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1. INTRODUCTION

Recently $Kraichnan^{1.2}$ has presented the ‘Distant Interaction Algorithm’

(DSTA) in order to examine a turbulence theory of Yakhot and Orszag3 which

is based on the dynamic renormarization group and an extrapolation of the

interactions among widely separated wavenumbers to the local ones. He has

shown that the essence of the theory of Yakoht and Orszag can also be inter-

preted by DSTA of the perturbative closure and that the DSTA yields good

inertial range constants such as the Kolmogorov constant $K_{o}=1.56$ and the

Obukhov Corrsin constant $C_{o}=0.958^{1,2}$ as well as $K_{o}=1.62$ and $C_{o}=1.16$ of

Yakhot and Orszag.3 If both the DSTA and the theory of Yakhot and Orszag

are reliable, they would provide the great advantages to the computation of the

turbulence because they are very simple approximations and the eddy viscos-

ity like expressions can be supported. On the other hand it has been believed

that the local interactions among the wavenumbers are very important for the

energy transfer in the inertial range.

In this paper we shall consider why the DSTA can provide good inertial

range constants and discuss its reliability on the basis of a systematic La-
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grangian closure theory.

II. THE DISTANT-INTERACTION ALGORITHM

We consider the evolution of the energy specrum $E(k)$ of the turbulence

which obeys the incompressible Navier Stokes equation. The equation for the

energy spectrum $E(k)$ can be written as

$( \frac{\partial}{\partial t}+2\nu_{m}k^{2})E(k,t)=T(k,t)$ , (1)

where $T(k,t)$ is the energy transfer function due to the nonlinear term in the

Navier Stokes equation. The requirement of energy conservation by the nonlin-

ear interaction implies the following relation

$\Pi(P)\equiv-\int_{O}^{p}dqT(q)=2\int_{O}^{p}\nu(k|p)k^{2}E(k)dk$, (2)

$-2\nu(k|p)k^{2}E(k)\equiv T(k|P)$ , (3)

where $T(k|p)$ is the contributions to the energy transfer function arising from

the all triad wavenumbers interactions among $k<pand/orq$ . The relations (1)

to (3) are exact.

In the DSTA we assume

$\nu(k,t)=\nu(k|\beta k,t)$ , (4)

$\nu(k|p,t)=\nu(0|p,t)$ , (5)

where $\beta\geq 1$ is a cut off parameter. In any perturbative two point closures such

as DIA $\tau$ ALHDIA8, SBALHDIA9, $TFM^{10}$ , EDQNM11 and LRA,5,6 $\nu$ ($k$ I p) is

given by the form

$\nu(k|p)=\frac{1}{15}\int_{p}^{\infty}dq\theta(q,t)(5E(q)+q\frac{\partial}{\partial q}E(q))$ , for $k\ll p$, (6)
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and
$\theta(q,t)=\int_{0}^{\infty}ds\{G(q,t,s)\}^{2}$ , (7)

where $\theta(G)$ is the so-called triple relaxation time (response function).

In order to specify $G$ in (7), Kraichnan assumed that the dynamics of

the Eulerian $ve$ locity amplitude of the incompressible Navier-Stokes equation

can be modeled by the Langevin equation

$( \frac{\partial}{\partial t}+\nu_{m}k^{2}+k^{2}\nu(k,t))u_{i}(k,t$} $=f_{i}(k, t)$ , (8)

where $\nu_{m}$ is molecular viscosity, $\nu(k,t)$ is a dynamical viscosity, and $f:(k,t)$ the

solenoidal forcing which has isortopy and fluctuates in time like white noise. As

regards the interpretation of these quantities readers may refer Refs. 1 and 2.

It follows from (8) that the response function $G(k,t,s)$ is given by

$G(k,t,s)=\exp(-l^{\ell_{ds’}}(\nu_{m}k^{2}+k^{2}\nu(k,s’)))$ , (9)

and that the fluctuation dissipation relation holds as

$Q(k,t,s)=G(k,t,s)Q(k,t,t)$, $t\geq s$ , (10)

where

$P_{1j}(k)Q(k,t;s)=<u_{i}(k,t)u_{j}(-k,s)>$ . (11)

The DSTA by Kraichnan is defined by (2), (4), (5), (6), (7) and (9). It is to

be noted that the damping of $G$ (and also $\theta$) is essentially determined by the

”viscosity” $\nu(k, t)$ or $\nu(k|p)$ appearing in (4) to (6) as implied by (9).

However this is not true in any systematic perturbative closures such as

DIA and Lagrangian closures including the ALHDIA, SBALHDIA and LRA.

We therefore reconsider the validity of the DSTA in the framework of such
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a systematic perturbative closure. Here we use the Lagrangian renormalized

approximation(LRA), because the LRA is the simplest among the systematic

closures compatible with the the Kolmogorov inertial range law $k^{-6/3}$ and has

been found in good agreement with the numerical and the field experiments.6

In the LRA we have

$( \frac{\partial}{\partial t}+\nu_{m}k^{2}+k^{2}\eta(k,t,s))v;(k,t;s)=0$ , $t\geq s$ (12)

$( \frac{\partial}{\partial t}+\nu_{m}k^{2}+k^{2}\eta(k,t,s))G_{\dot{\iota}j}(k,t;s)=0$ , $t\geq s$ $(13a)$

$G(k,t;t)=\delta_{:j}$ , $(13b)$

instead of (8) and (9), where $v:(k,t;s)$ is the Fourier transform of the generalized

velocity field $v_{i}(x,t;s)$ whose values are measured at time $t$ of the fluid particle

whose trajectory passes the $x$ at time $s\leq t$ , and the $G(k,t,s)$ is the response

to the infinitesimal disturbance. The $\eta(k,t,s)$ is a eddy damping factor which

comes from the lagrangian acceleration of the $pressure^{5,6}$ ;

$\eta(k,t,s)=k\int_{O}^{\infty t}dqq^{3}J(\frac{q}{k})l^{d_{S}G(q,t,s)}$ , (14)

where
$J(x)= \pi((a^{2}-1)^{2}\log\frac{1+a}{|1-a|}-2a+\frac{10}{3}a^{3})(2a^{4})^{-1}$ ,

(15)
$16\pi$

$\sim\overline{15}$
for $x\ll 1$ ,

$a=2x/(1+x^{2})$ .

It follows from eqs.(12) and (13) that the fluctuation dissipation relation holds

$Q(k,t;s)=G(k,t,s)Q(k,s,s)$ , $t\geq s$ , (16)
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where

$P:j(k)Q(k,t;s)=P_{:l}(k)<v_{l}(k,t;s)v_{j}(-k,s;s)>$, (17)

(cf. (11)) and from the white noise assumption we can write as

$Q(k,t,s)=G(k,t,s)Q(k,t,t)$ , $t\geq s$ . (18)

The DSTA by the LRA is defined by (2), (4), (5), (6), (7) and (13).

Ill. ENERGY TRANSFER RATE IN THE INERTIAL RANGE

In the inertial range of steady turbulence the energy transfer rate $\Pi(p)$ is a

constant
$\Pi(p)=\epsilon$ , (16)

where $\epsilon$ is a total rate of energy transfer. The DSTA and (16) yield the $\beta$ de-

pendent Kolmogorov constant $K(\beta)$ in the steady state inertial range spectrum

$E(k)=K(\beta)\epsilon^{2/3}k^{-6/3}$. (17)

Kraichnan assumed that there is a gap between $k$ and $\beta k$ in the energy

spectrum and that the built up time of the triple correlation can be expressed

by the dynamic viscosity as

$\theta(k)=\frac{1}{2k^{2}\nu(k|\beta k)}$ (18)

and then obtained the approximate energy transfer rate

$\tilde{\Pi}(p)=(\frac{21}{80})^{1/2}\{K(\beta)\}^{3/2}\beta^{-2/3}(1+\frac{4}{3}\ln\beta)\epsilon$ , (19)

$\nu(k|p)=A(\beta)\epsilon^{1/3}p_{\beta}^{-4/3}$ , $(p \rho=\max(p,\beta k),$ $p\geq k$), (20)
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and

$\theta(k)=\frac{1}{2A(\beta)}\beta^{4/3}\epsilon^{-1/3}k^{-2/3}$ , (21)

where

$A( \beta)=(\frac{7}{60}K(\beta))^{1/2}\beta^{2/3}$ . (22)

If the result of the perturbative closure (here LRA, but its choice is not im-

portant) $K_{o}=1.72^{5}$ is used instead of $K(\beta)$ , then we can see the performance

of the approximation of the DSTA to the exact result $(\Pi(p)=\epsilon)$ of the closure

theory with respect to the energy transfer rate in the inertial range as

$\tilde{\Pi}(p)=1.16\epsilon$, for $\beta=1$ , (23)

$\tilde{\Pi}(p)=1.09\epsilon$, for $\beta=8$ , (24)

and the approximate Kolmogorov constant based on $K_{o}$ can be estimated as

follows

$K=1.56$, for $\beta=1$ , (25)

$K=1.62$, for $\beta=8$ . (26)

It seems, however, to be natural to consider that there is not the spectral

gap in the inertial range and there is no reason for $\theta(k,t)$ to be expressed by the

dynamic viscosity. Within the perturbative closure theory $\theta$ must be the time

integral of the response function. If we use the exact results of the $LRA^{5}(no$

extrapolation in the response $eq.(3))$ , then we obtain

$\theta_{LRA}(k)=\epsilon^{-1/3}k^{-2/3}\gamma I_{2}’$ , $\gamma=\sqrt{\frac{2\pi}{K}}$ , (27)

$I_{2}’= \int_{0}^{\infty}dr\overline{G}\{\tau$ )
(28)

$=1.49$.
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Thus the dynamic viscosity and the approximate energy transfer rate become

$\nu(k|p)=\frac{\sqrt{2\pi}}{6}\{K(\beta)\}^{1/2}\epsilon^{1/3}I_{2}’p_{\beta}^{-4/3}$ , (29)

$\tilde{\Pi}(P)=\frac{\sqrt{2\pi}}{4}\{K(\beta)\}^{3/2}I_{2}’\beta^{-4/3}(1+\frac{4}{3}\ln\beta)\epsilon$ . (30)

If we use the value $K_{o}$ instead of $K(\beta)$ , we obtain the following estimates

$\tilde{\Pi}(p)=0.58\epsilon$ , $K=2.47$, for $\beta=1$ , (31)

$\tilde{\Pi}(p)=0.14\epsilon$ , $K=6.38$, for $\beta=8$ . (32)

More consistent treatment of $\theta$ in the context of the DSTA nay be an

extrapolation of the response function $G(k,t,s)$ . Under the same assumption

which lead to (27), we estimate $\eta(k,t,s)$ . By using (4) and the asymptotic

expression of (5), we obtain

$\eta(k|p)=B(\beta)\epsilon^{1/3}p_{\beta}^{-4/3}k^{2}$ , (33)

$\theta_{LRA,DSTA}(k)=\frac{1}{2B(\beta)}\epsilon^{-1/3}k^{-2/3}\beta^{4/3}$, (34)

$B( \beta)=(\frac{2}{5}K(\beta))^{1/2}\beta^{2/3}$ , (35)

and

$\nu(k|p)=\frac{1}{12B(\beta)}K(\beta)\epsilon^{1/3}\beta^{4/3}p_{\beta}^{-4/3}$, (36)

$\tilde{\Pi}(P)=(\frac{5}{128})^{1/2}\{K(\beta)\}^{3/2}\beta^{-2/3}(1+\frac{4}{3}\ln\beta)\epsilon$ . (37)

If we use again the value $K_{o}$ instead of $K(\beta)$ , we obtain the following estimates

$\tilde{\Pi}(p)=0.45\epsilon$ , $K=2.95$ , for $\beta=1$ , (38)

$\tilde{\Pi}(p)=0.42\epsilon$ , $K=3.(n$, for $\beta=8$ . (39)
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For other conbinations of the assunptions with respect to the energy gap and

the choice of the $\theta$ , the results are shown in the Table. From these observations

it is found that the use of $\theta$ due to the response function instead of the one due

to $\nu$ leads to poor approximation of the energy transfer rate $\tilde{\Pi}(p)$ . This reason

will be discussed in the next section.

IV. MECHANISM OF DSTA

We consider here why the DSTA yields good inertial range constants. The

built up time of the triple correlations $\theta$ is symbolically written as

$\theta(k)=\frac{1}{2\eta(k|p)}$ . (40)

As seen in Sec.III, the various approximations for $\eta$ can be ordered as follows

$\eta_{LRA}>\eta_{tRA.DS’PA}>\nu_{DSTA}k^{2}$ , (41)

where $\nu_{DS24}$ means (20). On the other hand the factor $\{5E(q)+q\partial/\partial qE(q)\}$

has less contribution to $\tilde{\Pi}(P)$ than the exact one, then the two elements of the

approximations in the DSTA work in a way to compensate each error. Moreover

when $\nu_{DST4}k^{2}$ is used in $\theta$ the residual error (say $R(\beta)$ ) of the Taylor expansion

of the energy transfer function $T(k|p)$ can be reduced in the expression of

$\nu_{DST4}$ , because the equation for $\nu_{DSTA}$ must be self-consistently solved. That

is, $\nu_{DST4}$ may be symbolically expressed as

$\nu_{DST\lambda}=(\int dq\frac{1}{2k^{2}}\{5E(q)+q\frac{\partial}{\partial q}E(q)\})^{1/2}(1+\frac{1}{2}R(\beta))$ .

When the Kolmogorov constant is computed, the reduction of the error

$R(\beta)$ becomes larger than that in the situation for $\nu_{DST4}$ . The equation for $\tilde{\Pi}$
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is symbolically written as

$\epsilon=\tilde{\Pi}=K^{3/2}C(\beta)\epsilon(1+\frac{1}{2}R(\beta))$ ,

thus we have

$K=C( \beta)^{-2/3}(1-\frac{1}{3}R(\beta))$ , (42)

where $C$ is a constant. That is the Kolmogorov constant is given as the root

of the cubic equation. From (42) it is found that the error to the Kolmogorov

constant is only 33% even if $R$ is unity.

In the LRA, the essence of the reason why the DSTA gives good numer-

ical constants is found to be in the compensation of errors in both the triple

relaxation time and the Taylor expansion of the energy transfer function, and

to lie in solving the self-consistent equation with identifying the dynamic eddy

viscosity with the eddy damping $\eta$ . At present we do not know whether such

compensation of errors occurs or not for quantities other than the $\Pi(p)$ in the

$k^{-5/3}$ inertial range.

-9-



240

REFERENCES

1 R.H.Kraichnan, Phys.Fluids 30 2400 (1987).

2 R.H.Kraichnan, Phys.Fluids 30 1583 (1987).

3 V.Yakhot and S.A.Orszag, J.Sci.Comput. 1 3 (1986).

4 Y.Kaneda, J.Fluid Mech. 107 131 (1981).

5 Y.Kaneda, Phys.Fluids 29 701 (1986).

6 T.Gotoh, Y.Kaneda and N.Bekki, J.Phys.Soc.Jpn. 57 866 (1988).

7 R.H.Kraichnan J.Fluid Mech. 5 497 (1959).

8 R.H.Kraichnan Phys.Fluids 8 575 (1966).

9 R.H.Kraichnan and J.R.Herring J.Fluid Mech. 88 355 (1978).

io R.H.Kraichnan J.Fluid Mech. 47 513 (1971).

11 S.A.Orszag J.Fluid Mech. 41 363 (1970).

-10-



241

TABLE

$\mu_{LR4}$ $\mu_{LRA,DSPA}$ $\nu_{Dsrs}k^{2}$

$\beta=1$ $\beta=8$ $\beta=1$ $\beta=8$ $\beta=1$ $\beta=8$

0.58 0.14 0.45 0.42 0.98 0.92

$\tilde{\Pi}/\epsilon$

0.81 0.19 0.62 0.59 1.16’ 1.09’

2.47 6.38 2.95 3.06 1.74 1.82

$K$

2.00 5.20 2.36 2.44 1.56’ 1.62’

Table

Comparison of the energy transfer rate and the Kolmogorov constant by the

various Distant Interaction Algorithms. The upper lines of each comparison

term.show the values for no energy spectral gap and the lower for the energy

gap. The value of the Kolmogor$ov$ constant by the exact closure theory is for

example $K_{o}=1.72(LRA)$ . The DSTA of $Kraichnan^{1,2}$ corresponds to the values

with $*$
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