA (K5 K (@800 = (LI & LI Ny, .
Hence by (28), |
(30) Tgpmac 0 inILHNY
Cons1dermg [y QI(K k(a2 a3))(“)! c Za * by [8], Lemma 17
(31) Faym (L) ma
By (30)and (31),
(32) '"a1azrazas°‘@ O‘ inMy,.
It follows that f"‘(kx.), is UVM-connected for every m<n-1. We complete the -
proof of Claim 1.
Claim 2. ﬁ”(f"(x):Zp) =0 forevery x€X. .
Proof 0/‘ C/a/mZ By Proposmon 3, it sufficies to show that for every at€A’ and
every mapping & ”a1 —K(Zp,n),
(33) orgal o 0,

here we use the same notation as in Claim 1, so the indexes az and as are the one

- taken in the proof of Clalm 1 (see[8] Lemma 17)

Letobea(ni)- SImplex of LI, Since doas *lI(Ka k(a2 aa))(n)| isa restmctwn of
the simplicial approximation doy(ap a3 Kazk(a%ai*) —= Ky, Of IK, by (27),
doap(o) =t is at most (n+1)-dimensional simplex of K,,. In the case of dimt<n,
it is clear that &ryp,196 = @ga5,004,¥130 has the extension @Qau,d0k(as,z2)

overe.
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IT dim =N+ 1, by (12), [gaa, 1911€ (KK (@L22)N)), Hence : 23

(34) GQnuzy |9t a0 1N K(Zp). o | |
Therefore we have an extension hy: o ——f—,v,—.K'(Zp,n)v:‘of Ulaiapldo. It follows
that @r g, LM has an extension hx: (LM D] ——k(zp,n). Since LT is
contractible, (LN is contractible ih"l(L")(”+ ). Hence o

(35) rgg = XILHMI a0 in K(zpn). "

Threrefore by (26) (13) and (35) we have (33) lt completes the proof of Clalm
2 |

Since dim £71(x) < dim Z <n, by C1a1ms I and 2 we have that £ ‘(x) is acychc
modulo p. We complete the proof of Theorem 3 | _

Some geherahzatmhs of Theorem 3 to the case of noncompact spaces will be
obtamed by the same way asin[8] as follows. However the proof is omitted
here. N :' ‘ |

| -»Cor“ol lary 7. 'Zef C .»09» aclass of paraco'/‘npacz“ spaces with the rollowing
two pro perz‘/es ' w
RO glL—— X /s a pmpe/” ﬂ?@pp//?g, L /s Hausdorff and X€&C, z‘/;en also
ZEC, |
(ii) /‘fY /;sanarma/ space and LEC /s a subspace of Y, then dim Z <dim Y.
Then every space X€C »1(/'1‘/7 dimip XN, N>2, /sthe image or a mapping . L

——=X or'gspace L&C with dimZ<n and w (2) < wX) whose ribers are
acyclic moaulop. |

Note that as a such a class of paracompact Hausdorff spaces, we know the
followings; paracompact locally strongly paracompact spaces, Strongly

paracompact spaces, paracompact locally compact spaces.
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